
Journal of Wind Engineering & Industrial Aerodynamics 226 (2022) 105046

0167-6105/© 2022 Elsevier Ltd. All rights reserved.

Calculating gas emissions from open-pit mines using inverse dispersion 
modelling: A numerical evaluation using CALPUFF and CFD-LS 

Seyedahmad Kia a, Thomas K. Flesch b, Brian S. Freeman c, Amir A. Aliabadi a,* 

a School of Engineering, University of Guelph, Guelph, ON, Canada 
b Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada 
c Lakes Environmental, Waterloo, ON, Canada   

A R T I C L E  I N F O   

Keywords: 
Atmospheric transport 
CALifornia PUFF (CALPUFF) model 
Computational fluid dynamics (CFD) model 
Lagrangian stochastic (LS) model 
Open-pit mines 
Thermal stability 

A B S T R A C T   

Inverse Dispersion Modelling (IDM) establishes a relationship between an air pollutant concentration down
stream of a source and the strength of an emission source by reliance on an air dispersion model. Thus, ideally 
measuring pollutant concentration downstream is sufficient to infer the emission source strength. However, the 
accuracy of IDM relies on the accuracy of the underlying air dispersion model. Diagnostic dispersion models face 
difficulty when applied to complex terrains of open-pit mines. To elucidate such difficulties and their causes, the 
diagnostic CALifornia PUFF (CALPUFF) model is compared to a Computational Fluid Dynamics-Lagrangian 
Stochastic (CFD-LS) model for quantifying the short-range dispersion of fugitive gases released from a syn
thetic open-pit mine. Two mine depths (100–500 m) and three thermal stability conditions (stable-neutral-un
stable) are investigated. In all cases the surface concentration predicted by the two models are in disagreement, 
regardless of CALPUFF model setup. Overall, less than 30% of receptor points predict the concentration within a 
factor of two of CFD-LS simulations (FAC2 < 0.3). Model differences appear to be related to the internal algo
rithms of the CALPUFF model to predict the wind field appropriately. The results should caution practitioners 
considering diagnostic models for IDM analysis over complex terrain.   

1. Introduction 

Open-pit mines are used to extract mineral deposits that are close to 
the earth surface. Mine pits can be spatially large with depths ranging 
from shallow (few tens of meters) to deep (few hundred meters). Oil 
sand mines, for example, typically have depths of less than 100 m. 
Deeper pits can be used in coal mining and hard rock mining for ores 
such as copper, gold, iron, aluminum, and many other minerals. Mines 
can be large sources of gases or particulates emissions to the atmosphere 
(Peng and Lu, 1995), and quantification of their emission rates is an 
important problem, as it may be needed to meet regulatory re
quirements, understand the management and mitigation of emissions, or 
prioritize mitigation efforts. 

Quantifying emissions from open-pit mines is a serious challenge for 
traditional measurement techniques. Flux chambers (FCs) are a simple 
but intrusive means of measuring gas emissions. One of the difficulties 
with FC measurements is their spatially small measurement footprint, as 
well as their impracticality for measuring emissions from vertical 

surfaces (e.g., mine faces). Micrometeorological approaches, such as 
eddy-covariance or flux gradient, overcome some of the weaknesses of 
FCs (e.g., no interference with the emitting surface, larger measurement 
footprint, capability for long-term monitoring), but they are funda
mentally challenged by complex wind conditions, and the difficulty of 
interpreting their measurements for spatially inhomogeneous emission 
sources (Meyers et al., 1996; Foken et al., 2012; You et al., 2021). 

The Inverse Dispersion Modelling (IDM) approach is a flexible 
micrometeorological technique having fewer restrictions than other 
approaches. In the IDM technique, an emission rate is calculated from 
gas or particulate concentration measured downwind of the source, and 
an atmospheric dispersion model is used to deduce the emission rate that 
best fits the measured concentration. There are many examples of IDM 
studies, ranging from the small scale (observations at distances <10 m 
from the source) to the continental scale, from point sources to area and 
volume sources, from continuous emission sources to time varying 
sources, and from passive tracers (e.g. non-buoyant gases) to active 
tracers (e.g. heavy particles) (Wilson et al., 1982; Raupach, 1989; Carter 
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et al., 1993; Seibert, 1999; Aylor and Flesch, 2001). Most IDM appli
cations to estimate industrial emissions are local in scale, with concen
tration sensors located within a few kilometers of the source, and where 
the terrain is nominally homogeneous and flat. In these situations, 
simple short-range dispersion models can be appropriate for IDM 
calculations. 

Given the lack of alternatives to measuring emissions from open-pit 
mines, there is opportunity for IDM to become a useful approach for 
emission quantification. But this opportunity depends on accurate 
dispersion model calculations in open-pit environments. The meteoro
logical patterns within and near these mines can be quite different from 
flat terrain, with topographically induced flow circulations and shear 
layers (Clements et al., 2003; Whiteman et al., 2004; Nahian et al., 
2020), and atmospheric models are challenged by this complexity 
(Rotach and Zardi, 2007; Medeiros and Fitzjarrald, 2014, 2015; Ren 
et al., 2018; Byerlay et al., 2020; Nahian et al., 2020; Nambiar et al., 
2020a,b; Kia et al., 2021; Liu et al., 2022). High spatiotemporal reso
lution modeling that is capable of accounting for terrain can be broadly 
categorized as prognostic, diagnostic, or hybrid models. Prognostic 
models solve transport questions at a fundamental level, but they are 
computationally inefficient. Diagnostic models rely on empirical for
mulations to simulate transport phenomena more efficiently, but at the 
cost of reduced accuracy. Hybrid models mix the two paradigms to 
improve computational efficiency and accuracy simultaneously. 

In prognostic models the prediction of the wind field over complex 
terrain is usually based on the numerical solution of the Navier-Stokes’ 
equations, with a turbulence model or method, or the Euler’s equations, 
with an Atmospheric Boundary Layer (ABL) model to simulate turbu
lence. Numerous Computational Fluid Dynamics (CFD) models have 
been developed that employed Reynolds Averaged Navier Stokes 
(RANS) closure schemes (Kim et al., 2000; Neophytou et al., 2011; 
Breedt et al., 2018; Joseph et al., 2018; Han et al., 2020; Streichenberger 
et al., 2021; Zhou et al., 2022) or Very Large Eddy Simulation (VLES) 
methods (Aliabadi et al., 2018; Xia et al., 2020; Ma and Sun, 2021; 
Ahmadi-Baloutaki and Aliabadi, 2021; Kia et al., 2021) to simulate 
turbulent transport. This type of modelling has been used to calculate 
the wind flow within and around open pit mines (Flores et al., 2014; Kia 
et al., 2021). While prognostic models provide an avenue for high fi
delity modelling of terrain impacts, they are difficult and computa
tionally expensive tools that may not be broadly useable in real-world 
IDM problems. 

Diagnostic models may provide a much more practical IDM tool for 
open-pit mines. As far as diagnostic models are concerned, the CALi
fornia PUFF Model (CALPUFF) is an industry standard. It is a multilayer, 
multi-species, and non-steady-state puff dispersion model that simulates 
the effects of time- and space-varying meteorological conditions on 
pollution transport (Scire et al., 2000). CALPUFF has been used to 
investigate dispersion from open-pit mines (Arregocés et al., 2016). The 
ability of CALPUFF to account for complex terrain relies on CALMET’s 
(CALifornia METeorological) representation of wind complexity. 
CALMET is a diagnostic model that generates a grid of mass-consistent 
wind fields. It does not solve the equations of motion. This is a 
dramatically simpler approach to incorporating flow complexity, and a 
more likely means of enabling IDM for open-pit mines. 

We conducted a “synthetic” modelling study of wind and gas 
dispersion to examine the potential of a CALPUFF-based IDM approach 
to measure emissions from an open-pit mine. Our procedure is to use a 
high-resolution CFD-LS model to represent the “actual” dispersion of gas 
from a mine, which is then compared against predictions using a CAL
PUFF simulation. The CFD model has been previously used to model 
wind flow in open-pit mine environments (Kia et al., 2021), where it 
accurately represented measured flow fields. Differences between the 
two models (CALPUFF versus CFD-LS) are used to judge the potential of 
CALPUFF to provide useful emission rate estimates with IDM. We will 
examine two open pit mine configurations (shallow and deep), in ther
mally stable, neutral, and unstable ambient wind conditions. The study 

is focused on the following questions:  

● What are the relative differences in the ground level concentration 
(downwind of the mine) predicted by the CFD-LS and CALPUFF 
models?  

● How does the CFD-LS and CALPUFF comparison change with 
different implementations of CALPUFF?  

● Does the number and location of the input weather stations for 
CALPUFF influence the agreement with the CFD-LS simulations?  

● Does the agreement between the CFD-LS and CALPUFF predictions of 
surface gas concentrations downwind of the mine depend on 
location? 

The article is organized as follows. Section 2 describes our method
ology. Section 2.1 introduces the open-pit mine characteristics. The 
details of the CFD model are presented in Section 2.2, and the details of 
the CALMET and CALPUFF models are presented in Section 2.3. The 
IDM methodology is described in Section 2.4. The statistical analysis for 
comparison of the two models is described in Sections 2.5. In Section 3, 
the results of the simulations for the two types of open-pit mines 
(shallow and deep) under thermally unstable, neutral, and stable con
ditions are presented. This includes the visualization of the mine plumes 
in Section 3.1, the effects of CALPUFF weather and gas receptor station 
setups on the results in Section 3.2, and the implications in Section 3.3. 
Section 4 includes the main conclusions and recommendations. 

2. Methodology 

2.1. Open-pit mine description 

Fig. 1 shows the generated shallow and deep kidney-shape mine 
geometries visualized by CALPUFF View software version 8.6.0. In 
Table 1 the details of mine walls and dimensions are presented. The 
generated mine geometry is the same configuration as the geometry of 
the open-pits of the CFD simulations presented by Kia et al. (2021). 

Each mine simulation prescribes five small surface gas sources 
located around the interior wall of the mine pit (Fig. 2). These might 
represent five shovel locations digging into the mine face, which release 
subsurface gas. Each emitting source releases pollutants at a rate of 1 kg 
s− 1 from a volume of length, width, and height of 100 m by 100 m by 2 
m, with a total emission rate of 5 kg s− 1 from all sources. All of the 
sources are located at 50 m and 250 m above the pit’s bottom for shallow 
and deep mines, respectively. The exact location of sources and emission 
rates (blue squares in Fig. 2) are presented in Table 2. 

2.2. Computational Fluid Dynamics and Lagrangian Stochastic (CFD-LS) 
model 

There have been many modeling efforts to understand the turbulence 
structure of the Atmospheric Boundary Layer (ABL) using various nu
merical techniques. While Direct Numerical Simulations (DNS) are too 
computationally expensive and Reynolds-averaged Navier-Stokes 
(RANS) or eddy viscosity models suffer from lack of accuracy, Large 
Eddy Simulations (LES) have been used as an effective numerical tool to 
simulate the ABL with sufficient reliability. In LES, the turbulent eddies 
of the size of the computational grid cells and larger are explicitly 
resolved, while the effects of the smaller eddies are parameterized using 
Sub-Grid Scale (SGS) models. VLES is another powerful tool to econo
mize the CFD simulations. The main distinction between VLES and the 
standard LES is the determination of filter width with respect to the grid 
size. In the pure LES, the filter width is associated with the grid size, 
while the filter width in VLES can be set arbitrarily at any value between 
the grid size and the large characteristic length scales of the flow. The 
VLES becomes LES, when the filter width is set as its lowest limit of grid 
size (Aliabadi et al., 2018; Kia et al., 2021; Ahmadi-Baloutaki and 
Aliabadi, 2021). 
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In the present paper, the CFD model is based on a VLES method 
developed by Aliabadi et al. (2018), Ahmadi-Baloutaki and Aliabadi 
(2021), and Kia et al. (2021). The CFD model is developed for Open
FOAM 4.1. and is used to run the flow field simulations over open-pit 
mines under different thermal stability conditions and mine depths to 
simulate atmospheric transport for each configuration. The flow fields 
from CFD are inserted in the CALPUFF model and an LS model for 
dispersion simulations. 

The CFD domain and boundary identification are shown in Fig. 3. 
Comprehensive details for the CFD domain were provided by Kia et al. 
(2021), while a brief description is provided here. For all CFD simula
tions, the domain length and width are 10000 m and 6000 m, respec
tively. The mesh discretization in the vertical direction is set to 2 m from 

the bottom of the mine to 100 m above grade; then it increases to 30 m 
up to 1000 m above grade; and finally, it is set to 75 m up to the top of 
the domain. The mesh in the horizontal direction is divided into two 
sections. First, a very fine mesh is generated surrounding the mine area 
from x = 2500 m to 9000 m that extends to the edges of the mine with a 
grid spacing of 50 m by 50 m. Second, a coarse mesh is used near the 
inlet (x = 0 m–2500 m) and outlet (x = 9000 m–10000 m) of the domain, 
with a grid spacing of 170 m by 170 m. This mesh is generated to 
simulate the flow more accurately in the sensitive areas (open-pit mine) 
and to avoid high computational cost elsewhere. The flow passes over 
the domain in the stream-wise direction once with a time step of 0.1 s, 
then the simulations are extended for an additional two flow passes over 
the domain with a time step of 0.01 s to obtain statistical information by 
time averaging at a frequency of 10 Hz (Aliabadi et al., 2019, 2021) for 
15 min. 

For velocity, the synthetic vortex method (Aliabadi et al., 2018) is 
used at the inlet, the no-slip condition is used at the domain bottom, slip 
condition is used on the domain top, and the zero-gradient condition is 
used at the outlet. The mappedField boundary condition (Kia et al., 
2021) is used to set the potential temperature profile at the inlet. A 
spatially-uniform fixed value is used for potential temperature on the 
bottom surface, and zero gradient condition is used on the top and outlet 
surfaces. The cyclic boundary condition is assumed for the north and 
south boundaries for all variables (Kia et al., 2021). The Sub-Grid Scale 
(SGS) model employed by CFD is known as the oneEqnEddy SGS model 
in OpenFOAM 4.1 (Aliabadi et al., 2017). 

For each simulation a combination of friction velocity and Monin- 

Fig. 1. a) Shallow and b) deep synthetic mine geometries generated by CALPUFF View, c) shallow and d) deep synthetic mine wall details.  

Table 1 
Dimensions of the stepped shallow and deep mines (Kia et al., 2021).  

Geometry Dimension 

Shallow Mine Deep Mine 

Overall Slope Angle 30◦ 50◦

Bench Face Angle 60◦ 70◦

Mine Depth 100 m 500 m 
Mine Length 1500 m 1500 m 
Mine Width 2000 m 2000 m 
Bench Height 10 m 25 m 
Bench Width 10 m 10 m 
Ramp Height 10 m 25 m 
Ramp Width 25 m 25 m  
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Obukhov length (Table 3) are chosen to determine the thermal stability 
conditions. The solutions are extracted at 10 terrain following z-levels 
(10, 15, 25, 40, 65, 100, 200, 300, 500, and 800 m) in a terrain- 

following coordinate system with a horizontal resolution of 50 m by 
50 m. The extracted results in the mentioned levels are the horizontal 
and vertical mean wind velocity components, some components of 
Reynolds stresses, and turbulence kinetic energy dissipation rate. The 
details of the CFD simulation and the results are presented by Kia et al. 
(2021). 

Gas dispersion is calculated from the CFD flow fields using a 
Lagrangian Stochastic (LS) model. The LS model is a common method to 
perform dispersion modelling over complex terrain (Bahlali et al., 
2019). The LS model calculates the x, y, z [m] trajectories of many tracer 
particles as they travel downwind of the mine emission sources posi
tioned at five locations along the mine wall. This is a first-order model, 
in which trajectories are calculated by incrementing changes in particle 
velocities u, v, and w [m s− 1] over a model time-step Δt [s]. The LS model 
details are described by Wilson et al. (2009, 2010) and only a brief 

Fig. 2. Location of emission sources, concentration receptors, and upper air stations in the CALPUFF domain.  

Table 2 
Emission rate and location for the center of emission sources (S1 to S5) for 
shallow and deep configurations. The z value for shallow and deep configura
tions are 50 and 250 m from bottom of the pit in the terrain-following coordinate 
system, respectively.  

Sources Locations (x, y) [m] Emission Rate [kg s− 1] 

S1 (5500,3900) 1 
S2 (5200,3000) 1 
S3 (5100,2500) 1 
S4 (5200,2300) 1 
S5 (6400,3000) 1  

Fig. 3. Generated CFD mesh and boundary identification for the shallow mine, a) view of domain and boundary conditions, b) view of mine from above grade, c) 
view of mine from below grade, and d) view of mine cross-section. 

S. Kia et al.                                                                                                                                                                                                                                      



Journal of Wind Engineering & Industrial Aerodynamics 226 (2022) 105046

5

summary is provided here. The LS model uses gridded flow statistics 
calculated by the CFD model: the mean velocities in each coordinate, the 
velocity variances in the three coordinates σu,v,w [m s− 1], and the tur
bulent kinetic energy dissipation rate ε [m2 s− 3]. In our LS simulations 
the covariance between velocity components are neglected. The LS 
model time-step is set as a fraction of the effective Lagrangian timescale, 
calculated as TL = 2σ2

w(C0ε)− 1, with Δt [s] equal to 0.2TL under unstable 
and neutral conditions, and 0.02TL under stable condition (the value of 
C0 is assumed to be 3.59). As particles move downwind they may cross 
the ground surface (i.e. taken as the roughness length z0 [m]), in which 
case the particles are reflected back into the flow domain. 

To represent gas dispersion, 25000 model particles are released 
randomly over each source (with the footprint described in the previous 
section). These particles travel away from the source in accordance with 
the flow field, and eventually move downwind of the mine and exit the 
model domain. A set of concentration receptors are located downwind of 
the mine pit (Fig. 2). Each receptor is a volume (Δx, Δy, Δz = 10, 50, 10 
m) where the time-average gas concentration is calculated from the 
residence time of the LS particles within the volume. The number and 
location of the receptors depend on the problem being investigated. 

2.3. CALPUFF 

CALPUFF is a transport and dispersion model that advects and dif
fuses puffs of material emitted from modeled sources, simulating 
dispersion and transformation processes along the way. CALPUFF’s 
dispersion calculations typically use the three-dimensional wind fields 
generated by the CALMET model. CALMET is a diagnostic model that 
generates a grid of mass-consistent wind field using a three-step process. 
The first step is to interpolate/extrapolate observed wind data to grid 
points in the modeling domain. The wind field interpolation/extrapo
lation is based on the inverse square of the weighted distance between 
the grid points and the wind observations, giving more weight to the 
nearness of the observation points (Scire et al., 2000). An observation is 
excluded from interpolation/extrapolation if the distance from the 
observational station to a particular grid point exceeds a maximum 
radius of influence. The second-step in generating the gridded wind field 
uses parameterizations to account for the kinematic effects of terrain, 
slope flows, and blocking effects. The third step adjusts the wind fields to 
meet the mass consistency requirement by minimizing the divergence of 
the flow field. 

In the present work, two sets of synthetic mine geometries, namely 
shallow and deep mines, under three different thermal stability condi
tions (unstable, neutral, and stable) are simulated by CALPUFF View 
8.6.0 (Lakes Software) and CFD-LS models. At the first step, the wind 

field predicted by CFD (Kia et al., 2021) for each of the six different mine 
configurations and stability conditions is assumed as the real flow field 
over the synthetic open-pit mining area to be the input of both the 
CALPUFF the LS models. The concentration field produced by the 
CFD-LS model is used for comparison with the CALPUFF plume distri
bution predictions. The wind field produced by the CFD model is used 
for comparison with the dataset for the flow field predicted by CALMET. 

The mines’ upstream edge is located at x = 5000 [m] in the stream- 
wise direction. This allows for an adaptation distance such that flow 
mean and turbulence statistics generated by CFD adopt representative 
atmospheric conditions before studying transport phenomena over the 
mines (Aliabadi et al., 2018; Ahmadi-Baloutaki and Aliabadi, 2021; Kia 
et al., 2021). Table 3 shows the friction velocity u* [m s− 1] and Obukhov 
length L [m] for the CFD-LS and CALPUFF simulations under the three 
different thermal stability conditions. These u* [m s− 1] and L [m] values 
apply to the flow conditions upwind of the mine. 

The open-pit mine terrain is generated with CALMET’s geophysical 
processor with the horizontal resolution of 250 m by 250 m with a user- 
defined land use. The surface roughness is set to be z0 = 0.3 m, appro
priate for the modified land within the boreal forest of northern Canada 
(Raupach et al., 1991; Kia et al., 2021), all over the domain, which 
creates a uniform aerodynamic roughness for all surfaces. The domain is 
divided into 11 vertical layers (20, 40, 60, 80, 100, 200, 600, 800, 1000, 
1200, and 1300 m above surface). The vertical layers are more dense 
below 100 m, which is the volume close to the surface. This part of the 
boundary layer is more important than upper layers for investigation of 
the plume distribution near the ground. The meteorological and gas 
sampling grid cells have a horizontal resolution of 250 m by 250 m. The 
same horizontal resolution is used in the LS simulations. CALPUFF is set 
to use the properties of methane gas as the pollutant, although hereafter 
we interpret that gas as broadly representing a neutrally buoyant tracer. 

The wind speed, wind direction, potential temperature, and pressure 
calculated by CFD are used to generate the required data for the surface 
and upper air stations in CALMET. The wind field data at 10 m and 1300 
m above the surface in terrain-following coordinates are extracted from 
the CFD model to be used as the surface and upper air stations, 
respectively. No precipitation or cloud cover are assumed in the simu
lations. For all the six simulations, three upper air stations are consid
ered and located in the terrain-following coordinates at (x [m], y [m], z 
[m]) of (3000, 3000, 1300)-west station, (5800, 3000, 1300)-mine sta
tion, and (8500, 3000, 1300)-east station, which can be seen with blue 
triangles in Fig. 2. Radius of influence of terrain features, which is a 
function of the dominant scale of the terrain is suggested by Scire et al. 
(2000) to be 5 to 10 time of the grid spacings wide and large enough to 
cover topographical changes in the domain. In the present simulations, 
as the mines’ widths are 2 km and the grid spacing is 250 m, the radius of 
influence of terrain features is set to be 2 km for all the simulations. 

We used 169 discrete concentration receptors at 10 m above the 
ground placed downstream of the mine (from 6500 m to 9500 m in x- 
direction and 2000 m–4000 m in y-direction) to record the surface gas 
concentration for the model comparison purposes (blue pluses in Fig. 2). 
For the wind field comparison, 26 points outside the mine at 10 m above 
the surface and 15 points inside the mine at 10 m above the surface are 
selected (red dots in Fig. 4). Also, two vertical columns of receptors from 
10 m above the surface up to the top of the domain are defined at (x =
5800 m, y = 3000 m) and downstream at (x = 8500 m, y = 3000 m) to 
record data in the vertical direction for the purpose of wind field com
parison throughout the depth the ABL (yellow stars in Fig. 4). 

The simulations investigate the effects of the number of surface 
stations on the CALMET-generated wind field and the CALPUFF- 
generated concentration field. The number of surface stations is 
changed both inside and outside of the mine, from a high resolution case 
with 24 and 95 surface stations inside and outside the mine, respec
tively, to a low resolution case with only one surface station outside the 
mine. The seven cases with defined surface stations are summarized in 
Table 4. Case C1 is called the high resolution case as it has the highest 

Table 3 
Friction velocity and Obukhov length upwind of the mine for shallow and deep 
mine configurations; data reported under various thermal stability conditions.  

Mine Type Symbol Value 

Thermally unstable 

Shallow u*,10 m [m s− 1] 0.29  
L10 m [m] − 11.60 

Deep u*,10 m [m s− 1] 0.33  
L10 m [m] − 27.18 

Thermally neutral 

Shallow u*,10 m [m s− 1] 0.46  
L10 m [m] – 

Deep u*,10 m [m s− 1] 0.52  
L10 m [m] – 

Thermally stable 

Shallow u*,10 m [m s− 1] 0.26  
L10 m [m] 9.36 

Deep u*,10 m [m s− 1] 0.23  
L10 m [m] 31.45  
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number of surface stations inside and outside of the mine, and case C6 is 
called the operational case as the number of surface stations inside and 
outside of the mine is seen as being a practical measurement configu
ration that could be used in a real-world mine study. 

The operational case C6 is pursued further to investigate the effects 
of changing the location of surface stations on the CALPUFF dispersion 
simulations. For this purpose, the locations of the surface stations 
outside the mine at upstream and downstream sides are changed in the 
x-direction for four additional cases. The x-location of the four cases are 
x = 1000, 8000 m, x = 3000, 7000 m, x = 3000, 8000 m, and x = 3000, 
9000 m. The results of the simulations are compared with the concen
tration and wind fields from the CFD-LS results. 

The effects of changing the location of concentration receptors 
outside the mine are studied for the operational case C6. For this pur
pose, seven arrays of discrete receptors at x = 6500, 7000, 7500, 8000, 
8500, 9000, and 9500 m (from the east edge of the mine to the end of the 
computational domain) are selected to compare the concentration at 
each array with CFD-LS concentration at the same location of receptors 
at 10 m above surface. All the CALMET and CALPUFF results are pre
sented after 1-h averaging. 

2.4. The Inverse Dispersion Modelling paradigm 

The specific focus of this study is the use of IDM to calculate mine 
emissions. The IDM technique is based on the simple idea that when a 
mine emits gas at an unknown rate Q [kg s− 1], the gas concentration 
downwind of the mine C [μg m− 3] will increase above the ambient 
background concentration Cb [μg m− 3], and that a measurement of (C −
Cb) [μg m− 3] indicates Q [kg s− 1]. The link between Q [kg s− 1] and (C −

Cb) [μg m− 3] is calculated with an atmospheric dispersion model. Given 
the theoretical ratio (C/Q)Sim provided by an atmospheric dispersion 
model and a measurement of (C − Cb) [μg m− 3], one can infer Q [kg s− 1] 
(Flesch et al., 2005): 

Q =
(C − Cb)

(C/Q)Sim
. (1) 

Equation (1) is the conceptual format for an IDM calculation. In this 
study we report C [μg m− 3], assuming that Cb = 0 [μg m− 3]), downwind 
of a fixed emission source Q = 5 [kg s− 1]. This is equivalent to reporting 
the values of (C/Q)Sim provided by the CFD-LS and the CALPUFF models. 
The CFD-LS model is assumed to be our best estimate of (C/Q)Sim for the 
complex open-pit mine terrain, and we are interested to know how well 
CALPUFF reproduces the CFD-LS value. 

2.5. Statistical analysis 

Quantitative comparisons between the CALPUFF model (Mi) and 
CFD-LS model (Oi) outputs (concentration and wind speed) are per
formed by determining the Bias and Root Mean Square Error (RMSE) 
defined by 

Bias =
∑n

i=1(Mi − Oi)

n
, (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Mi − Oi)
2

n

√

, (3)  

where n is the number of data accounted for in the error statistic 
calculation. Because wind direction is a circular variable, differences of 
wind direction between CALPUFF and the CFD-LS models are reported 
as a positive number less than 180◦ by calculating the Mean Absolute 
Error (MAE) (instead of Bias) (Nahian et al., 2020) defined by Fernán
dez-González et al. (2018). 

MAE =

∑n
i=0|Mi − Oi|

n
. (4) 

To assess the spatial distribution of the concentration field predicted 
by CALPUFF, another statistic is used. The fraction of receptor points 
that predict the concentration within a factor of two of CFD-LS simu
lations is termed FAC2 and defined by Hanna et al. (1993) and Wang 
et al. (2008). 

Fig. 4. Arrangement of surface and upper weather stations associated with the operational case C6; location of the model comparison points for wind field modeling 
using CALPUFF. 

Table 4 
The number of surface stations inside and outside the mine for meteorological 
forcing of the CALMET model.  

Case No. Number of surface stations 

Inside Mine Outside Mine 

C1 (High Resolution Case) 24 95 
C2 24 12 
C3 8 4 
C4 1 95 
C5 1 12 
C6 (Operational Case) 1 4 
C7 0 1  
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FAC2 = fraction ​ of ​ data ​ for ​ which 0.5 ≤ CM/CO ≤ 2. (5) 

For modeling of air pollution dispersion over complex terrain (e.g. 
urban areas), Hanna and Chang (2011) suggest that a model perfor
mance in complex urban environments is acceptable if FAC2 is greater 
than about 30%. This is a more relaxed cutoff than suggested for models 
of dispersion over flat and homogeneous terrain. Here we note that the 
FAC2 statistic for the concentration ratio CM/CO is also the FAC2 statistic 
for the ratio of the IDM-calculated emission rates using Equation (1). 
This is because for a neutrally buoyant and chemically inert tracer, the 
concentration ratio from the two models (above background concen
tration) is equal to the emission rate ratio for a given source configu
ration and atmospheric condition. So the FAC2 statistic gives the 
proportion of receptor points where an IDM calculation using CFD-LS 
and CALPUFF values of (C/Q)Sim differ by less than a factor of two. In 
addition, FAC5 and FAC10 are computed in this study, but the results are 
not provided for brevity. These statistical metrics help decide if an air 
pollution dispersion model provides acceptable results. 

3. Results and discussion 

In this section we begin by presenting contour plots of gas concen
tration as estimated from the CALPUFF and CFD-LS models. These plots 
will show that large differences exist in the concentration plumes as 
calculated from the two models. We then examine the statistical 
agreement in concentration and wind field estimates between the two 
models, and the sensitivity of the statistical metrics to the weather sta
tions and receptor configurations used by CALPUFF. Finally we discuss 
the implications of these results to the potential of using IDM to calculate 
the emission rate from open-pit mines. 

3.1. Plume visualization for CALPUFF and CFD-LS models 

Fig. 5 shows the contour plots of surface gas concentration for the 
shallow mine under the three thermal stability conditions using CAL
PUFF case C6 (i.e., the CALPUFF flow field is calculated using wind 
information from four surface stations outside and one inside the mine). 
Under the thermally unstable condition, we note that CALPUFF has 
enhanced the horizontal dispersion of material downwind of the mine 
relative to CFD-LS. While the CFD-LS simulations suggest three distinct 
plume “fingers” immediately downwind of the mine (these fingers 
roughly correspond to the y-grouping of the sources), in CALPUFF the 
individual source plumes quickly merge to a single broad plume. Excess 
diffusion of the plumes by CALPUFF were elucidated in other studies (Li 
and Guo, 2006; Tomasi et al., 2019; Toscano et al., 2021). Under ther
mally neutral conditions, the lateral dispersion of tracer in both CFD-LS 
and CALPUFF is reduced compared to the unstable conditions. With 
CALPUFF we now see the three plume fingers downwind of the mine. 
Under the thermally stable condition, lateral dispersion is reduced even 
further. The most striking feature in the stable condition is the large area 
of zero-concentration downwind of the mine in the CFD-LS model re
sults, and the counter-intuitive trend of increasing surface concentration 
with increasing distance downwind of the mine (over at least part of the 
domain). This behavior was also seen in the earlier study of Kia et al. 
(2021), and linked to plume rise from the mine that lifts the plume above 
the downwind surface, followed by dispersion of the plume back down 
to the surface with increasing distance. 

Fig. 6 shows a vertical slice of the CFD-LS and CALPUFF plumes at a 
location approximately 500 m downwind of the mine (x = 7000 m). 
These vertical slices consistently show that CALPUFF simulates a wider 
plume than does CFD-LS, mirroring what we noted in the horizontal 
slices in Fig. 5. The CALPUFF plumes are also more dispersed in the 
vertical direction. Under the thermally unstable condition, the CFD-LS 
slice shows the three surface level plume fingers noted in Fig. 5 exist 

Fig. 5. Contour plots of surface tracer concentration for the shallow mine case, as predicted from CALPUFF case C6 (left) and CFD-LS (right).  
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aloft too. It is interesting that two of the three fingers are elevated, 
having maximum concentration levels above the surface (this would be 
unexpected for a ground level source in simple terrain). The unstable 
CALPUFF plume does not replicate these details. The CFD-LS and CAL
PUFF plumes are particularly different under the thermally stable con
dition. The CFD-LS plume slice shows a concentrated “filament” 
centered at y = 2220 m, z = 100 m, while the CALPUFF plume is 
dramatically more dispersed. 

We speculate that the gas plume from an actual mine pit is likely to 
be very concentrated and elevated as it passes over the downwind edge 
of the mine. The elevated plume explains the absence of surface-level gas 
just downwind of the mine (a concentration “shadow”). From that initial 
elevation at the mine edge, the plume slowly mixes down to the surface, 
resulting in an increase in concentration with increasing distance from 
the mine. This behavior is not seen in the CALPUFF plume. 

3.2. Different CALPUFF weather station setups 

The flow field used to calculate dispersion in CALPUFF is given by 
the CALMET model, based on wind information measured at input 

“weather stations”. The number and location of these stations can be 
chosen by the user, and can have an impact on the CALPUFF predictions. 
In this section we consider several possible settings of the surface 
weather stations (Table 4). These cover a range of implementations that 
could be used in a model application. In the following discussion we 
assume the CFD-LS model gives the true concentration and wind fields in 
the various open-pit situations, and we evaluate the impact of the 
CALMET settings in terms of the statistical agreement between the 
CALPUFF and CFD-LS concentration and wind fields. 

3.2.1. Effect of the number of met stations 
Fig. 7 shows the Bias [μg m− 3] and RMSE [μg m− 3] of the surface gas 

concentrations calculated by CALPUFF downwind of the mine. One of 
our hypotheses was that the case having the greatest number of input 
weather stations (“high resolution” case C1) would provide more ac
curate CALPUFF predictions (i.e. the best agreement with CFD-LS). 
Across the two mines and three stability conditions, there was no clear 
evidence that the high resolution case C1 gave better predictions in 
terms of Bias [μg m− 3]. In terms of RMSE [μg m− 3], only in the shallow- 
mine unstable condition did we find that the higher resolution cases (C1 

Fig. 6. Contour plots showing a vertical slice of tracer concentration downwind of the shallow mine (x = 7000 m), as predicted with CALPUFF case C6 (left) and 
CFD-LS (right). The distribution of sources in the mine is shown below the plots for reference. 
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and C2) had lower errors than the other cases. Another hypothesis was 
that having more weather stations in the mine pit allows a better rep
resentation of the flow complexity in CALPUFF, which would result in a 
better concentration predictions (e.g., case C3 would be better than 
cases C5 or C6). Having more weather stations in the mine did improve 
CALPUFF performance in the shallow-mine stable condition, as both the 
Bias [μg m− 3] and RMSE [μg m− 3] values of case C3 were better than for 
cases C4–C6. Earlier we discussed the interesting and counter-intuitive 
plume characteristics in the shallow-mine under thermally stable con
dition (elevated and compact plume as it exited the mine), and perhaps 
this explains why we saw improvement in the performance of CALPUFF 
when we added more in-mine weather stations in this case. However, in 
the five other situations, there is little to recommend having more 
weather stations in the mine. Another hypothesis was that the least 
accurate CALPUFF predictions would occur when only a single weather 
station was used (case C7). The most surprising result illustrated in Fig. 7 
is that there was no general degradation in CALPUFF performance when 
only a single weather station is used. Only in the deep mine configura
tion and under unstable condition did we see a clear decline in 

performance. In total, we did not observe large sensitivities in CALPUFF 
performance based on the number of the input weather stations. 

Fig. 8 shows the calculated FAC2 percentage of receptor concentra
tions from the various CALPUFF runs. This statistic gives the fraction of 
receptors (downwind of the mine) where the CALPUFF calculated con
centration is within a factor of two of the CFD-LS result. In terms of IDM, 
this statistic will also give the fraction of receptors where the emission 
rate estimate from the two models is within a factor of two of each other. 
The clearest conclusion one can draw from Fig. 8 is that for the large 
majority of downwind locations, the CALPUFF predictions are more 
than a factor of two different from CFD-LS. In fact this is also true if we 
look at FAC10 (not shown), in which the majority of receptors have a 
concentration that is more than a factor of 10 different from CFD-LS. 
There are two other conclusions we can draw from Fig. 8. In our simu
lations, the trend was for CALPUFF to overestimate the surface con
centrations. Tomasi et al. (2019) compared CALPUFF and LS model 
predictions for a tracer release study in mountainous terrain. They found 
a similar trend where CALPUFF overestimated both the LS model cal
culations and the actual tracer observations. Another conclusion is that 

Fig. 7. Bias [μg m− 3] and RMSE [μg m− 3] of the tracer concentrations outside of the mine, comparing CALPUFF predictions against CFD-LS over the different surface 
station setting cases and thermal stability conditions of the shallow (a and b) and deep (c and d) mine configurations. 

Fig. 8. FAC2 [%] of the surface tracer concentrations predicted by CALPUFF against the CFD-LS values over the different CALPUFF surface station settings and 
thermal stability conditions for the shallow (a) and deep (b) mine configurations. 
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the shallow mine configuration under the thermally unstable condition 
was the only scenario showing sensitivity to the CALPUFF weather 
station settings. Only here did we find a case (C3) that gave a large in
crease in FAC2 percentage compared with other cases. This is a case with 
a moderate number of receptors inside the mine. 

We shift our focus to look at how well the wind fields calculated in 
CALMET recreate the CFD flow fields. Fig. 9 shows the calculated Bias 
[m s− 1] and RMSE [m s− 1] of horizontal wind speeds at discrete re
ceptors located 10 m above the surface both inside and outside of the 
mine. These particular receptors were not used by CALMET to calculate 
the wind fields. Under the unstable condition, Bias [m s− 1] and RMSE [m 
s− 1] values lower than 2 m s− 1 are achieved both inside/outside of the 
shallow/deep mines. However, the error statistics were higher for the 
neutral and stable conditions, in agreement with a study by Cox et al. 
(2005) (their Fig. 2), who examined three diagnostic wind models with 
data from 26 field experiments. Cases C4 and C6 show the effect of 
changing the number of surface stations outside the mine (by keeping 
the number of stations inside the mine constant). The effects are more 
clear particularly for the thermally stable condition, where for the 
shallow mine, the wind speed Bias [m s− 1] and RMSE [m s− 1] are 
decreased by increasing the number of surface stations from four outside 
the mine (case C6) to 95 outside the mine (case C4). This may be 
attributed to a more successful wind field interpolation/extrapolation 
when more observed station data are included. The Bias [m s− 1] for the 
shallow mine does not change for other stability conditions, as far as 
changing the number of stations outside the mine is concerned. The 
same trend for reduction of error statistics is not as clear for the deep 
mine, suggesting that the CALMET model has difficulties in predicting 
the wind field, even considering the inclusion of more surface station 
observations. The operational case C6 demonstrates the same level of 
accuracy compared to the high resolution case C1. 

Fig. 10 shows the calculated Bias [m s− 1] and RMSE [m s− 1] from 
CALMET against CFD-LS for vertical profiles of wind speed inside and 
downstream of the mine for different number of surface station cases. 
Overall, the error statistics are lower for the unstable condition than for 

the others. Further, increasing the number of stations help reduce the 
error statistics for the stable condition. This may be attributed to 
complexity of the flow structure, such as the formation of standing 
vortices, with skimming flow under the neutral condition and waves 
under the stable condition (Figs. 7 and 8 in the study of Kia et al. 
(2021)), which the CALMET model does not predict. 

Overall, Figs. 9 and 10 show that the CALMET model can simulate 
wind components at 10 m above surface better than the entire boundary 
layer since the Bias [m s− 1] and RMSE [m s− 1] error statistics are lower 
at 10 m above surface. This is consistent with previous evaluations in 
other studies (Chang et al., 2003; Cox et al., 2005; Wang et al., 2008). 
This may be due to the fact the wind field is only forced by observations 
at 10 m above surface and not vertical profiles of wind, which have been 
shown to deviate from the logarithmic profiles in the surface layer 
theory (e.g. Fig. 10 in Nambiar et al. (2020a) and Fig. 5 in Nahian et al. 
(2020)). 

Fig. 11 shows the calculated MAE [Degree] of wind direction inside 
and outside of the mine by CALMET against CFD-LS for the receptors at 
10 m above surface. The outside mine areas show lower MAE than inside 
the mine under all stability conditions. The higher MAE inside the mine 
reflects the more complex flow in the pit compared with the surrounding 
flat terrain. This is in agreement with the study of Nahian et al. (2020) 
who predicted horizontal wind circulations inside a shallow mine pit 
under all stability conditions (their Fig. 7). On another note, wind di
rection prediction by CALMET provides better results under neutral and 
unstable conditions than the stable condition, which is in agreement 
with the study by Cox et al. (2005) (their Fig. 3). It appears that 
changing the number of forcing stations does not drastically change the 
error statistics for wind direction. 

Fig. 12 shows the model agreement in MAE [Degree] of wind di
rection on vertical profiles inside and downstream of the mine. Similar 
conclusions can be drawn here as was done for Fig. 11. However, there 
are subtle differences. In the configuration of the shallow mine, the MAE 
[Degree] for wind direction is approximately 20◦ lower on boundary- 
layer profiles than near the surface. This may be due to the fact that 

Fig. 9. Bias [m s− 1] and RMSE [m s− 1] of horizontal wind speed inside and outside of the mine at 10 m above surface, comparing CALMET predictions against CFD- 
LS over the different surface station cases and thermal stability conditions of the shallow (a and b) and deep (c and d) mine configurations. 
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Fig. 10. Bias [m s− 1] and RMSE [m s− 1] of horizontal wind speed on vertical boundary-layer profiles inside and downstream of the mine predicted by CALMET 
against CFD-LS over the different surface station cases and thermal stability conditions of the shallow (a and b) and deep (c and d) mine configurations. 

Fig. 11. MAE [Degree] of horizontal wind direction at 10 m above surface inside and outside the mine predicted by CALMET against CFD-LS over the different 
surface station cases and thermal stability conditions of the shallow (a) and deep (b) mine configurations. 

Fig. 12. MAE [Degree] of wind direction on boundary-layer profiles inside and downstream of the mine predicted by CALMET against CFD-LS over the different 
surface station cases under different thermal stability conditions of the shallow (a) and deep (b) mine configurations. 
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the effect of topography on wind direction is reduced at higher altitudes. 
As far as the deep mine is concerned, the influence of the topography on 
wind direction is present at higher altitudes. For instance, under the 
stable condition, a standing wave was generated by the deep mine and 
manifested itself on a substantial portion of the boundary layer in the 
study of Kia et al. (2021) (their Figs. 7 and 8). Overall, comparing 
Figs. 11 and 12 show better wind direction prediction on the vertical 
profiles than near the surface. 

Overall, the presented results of concentration and wind field pre
dictions show similar error statistics for the high resolution case C1 and 
the operational case C6, which demonstrate that increasing the number 
of surface stations in a diagnostic model does not necessarily result in 
increased accuracy in the wind and dispersion predictions. This outcome 
is in agreement with a study by Wang et al. (2008). It appears that 
interpolation/extrapolation of the wind field by CALMET in this topo
graphically complex environment alone cannot reproduce the 
complexity predicted by prognostic models such as CFD-LS. 

3.2.2. Effect of the location of met stations 
Here we consider the sensitivity of the CALPUFF concentration cal

culations relative to the location of the weather stations used in the 
CALMET flow calculations. Tables 5 and 6 show the Bias [μg m− 3], 
RMSE [μg m− 3], and FAC2 [%] of the CALPUFF concentration pre
dictions at the receptors downwind of the mine (at height z = 10 m) for 
case C6 for the shallow and deep mines (the practical operational case). 
Under the three thermal stability conditions, the error statistics do not 
change significantly as the surface station locations are changed. We do 
note that the prediction of plume concentration under the stable and 
neutral conditions deviate further from the CFD-LS model than under 
the unstable conditions. 

Tables 7 and 8 show the Bias [m s− 1] and RMSE [m s− 1] of wind 
speed prediction at different receptors at 10 m above surface inside and 
outside of the mine and on vertical profiles inside and downstream of the 
mine by CALMET against CFD-LS for different locations of surface sta
tions and thermal stability conditions for case C6 of the shallow and 
deep mines. The error statistics change in most of the situations by less 
than 10% and 25% for near surface and on vertical profiles of the 
boundary layer, respectively. The tables show that the wind speed pre
diction is not substantially affected by the location of the surface 
stations. 

Tables 9 and 10 show the MAE [degree] of horizontal wind direction 
at 10 m above surface inside and outside of the mine and on vertical 
profiles inside and downstream of the mine predicted by CALPUFF 
versus CFD-LS for different locations of surface stations and thermal 
stability conditions for case C6 of the shallow and deep mines. Again, the 
tables show that the wind direction prediction is not substantially 

affected by the location of the surface stations. 

3.2.3. Concentration agreement vs downwind receptor location 
In terms of an IDM estimate of emissions, it is valuable to consider if 

certain locations have lower relative dispersion model errors in esti
mating (C/Q)sim. If such locations exist, these would be good potential 
choices for locating the (C − Cb) [μg m− 3] measurement for an IDM 
calculation. 

Fig. 13 shows how the Bias [μg m− 3] and RMSE [μg m− 3] of the 
CALPUFF surface concentration predictions vary with distance down
wind of the mine. For this comparison we group the concentration re
ceptors by their x position. CALPUFF case C6 is used for the comparison. 
The predictions under all stability conditions show relatively large er
rors for the receptors close to the mine (x = 6500 m). Beyond this dis
tance there is a trend toward reduced Bias [μg m− 3] and RMSE [μg m− 3] 
with increasing distance from the mine. This trend exists in all of the 
configurations (deep and shallow mines) and conditions (thermal sta
bilities). Perhaps it is no surprise that the CFD-LS and CALPUFF pre
dictions would be most different close to the mine. The mine-pit clearly 
creates localized flow complexity that would have more of an impact on 
the plume close to the mine, and would diminish with increasing dis
tance as the ambient ABL becomes re-established. As CALPUFF does not 
fully replicate the mine-induced complexity indicated by CFD-LS, this 
should be manifested in near-mine concentrations that are different than 
CFD-LS. 

3.3. Implications 

If we accept that the CFD model accurately represents flow 
complexity in real open-pit mines, then we conclude that CALPUFF 
modeling of pollutant dispersion from these mines should be performed 
with caution. In this situation we take CALPUFF-CALMET as being 
representative of the class of diagnostic models, and we anticipate this 
conclusion spans the model class. In none of the configurations (mine 
depths), conditions (thermal stabilities), or cases (CALPUFF setups) 
studied was there good agreement between the CFD-LS and CALPUFF 
predictions of the plume concentration downwind of the mine. What do 
our results say specifically about the potential for calculating mine 
emission rates using IDM? The most relevant statistic to look at are the 
FAC scores. Over the short-range of downwind distances we studied, the 
computed FAC2 statistic comparing the CALPUFF and CFD-LS concen
trations were usually far less than 30% (i.e., surface concentration es
timates from the two models were within a factor of two at fewer than 
30% of locations). According to Hanna and Chang (2011), this would 
deem the CALPUFF performance as unacceptable. Because downwind 
concentration scales on the emission rate for a given source configura
tion and meteorological conditions, the FAC scores for concentration are 
also the FAC scores for an estimate of the emission rate given a (C − Cb) 
[μg m− 3] measurement. Given the FAC2 scores we conclude that for the 
majority of potential (C − Cb) [μg m− 3] measurement locations, an 

Table 5 
Bias [μg m− 3] (RMSE [μg m− 3]) of the tracer concentration outside of the mine, 
predicted by CALPUFF against CFD-LS for different locations of surface stations 
and thermal stability conditions for case C6 of the shallow and deep mines.  

Surface 
station 
locations 

Bias [μg m− 3] (RMSE [μg m− 3]) of receptors’ concentration outside of 
the mine 

Shallow Deep 
Unstable Neutral Stable Unstable Neutral Stable 

x = 1000, 
8000 
[m] 

− 339 
(2749) 

− 1483 
(6871) 

5656 
(6665) 

− 195 
(1153) 

− 4347 
(7948) 

− 2557 
(3210) 

x = 3000, 
7000 
[m] 

− 361 
(2745) 

− 1250 
(6891) 

6256 
(7093) 

− 178 
(1283) 

− 4307 
(7921) 

− 2568 
(3223) 

x = 3000, 
8000 
[m] 

− 339 
(2748) 

− 1463 
(6871) 

4863 
(5806) 

− 193 
(1152) 

− 4314 
(7930) 

− 2535 
(3211) 

x = 3000, 
9000 
[m] 

− 326 
(2749) 

− 1496 
(6851) 

5494 
(6663) 

− 221 
(1148) 

− 4347 
(7954) 

− 2553 
(3202)  

Table 6 
FAC2 percentage of the tracer concentration, predicted by CALPUFF against 
CFD-LS for different locations of surface stations and thermal stability conditions 
for case C6 of the shallow and deep mines.  

Surface station 
locations 

FAC2 [%] of receptors’ concentration 

Shallow Deep 
Unstable Neutral Stable Unstable Neutral Stable 

x = 1000, 8000 
[m] 

16 12 0 11 7 7 

x = 3000, 7000 
[m] 

17 13 0 11 8 9 

x = 3000, 8000 
[m] 

19 12 0 11 7 7 

x = 3000, 9000 
[m] 

15 12 0 12 8 9  
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estimate of the emission rate using a CALPUFF calculation of (C/Q)sim 
would be in error by more than a factor of two (assuming the CFD-LS 
calculations represent a real open-pit mine). In fact, for the large 

majority of locations the CALPUFF calculation of (C/Q)sim would be in 
error by more than a factor of 10. 

One reason for the discrepancy between the two models is that the 

Table 7 
Bias [m s− 1] (RMSE [m s− 1]) of horizontal wind speed inside and outside of the mine at 10 m above surface predicted by CALMET against CFD-LS for different locations 
of surface stations and thermal stability conditions for case C6 of the shallow and deep mines.  

Receptor locations Surface station Bias [m s− 1] (RMSE [m s− 1]) of horizontal wind speed 

locations Shallow Deep 

Unstable Neutral Stable Unstable Neutral Stable 

Inside mine x = 1000, 8000 [m] − 0.15 (0.40) 0.03 (0.44) − 2.12 (2.42) − 0.83 (1.36) 1.17 (2.50) − 0.48 (2.99) 
x = 3000, 7000 [m] − 0.15 (0.40) − 0.16 (0.55) − 1.83 (2.56) − 0.50 (1.37) 1.17 (2.50) − 0.68 (3.03) 
x = 3000, 8000 [m] − 0.16 (0.40) 0.08 (0.44) − 2.12 (2.42) − 0.83 (1.36) 1.11 (2.49) − 0.52 (3.09) 
x = 3000, 9000 [m] − 0.15 (0.40) 0.04 (0.43) − 2.13 (2.42) − 0.86 (1.38) 1.10 (2.50) − 0.48 (2.99) 

Outside mine x = 1000, 8000 [m] − 0.16 (0.35) − 1.19 (1.66) − 1.30 (1.80) − 0.09 (0.30) 0.79 (1.22) − 0.66 (1.26) 
x = 3000, 7000 [m] − 0.08 (0.31) − 1.14 (1.61) − 0.86 (1.32) − 0.15 (0.46) 0.28 (1.05) − 0.97 (1.46) 
x = 3000, 8000 [m] − 0.05 (0.32) − 1.13 (1.64) − 0.91 (1.49) 0.13 (0.86) 0.30 (1.06) − 0.63 (2.27) 
x = 3000, 9000 [m] − 0.05 (0.39) − 1.40 (1.90) − 1.13 (1.70) 0.01 (0.46) 0.25 (1.00) − 0.49 (1.09)  

Table 8 
Bias [m s− 1] (RMSE [m s− 1]) of wind speed on vertical boundary-layer profiles inside and downstream of the mine, predicted by CALMET versus CFD-LS for different 
locations of surface stations and thermal stability conditions for case C6 of the shallow and deep mines.  

Receptor locations Surface station Bias [m s− 1] (RMSE [m s− 1]) of wind speed on vertical boundary-layer profiles 

locations Shallow Deep 

Unstable Neutral Stable Unstable Neutral Stable 

Inside mine x = 1000, 8000 [m] 0.26 (0.33) − 1.55 (1.89) 2.35 (3.61) 0.53 (1.14) 2.16 (3.85) − 2.27 (3.89) 
x = 3000, 7000 [m] 0.38 (0.47) − 1.62 (1.88) 2.37 (3.63) 0.53 (1.17) 2.14 (3.83) − 2.29 (3.91) 
x = 3000, 8000 [m] 0.42 (0.53) − 1.56 (1.82) 2.41 (3.70) 0.51 (1.14) 2.18 (3.88) − 2.27 (3.88) 
x = 3000, 9000 [m] 0.29 (0.39) − 1.48 (1.79) 2.41 (3.70) 0.47 (1.07) 2.17 (3.81) − 2.29 (3.87) 

Downstreammine x = 1000, 8000 [m] − 0.06 (0.40) − 5.4 (5.90) − 1.17 (1.48) 0.14 (0.30) − 2.64 (3.05) − 1.27 (1.62) 
x = 3000, 7000 [m] 0.25 (0.63) − 5.94 (6.36) − 1.70 (1.90) 0.19 (0.39) − 2.28 (2.91) − 1.73 (2.15) 
x = 3000, 8000 [m] 0.14 (0.52) − 5.45 (5.97) − 1.07 (1.37) 0.15 (0.29) − 2.88 (3.31) − 1.19 (1.53) 
x = 3000, 9000 [m] − 0.08 (0.37) − 5.36 (5.90) − 1.14 (1.49) 0.10 (0.26) − 2.00 (3.30) − 1.10 (1.43)  

Table 9 
MAE [Degree] of horizontal wind direction at 10 m above the surface inside and outside of the mine predicted by CALMET against CFD-LS for different locations of 
surface stations and thermal stability conditions for case C6 of the shallow and deep mines.  

Receptor locations Surface station MAE [Degree] of horizontal wind direction 

locations Shallow Deep 

Unstable Neutral Stable Unstable Neutral Stable 

Inside mine x = 1000, 8000 [m] 29 37 80 30 4 68 
x = 3000, 7000 [m] 29 38 61 30 4 69 
x = 3000, 8000 [m] 29 37 75 30 4 68 
x = 3000, 9000 [m] 29 37 79 30 4 68 

Outside mine x = 1000, 8000 [m] 21 14 18 23 4 28 
x = 3000, 7000 [m] 22 8 11 22 2 26 
x = 3000, 8000 [m] 20 9 14 22 3 31 
x = 3000, 9000 [m] 23 17 13 23 3 37  

Table 10 
MAE [Degree] of wind direction on boundary-layer profiles inside and downstream of the mine, predicted by CALMET against CFD-LS for different locations of surface 
stations and thermal stability conditions for case C6 of the shallow and deep mines.  

Receptor locations Surface station MAE [Degree] of horizontal wind direction 

locations Shallow Deep 

Unstable Neutral Stable Unstable Neutral Stable 

Inside mine x = 1000, 8000 [m] 7 36 27 42 35 67 
x = 3000, 7000 [m] 7 36 25 6 35 67 
x = 3000, 8000 [m] 7 36 27 42 34 68 
x = 3000, 9000 [m] 8 36 26 42 35 68 

Downstream of mine x = 1000, 8000 [m] 6 6 10 6 5 16 
x = 3000, 7000 [m] 9 5 8 6 3 33 
x = 3000, 8000 [m] 9 6 10 6 5 15 
x = 3000, 9000 [m] 6 7 5 5 4 35  
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diagnostically-determined flow field (CALMET), which calculates a flow 
field by interpolating/extrapolating from a limited set of input wind 
observations, did not reproduce the complexity of the wind flow in the 
mine, as indicated by the CFD. It is also likely that the Gaussian 
modeling approach used in CALPUFF is unable to capture the fine spatial 
details of the mine plume, which was a pronounced feature of the CFD- 
LS simulations. Tomasi et al. (2019) and Toscano et al. (2021) showed 
that CALPUFF simulations tend to generate very uniform patterns, 
which are not much influenced by the complex topography nor by the 
complexity of the flow field. They mentioned the poor performance of 
CALPUFF is associated with its own Gaussian formulation, which pre
vents the model from capturing the large degree of spatial in
homogeneity in the plume concentration over complex terrains. This 
capability is a feature of the Lagrangian stocastic approach which is 
grid-free, and at all scales, it follows the motion of individual tracer 
particles (Giovannini et al., 2020). Could the CALPUFF calculations of 
(C/Q)sim be improved? Rather than using the high spatial resolution CFD 
results to define a limited number of weather stations for use in 
CALMET, one could use mesoscale models to produce a more complete 
gridded wind field for input to the CALMET model. Meso-scale models 
such as WRF and MM5 are operationally simulated with low horizontal 
resolutions at 2–4 km (Chandrasekar et al., 2003; Jackson et al., 2006; 
Yim et al., 2010; Gopalaswami et al., 2015; Ruggeri et al., 2020; Tang 
et al., 2021), which in the present work is the same order as the hori
zontal dimensions of the mine. This is probably not high enough to 
resolve the impact of the mine terrain on the flow field, as the effective 
terrain dimension should be a multiple of the grid resolution (Skamar
ock, 2004). Such models would be unlikely to represent important fea
tures of the wind field associated with the mine, such as vertical and 
horizontal circulations inside the mine pit. High resolution meso-scale 
simulations with horizontal grid spacings down to 50–200 m can be 
performed using the LES method to capture these complex features 
(Nahian et al., 2020); however, this kind of high-resolution modeling is 
still beyond reach for operational purposes. In addition, there is evi
dence that even if high resolution wind fields are provided to CALPUFF, 
the deficiencies in the Gaussian model still prevents an accurate 
dispersion prediction (Tomasi et al., 2019; Toscano et al., 2021). 

Could an IDM calculation of emissions be based on a CFD-LS simu
lation? This complex modeling system is unlikely to provide for practical 
IDM calculations in topographically complex terrain. Our CFD simula
tions took many days of computation on a computer cluster with 100 
CPUs, as well as substantial expertise, to produce results for a single 15- 
min period. If IDM is to be broadly useable it will likely be paired with 
more practical diagnostic models like CALPUFF. However, in our spe
cific mine situation (source configuration, ambient wind conditions), a 
downwind concentration measurement, which is interpreted through a 
diagnostic model simulation, would give an emission rate far different 
from that based on CFD-LS. In the large majority of downwind (C − Cb) 
[μg m− 3] measurement locations the two models would give emission 
rates differing by more than a factor of 10. If one accepts that the CFD-LS 
model provides a more accurate representation of atmospheric transport 
in complex terrain than diagnostic models, then one would infer that an 
IDM approach based on a diagnostic model would be unreliable for 
open-pit mines. However, one should be cautious about over
generalizing. Would different gas source configurations give different 
outcomes? For example, would an emission source that covers the total 
pit surface lead to a more dispersed plume that would be better repre
sented by a diagnostic model? Would non-stationary wind conditions (e. 
g, mesoscale wind fluctuations) also create a more dispersed plume and 
increase the accuracy of a diagnostic model simulation? It also seems 
likely that a CALPUFF emission calculation based on a concentration 
measurement taken further from the mine (further than the 3 km range 
studied here) would show greater agreement with the more sophisti
cated CFD-LS model. A more appropriate conclusion based on this work 
is that IDM combined with diagnostic dispersion models should be 
approached with caution in complex terrain. 

4. Conclusions and recommendations 

Atmospheric transport phenomena were simulated using CALPUFF 
and CFD-LS models inside and surrounding two synthetic open-pit mines 
of different depths under different thermal stability conditions. The 
main aim of the study was to investigate how well the two models 
compare when predicting wind and concentration fields associated with 

Fig. 13. Bias [μg m− 3] and RMSE [μg m− 3] of the tracer concentration predicted by CALPUFF against CFD-LS over different receptor locations in the stream-wise 
direction at 10 m above the surface under different thermal stability conditions of the shallow (a and b) and deep (c and d) mines for case C6. 
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dispersion from gas sources in the mine, in order to evaluate the po
tential for estimating mine emissions using the IDM technique. 

Six simulations were conducted for two mine depths: a shallow (100 
m) and a deep (500 m) mine and three thermal stability conditions. 
Overall the CALPUFF surface concentration predictions downwind of 
the mines are in poor agreement with the CFD-LS predictions. And in 
most of the configurations the concentration estimates were insensitive 
to the number and location of meteorological stations used to calculate 
the wind field in CALPUFF. Overall, less than 30% of receptor points 
predict the concentration within a factor of two of CFD-LS simulations 
(FAC2 < 0.3). The reasons for the poor CALPUFF agreement are mainly 
attributed to the complex structure of the flow under such conditions, 
such as horizontal and vertical wind circulations in the mine, formation 
of standing waves, and plume rise, which the CALPUFF model cannot 
predict. It is suggested that the disagreements between the two models 
are mainly caused by diagnostic modeling of the wind field, versus 
prognostic modeling, although inaccuracies in the Gaussian puff model 
may also be possible, which were not investigated in this study. 

Diagnostic modeling of wind field and gas dispersion finds many 
applications in air quality studies and quantification of area-fugitive 
emission fluxes. There are many examples of successful IDM emission 
measurements based on these types of models, but the majority have 
taken place in reasonably simple terrain. The evidence provided in this 
study shall caution practitioners when using diagnostic tools for inves
tigation of atmospheric transport phenomena related to open-pit mines 
with complex topography. While the CFD-LS model results are not 
certain, the findings here can provide guidelines on applicability or 
appropriate setup for CALPUFF for complex terrains. 

Various future recommendations can be provided to improve this 
work. One of the main drivers of pollutant transport is the wind field, but 
wind patterns for open-pit mines are not studied in great detail obser
vationally. As the meso-scale models can provide wind field at each grids 
of the domain in horizontal and vertical directions, it is suggested to use 
high-resolution meso-scale models to be coupled with CALMET. 

The investigation of CALPUFF in this work is not exhaustive. For 
instance, the investigation of the parameterization of the Gaussian puff 
model was left out of this study. Also many investigations of parame
terizations in the wind field model in CALPUFF can be attempted, such 
as the interpolation/extrapolation options. In addition, the effect of the 
horizontal and vertical spatial resolution for forcing the wind field in 
CALPUFF can be pursued further. Such in depth investigations can be 
attempted in the future. 

All considered, the availability of computational power to predict the 
wind field and dispersion phenomena using prognostic modeling, such 
as CFD, high-resolution meso-scale models, or other models, offer a new 
paradigm for improving wind field and dispersion modeling associated 
with complex terrains, such as those encountered in open-pit mining 
areas. 

Availability of code and data 

The Atmospheric Innovations Research (AIR) Laboratory at the 
University of Guelph provides the Computational Fluid Dynamics (CFD) 
model source code. For access, contact Amir A. Aliabadi (aliabadi@uo 
guelph.ca) or visit http://www.aaa-scientists.com/. Thomas Flesch 
(thomas.flesch@ualberta.ca) may provide the Lagrangian Stochastic 
(LS) model. 
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