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Abstract: Greenhouse gas (GHG) emissions from open-pit mines pose a global climate challenge,
which necessitates appropriate quantification to support effective mitigation measures. This study
considers the area-fugitive methane advective flux (as a proxy for emission flux) released from a
tailings pond and two open-pit mines, denominated “old” and “new”, within a facility in northern
Canada. To estimate the emission fluxes of methane from these sources, this research employed
near-surface observations and modeling using the weather research and forecasting (WRF) passive
tracer dispersion method. Various machine learning (ML) methods were trained and tested on these
data for the operational forecasting of emissions. Predicted emission fluxes and meteorological
variables from the WRF model were used as training and input datasets for ML algorithms. A series
of 10 ML algorithms were evaluated. The four models that generated the most accurate forecasts
were selected. These ML models are the multi-layer perception (MLP) artificial neural network,
the gradient boosting (GBR), XGBOOST (XGB), and support vector machines (SVM). Overall, the
simulations predicted the emission fluxes with R2 (-) values higher than 0.8 (-). Considering the bias
(Tonnes h−1), the ML predicted the emission fluxes within 6.3%, 3.3%, and 0.3% of WRF predictions
for the old mine, new mine, and the pond, respectively.

Keywords: emission flux; machine learning (ML) method; open-pit mines; weather research and
forecasting (WRF)

1. Introduction

In developed and developing countries, energy is a critical component supporting the
development of the economy and society [1]. Demand for energy is forecasted to expand
globally by 33% from the 2010s to the 2030s, and the demand will lead to an increase in
the production of more greenhouse gas (GHG) emissions [2]. In the United States, more
than 25% of the methane emitted into the atmosphere is a result of the oil and gas industry.
Abating such emissions from the oil and gas sector is a critical component of mitigating
climate change [3–5]. The warming trend can be slowed down by reducing the amount of
methane emissions [6,7]. Methane has a global warming potential (GWP) 28 times greater
than carbon dioxide for a duration of 100 years. Approximately one quarter of total global
warming is related to the methane emissions from natural and anthropogenic sources. The
short-term warming trends are affected by the methane lifetime, which is approximately 10
years [8].

The oil sands in Canada are proven to be the third largest reservoir of oil in the
world [9]. The exploitation of such a reserve demands rigorous environmental management,
given the energy intensity required to extract the crude oil from the oil sands [10,11]. In
2015, Alberta oil sands accounted for the largest share of GHG emissions from the oil and
gas sector, 37% and 10%, respectively, of GHG emissions in Canada [9]. The unconventional
oil resources industry, such as oil sands, is more energy-intensive than the conventional
oil, with higher GHG emissions associated with resource extraction, which shows the need
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for more attention to the emissions from these industries [12]. Oil sands operations emit
GHGs due to various activities such as drilling, land development, extraction, chemical and
physical processing, venting, flaring, and the release from large area sources (also known
as fugitive emissions) [2].

For the development of adequate mitigation measures, a reliable quantification of
GHG emission fluxes from open-pit mines is needed [13]. Large estimation differences of
methane emission fluxes from such facilities are the result of ignoring the meteorological
effects that complicate pollutant transport in complex topographies [14]. While orographic
complexities confound atmospheric boundary layer (ABL) flows compared to ABL flows
over flat and homogeneous terrains [15–23], only a handful of investigations are dedi-
cated to ABL flows over open-pit mines [24,25], primarily due to operational, risk, access,
economic, and other concerns [25,26]. Open-pit mines represent an unusual topographic
feature. The meteorological patterns within and near these mines can be quite different
from flat terrain [20–22,27,28], and understanding these patterns is important given the
environmental impact of mining activities. The release of GHGs from such environments
is associated with multiple steps of the resource extraction process, starting from land
modification to the exportation of the mined goods [4,14]. Mine activities often create large
amounts of fugitive dust, odorous compounds, and GHGs [29], and the flow circulations,
shear layers, and plume meandering created by mine pits [30] impact the transport of
materials to downwind environments. Approved emissions calculation methods for regu-
latory reporting fail in quantifying area fugitive emission fluxes from complex terrains. For
instance, concerning open-pit mines, Liggio et al. (2019) [31] investigated that area-fugitive
emissions of carbon dioxide probed in situ by an aircraft differed by 13–123% of values
reported by emission inventory datasets. To address the common challenges of quantifying
GHG emission fluxes from open-pit mines, measurement, modelling, and machine learning
techniques of emission quantification are briefly reviewed in the subsequent sections.

1.1. Measurement Techniques to Quantify Emission Fluxes

The extrapolation of observations and point measurements is the basis for most of
the open-pit mine GHG emission flux predictions by industrial reports. Flux chambers
(FCs) are a simple but intrusive means of measuring gas emission fluxes. One of the
difficulties with FC measurements is their spatially small measurement footprint, as well as
their impracticality for measuring emission fluxes from vertical surfaces (e.g., mine faces).
A spatially inhomogeneous and topographically complex source like an open-pit mine
would require an extensive and difficult FC sampling survey [32,33]. Micro-meteorological
measurement approaches, such as eddy-covariance or flux gradient, overcome some of
the weaknesses of FCs (e.g., no interference with the emitting surface, larger measurement
footprint, and capability for long-term monitoring), but they are fundamentally challenged
by complex wind conditions, and the difficulty of interpreting their measurements for
spatially inhomogeneous emission sources [34–36]. Another measurement paradigm is
based on the concept of mass balance, which attempts to enclose the emitting facility in a
hypothetical box in the atmosphere, while the emission flux is measured on the boundary
of this box using aircraft or drone sampling [31,37–39]. While overcoming the limitations
of the previous techniques, this approach has its own shortcomings. For instance, aircraft
sampling misses the first few tens of meters near the ground, the measurement of which is
crucial for the accurate estimation of the emission fluxes [37]. In addition, mass balance
measurements are conducted for a facility only a few times a year, while a more continuous
measurement technique is ideal to capture diurnal and seasonal variations of emission
fluxes [22]. Because of the large footprint of open-pit mining facilities, precise measurements
of their emission fluxes are not possible. Therefore, past research has attempted to offer
modeling tools for the estimation of emission fluxes for operational use.

1.2. Modeling Techniques to Quantify Emission Fluxes

Access to high computational power has propelled methods for the calculation of
area-fugitive emission fluxes by atmospheric models under two categories of modeling
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approaches. The first category groups models into diagnostic versus prognostic paradigms.
In the diagnostic paradigm, wind field and pollutant dispersion modeling is achieved using
empirical formulations, while in the prognostic paradigm, fundamental transport equations
of atmospheric flow and dispersion are solved. Diagnostic models are computationally
efficient, while they lack accuracy. On the other hand, prognostic models are computation-
ally expensive, while they provide better accuracy. Using either of these paradigms, the
second category groups models under either forward or backward dispersion modes. In
the forward dispersion approach, the input pollutant sources are resolved both in space and
time, while the model calculates the emission flux downwind. However, in the backward
dispersion approach, the pollutant concentration is measured downwind, while by relying
on a dispersion model, the emission source strength upwind is inferred. The backward dis-
persion modelling paradigm is also known as inverse dispersion modelling (IDM) [40,41].

The CALifornia PUFF Model (CALPUFF) is an example of a diagnostic model [42].
CALPUFF has been utilized to analyze emission fluxes from industrial and urban sites, as
well as the associated air quality and health implications [43–48]. When applied to complex
topography, CALPUFF has been shown to be less accurate when modeling atmospheric
dispersion under the thermally stable condition [49]. In addition, CALPUFF is shown
to overpredict the turbulent diffusion, and as a result, underpredict the concentration of
pollutants when compared to observations or more accurate models [50]. CALPUFF is
also shown to suffer from lack of adequate meteorological forcing for its wind field and
dispersion predictions. For instance, when near-surface and upper-air grid points of the
model are not sufficiently forced by appropriate meteorological conditions, the wind field
predictions lose accuracy [51]. One remedy in operational CALPUFF modeling is to force
it with meteorological fields obtained from a prognostic mesoscale weather model [52].
As far as emission flux estimation is concerned, CALPUFF is usually used in an IDM
configuration, where a measurement of concentration of a pollutant downwind is carried
out, while the emission flux at the source is estimated by relying on CALPUFF’s dispersion
calculations. This paradigm in using CALPUFF can be seriously challenged, given its
deficiencies when applied to non-conventional topographies, such as a mine pit.

The Weather Research and Forecasting (WRF) model is an example of a prognostic
model. Such mesoscale models are employed to provide weather, air quality, and dispersion
analyses. These models require physical parameterizations to account for the exchanges of
momentum, heat, and atmospheric species (e.g., water) between the earth surface and the
atmosphere [53]. Present-day mesoscale models allow for the selection of a rich spectrum
of parameterizations, and choosing the effective parameterizations among the alternatives
is a very complex task, informed by the desired outcome of a modeling investigation [54].
The accuracy of the actual terrain representation, which is under question, is the primary
limitation of WRF at refined grid spacings [55]. In order to make accurate projections in
weather, land-use and topographic data are needed, which are counted as significant inputs
used for weather forecasting models. In addition, high-resolution terrain data are required
for the elucidation of complex meteorological phenomena of different areas [56]. The
complex terrains impact weather through changing different atmospheric variables, e.g.,
wind velocity vector components, radiative properties, and surface sensible and latent heat
fluxes [57]. It has been demonstrated that an increase in input topographic and land-use
resolutions, combined with refining grid spacing, plays a more significant role than simply
using more refined grid spacings in the model toward simulations with more accuracy [58].
The weather patterns that are influenced by terrain features at the regional level play a
crucial role in the numerical model by changing the distribution of rainfall, wind field,
and atmospheric state variables [59,60]. The land-use information plays an integral part
in weather alteration across the scales by influencing the exchanges of momentum, heat,
and atmospheric species between the earth surface and the atmosphere [61]. Atmospheric
state variables can vary, caused by the influences of changing aerodynamic roughness
length scale when higher terrain and land-use resolution information are used [62]. The
thermodynamic variables show improved agreement with measurements when detailed
terrain information is utilized [20,63].
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In regards to emission flux calculations, the WRF model is furnished with a built-in
passive tracer dispersion method [22,64,65], which is accompanied by other chemistry
modules that can be utilized to compute the temporal and spatial evolution of the mixing
ratio of tracers, and consequently, emission fluxes in the forward dispersion paradigm of
modeling [66–69]. The functionality of WRF for dispersion simulations in complex terrain
and the land use environment of a mine pit has been investigated comprehensively [22]. The
boundary condition for gases at the lowest model layer in mesoscale models is implemented
either as fixed-value (fixed-mixing ratio) [22,67] or constant gradient (fixed-flux informed
from inventory datasets) [68,70–72] (e.g., in accordance to calculations or emission records)
representing spatial and temporal distributions. As proposed by Karion et al. (2019) [71],
adopting the fixed-flux approach on the basis of emission inventories has been criticized,
due to the model’s inability to conserve the emission flux near the surface and model’s
exit boundaries, along with the spatio-temporal inaccuracies regarding the inventory
datasets [68]. Based on the given observations, the use of the fixed-value (i.e., fixed-mixing
ratio) boundary condition may be preferred. Despite the fact that fixed-value approaches do
not provide an estimate for the discharged pollutants at the source, they aid the estimation
of the emission flux at locations far away from the source, which is affected by weather
modulations in the wind field and other state variables. This is named the advective flux, a
proxy for the emission flux in the present study.

Motivated by the limitations of the diagnostic and prognostic models, machine learn-
ing (ML) may be employed to estimate emissions at a mining facility, given limited observed
and simulated data. As opposed to regression techniques, which are linear models, the
goal of neural networks is to elucidate non-linear patterns in information by constructing
layers of nodes (neurons) in the model. The more popular and accurate machine learning
methods, like support vector machines (SVM) [73], which engineer hyperplanes to separate
instances, can be used as the main method for emission flux calculation from open-pits.
SVM is optimized to create separating hyperplanes in the data among classes to increase the
margin among classes. Another ML method is the multi-layer perceptron (MLP) artificial
neural network, which has mostly been applied in hydrology [74], although the model
is not preferred for present-day machine learning tasks. The gradient boosting (GBR)
technique is an approach for classification, regression, and similar problems, offering a
prediction among an ensemble of weak prediction models. These weak models are com-
posed of decision trees [75]. XGBOOST (XGB) is a branch of the GBR model, which utilizes
the Newton–Raphson method in a function space not similar to the gradient boosting that
utilizes the gradient descent method. In the XGB model, a second order Taylor’s expansion
is used in the loss function to construct the connection to the Newton–Raphson method.
The long short-term memory (LSTM) technique [76] is used in deep learning problems. Not
similar to standard feed-forward neural networks, LSTM includes feedback connections.
Implementations of procedures such as LSTM allow network training to take place without
having long-term parameters “explode” or “vanish” as a result of multiple learning up-
dates [77,78]. ML models based on SVM, deep learning, LSTM, and more have been used
in various facets of energy engineering predictions, such as power plant heat transfer rate,
power plant emission reduction, fluidized adsorption bed processes, and generator power
curves [79–81]. However, despite the importance of quantifying emissions from open-pits,
the authors of this article have not been informed of any studies attempting to estimate
methane emission fluxes from open-pit mining facilities during different diurnal times and
seasons using ML models.

1.3. Research Gaps and Objectives

The above review uncovers deficiencies and strengths in all emission flux quantifi-
cation methods applicable to open-pit mines. Techniques purely based on measurement
can be accurate, but suffer from limited spatio-temporal coverage. Diagnostic models are
computationally fast but struggle to provide accurate estimates of the emission flux. On the
other hand, prognostic models are complicated to set up, and computationally expensive
for operational use, but they offer more accurate estimates of the emission flux. Finally,
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machine learning techniques appear to require extensive training datasets and be specific
for each emission source, without the possibility of extrapolating the use of one technique
developed for one emission source to another emission source under different conditions.

This study is motivated by the deficiencies and strengths of each method to propose
a surrogate method with operational capability to estimate the emission flux of GHGs
from an open-pit mine fairly accurately and computationally fast. In the proposed method,
meteorological variables and emission flux from a weather research and forecasting (WRF)
mesoscale model were used as an input and training dataset for a few machine learning
techniques to predict the emission flux. Two sets of models are used. The first set is
composed of the GBR, XGBOOST, SVM, and MLP algorithms. The ML model learns in
general. The second set includes LSTM, which is only considered as a research model, since
in the operational sense, it is difficult to measure the emission flux at any given time (e.g.,
each hour) on a continuous basis to predict the emission flux in the next time interval (e.g.,
next hour).

The study is organized as follows. Section 2 describes the methodology. Section 2.1
introduces the open-pit mine site. The details of the WRF model are presented in Section 2.2,
and the details of the machine learning models and the statistical analysis are presented in
Section 2.3. In Section 3, the results of the WRF and machine learning model simulations
for two mines (old and new) and a tailings pond are presented. Section 4 includes the main
conclusions and recommendations.

2. Methodology
2.1. Open-Pit Mining Site

Figure 1a shows the site location of the present study, which is an open-pit mine in
Canada. The mining site was composed of two open-pits, an old mine and a new mine,
and a tailings pond. The old mine, with a depth of roughly 100-m and a span of roughly
2000-m, was mainly the place where the mining excavations were conducted. Another
mine, the new mine, which was newly exploited, was smaller than the old mine.

The present study takes a forward dispersion modeling paradigm employing WRF
4.0 [82]. The WRF 4.0 source code is developed in Fortran (https://www2.mmm.ucar.
edu/wrf/users/ (accessed 17 January 2020)). A tracer dispersion method was used and
the field-measured methane (tracer) mixing ratio was forced at the model’s lowest level.
This represented the spatio-temporal variations of methane (tracer) mixing ratio over
the two mines and the pond. The advective methane flux (a proxy for emission flux in
this study) was simulated using WRF and presented as it experienced changes diurnally
and seasonally. At the model’s inner domain boundary, the dynamics of the surface-
atmosphere interactions were not accounted for (e.g., biological processes within the pond,
the intensity of excavations, or methane build-up inside the pit cavity at night); as an
alternative, the meteorologically modulated emission flux downstream of the emission
source was computed. Due to the presence of uncertainties regarding this method, it was
not possible to accurately quantify the absolute flux of methane emissions from the entire
facility. However, the quantification of diurnal and seasonal change in the emission flux
could be performed with enough accuracy to motivate future research [22].

The supporting observations and modeling occurred in four campaigns. The first
campaign lasted for twenty days in May 2018 (Summer’18 or S18). The second campaign
lasted for twenty days in February–March 2019 (Winter’19 or W19). The third campaign
lasted for 30 days in July–August 2019 (Summer’19 or S19). The fourth campaign lasted
for 30 days in October–November 2019 (Fall’19 or F19). Overall, 100 (days) (2400 (hours))
of observations and modeling were conducted, which are summarized in Table 1. The
training and testing data for the ML models are provided at an hourly resolution, so the
entire dataset includes 2400 records for each input or output variable. There are 960, 960,
and 480 data records for each of the tailings pond, old mine, and new mine, respectively.

https://www2.mmm.ucar.edu/wrf/users/
https://www2.mmm.ucar.edu/wrf/users/
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(a)   (b) 

    (c) (d)

Figure 1. (a) WRF simulation domains (D1 is the largest domain and D5 is the smallest domain);
(b) smallest domain WRF surface topography; (c) smallest domain WRF land-use configuration; (d)
smallest domain WRF area patches for forcing the tracer boundary condition; measurement sites are
approximately uniformly distributed within each rectangle.

Table 1. Supporting observations and modeling in four emissions monitoring campaigns; the date
durations for each of the emissions sources are stated.

Campaign Year Tailings Pond Old Mine New Mine

S18 2018 01 May–11 May 18 May–28 May -
W19 2019 14 February–24 February 16 March–26 March -
S19 2019 09 July–19 July 29 July–08 August 12 August–22 August
F19 2019 25 October–04 November 10 November–20 November 08 October–18 October 18

2.2. Weather Research and Forecasting Model
2.2.1. Model Configurations

Five nested domains were set based on one-way nesting (i.e., no feedback interaction
between two adjacent domains), with the outermost domain (D1) including a large area of
north-western America, and the innermost domain (D5) mainly encompassing the mining
site, including the tailings pond and the two mines. Detailed information about horizontal
and vertical grid spacings, time step, grid spacing and time step ratios between adjacent
grids, and the time advance scheme are provided by Nambiar et al. (2020) [22]. Most
notably, the inner most domain had a horizontal grid spacing of 0.51 (km), and the model
included 12 pressure levels from 0.025 to 2 (km) above the surface. The map illustrating the
domains is presented in Figure 1a. The WRF settings and physical parameterizations are
summarized in Table 2.



Atmosphere 2022, 13, 210 7 of 23

Table 2. WRF physical parameterizations.

Physics Parameterization

Planetary Boundary Layer (PBL) Mellor-Yamada-Janić [83]
Microphysics Thompson Parameterization [84] (D1, D2, and D3 only)
Longwave Radiation Rapid Radiative Transfer Model [85]
Shortwave Radiation Rapid Radiative Transfer Model [85]
Cumulus Parameterization Tiedtke Parameterization [86] (D1, D2, and D3 only)
Surface Layer (SL) Monin-Obukhov Eta Similarity Parameterization [83]
Land Surface (LS) Noah Land Surface Parameterization

The standard Global 30 Arc-Second (GTOPO 30s) database was employed to define
the latest topography of the site in the three largest domains with a horizontal resolution
of 0.9 (km). For the two smallest domains, the Shuttle Radar Topography Mission (SRTM)
1s information was employed with a horizontal resolution of 0.030 (km) [62,87]. For the
smallest domain, the extracted topographical resolution (SRTM 1s) was further overwritten
with a LiDAR dataset with a horizontal and vertical resolution of 0.001 (km). Figure 1b
presents the topography of the site updated with SRTM 1s and LiDAR datasets.

Nahian et al. (2020) [20] investigated that, by means of utilizing the latest modified
land-use configurations and topography, the computations of atmospheric state variables at
the same facility would agree better with the measurements. The representation of land-use
according to the Moderate Resolution Imaging Spectroradiometer (MODIS) 30s dataset
(updated 21-class IGBP-MODIS land use dataset) by Friedl et al. (2010) [88] was utilized
with categorizations for the pond (21), the two mines (16), mine processing facilities
and housing (13), and cleared forest (10). The lake models in WRF as parameterized
by Subin et al. (2012) [89] and Gu et al. (2015) [90] could simulate water–atmospheric
exchanges of momentum, heat, and humidity. A depth of 0.050 (km) was implemented
for the water bodies at the site, and so the lake model included 25 layers of water, soil,
and snow combined. Figure 1c presents the settings of the land use implemented for WRF
calculations. The initial and boundary conditions in WRF were implemented, resorting
to the Global Data Assimilation System (GDAS) dataset (from the National Centers for
Environmental Prediction (NCEP)), with grid spacing of 0.25◦ and a time stamp updated
every 6 (hours).

2.2.2. Methane Transport and Flux Calculation

The campaigns provided field observations of methane mixing ratio near the surface
at various locations of the mining facility. These data were acquired at heights from 2 to
10 (m) above the surface in four spots uniformly distributed in each of the areas of the
tailings pond and the two mines, as depicted in Figure 1d. The instrument used was the Los
Gatos Research Ultra-Portable Greenhouse Gas Analyzers (LGRs). Allen et al. (2019) [91]
report that this instrument operates based on the principle of off-axis integrated cavity
output spectroscopy and two near-infrared tunable diode lasers, which promptly scan a
single strong (and isolated) absorption line of the target gas (here methane). The overall
release areas, tiled by the rectangular patches, were equalized for the mines and the pond.
This area, approximately 30 (km2), was the same for all simulations and release sources.
Methane measurements were acquired every 15 (min). The measurements were averaged
every 4 (hours) and forced in the model as a boundary condition at the model’s lowest
layer [64]; this was necessitated by the WRF model, which required the recompilation of
the program every 4 (hours). In summary, the program was customized to allow tracer
release from a desired spatial area.

As proposed by Bhimireddy et al. (2018) [65], the passive tracer dispersion method
was employed in WRF without accounting for any chemical reactions, and the tracer moved
vertically and horizontally by the computed mean wind field and turbulent transport by
means of the surface layer (SL) and planetary boundary layer (PBL) parameterizations. The
Monin–Obukhov SL parameterization accounts for the vertical transport of the tracer by
relying on similarity theory [83]. The Mellor–Yamada–Janić PBL parameterization accounts
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for turbulence kinetic energy (TKE) employing a 2.5 closure technique [92]. Both horizontal
and vertical turbulent motions within PBL are modelled as diffusion using eddy diffusion
functions that depend on TKE and other model variables [93]. Twelve (hours) were counted
as the spin-up time [22]. To discover the diurnal and seasonal variations in the emission
flux, simulations were performed for 4-hour time intervals.

The tracer (methane) emission flux F was computed through a box placed around the
emission sources by considering Gauss’ theorem. F can be given by [37]

F = Fa + Ft + Fs + Fm + Fc, (1)

where Fa is the advective flux and Ft is the turbulent flux through the box surfaces, Fs
is the surface flux because of deposition or biogenic release of methane due to surface
activity, Fm is the flux due to density variations in the box, and Fc is the flux because of
chemical reactions encompassing methane as it interacts with other species in air. Large-
eddy simulations (LES) predict a horizontal turbulent flux of atmospheric species upwind,
which accounts for 10–20% of the advective flux [38,70]. However, this flux could not
be computed in the present simulations due to the computational cost associated with
overall simulations, extending a time span of 100 (days). Fs was disregarded considering
the fact that the site land was primarily barren or developed for industrial operations and
housing [72]. In accordance with Oertel et al. (2016) [94], the boreal forest is not recognized
as a source of methane either (on the contrary, this forest is suggested to absorb methane).
Thus, the basic assumption is that the measured methane mixing ratio is only generated
from mine pits and ponds, and is not affected by other processes. So, overall, only the
advective flux Fa and flux due to density variations in the box Fm are considered to be
the major contributors to the total flux, i.e., F ≈ Fa + Fm. We further disregard Fm; after
all, any such flux contribution would average to zero over many days. Therefore, Fa was
considered as the single major operational contributor to the total flux F. Considering these
assumptions and former evidence for the same mining facility, it was suggested that the
advective flux solely accounted for more than 95% of the overall emission flux [37]

F ≈ Fa = ∑
north

V S∆A + ∑
east

U S∆A − ∑
south

V S∆A − ∑
west

U S∆A + ∑
top

W S∆A, (2)

where U, V, and W are the wind velocity vector components (m s−1) simulated at each
grid point on the box enclosing the emission source, ∆A is area element (m2), and S is
the concentration of the passive tracer (here methane) (µg m−3) for a specified grid point.
It is worth mentioning that when the box height stretches to altitudes well beyond the
PBL height, then the last term in the above equation can be neglected (equal to zero).
By its formulation WRF simulates the tracer transport in units of (ppm); however to
calculate the emission flux in (Tonne h−1), the tracer unit must first be converted to (µg
m−3) for methane. Using thermodynamic considerations, the units for the tracer can be
converted from (ppm) to (µg m−3). This is possible since all the required thermodynamic
variables (e.g., temperature, potential temperature, and pressure) are available in WRF
and can be extracted. Nambiar et al. (2020) [22] provide the detailed calculations. Overall,
this procedure allows the operational calculation of the advective flux as a proxy for
emission flux.

2.2.3. Uncertainty in WRF Estimate of the Methane Emission Flux

The ML model predictions are based on the WRF model estimates, so the success of
the ML model predictions depends on the success of the WRF model in predicting the
emissions flux of methane. If the accuracy of the WRF predictions of the methane emission
flux can be quantified, then ML predictions will have practical relevance in the field.

For quantifying the WRF uncertainty of methane emission flux from the open-pit
mine, the relevant uncertainties are bias in wind speed and bias in methane concentrations
(or alternatively, mixing ratio). The bias (rather than root mean square error) is relevant
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because any emission quantification method attempts to report the cumulative emission
flux accurately over an entire year, as opposed to a snapshot prediction.

In an earlier study, we quantified the WRF uncertainty in wind speed using airborne
measurements in the actual mine field [20]. In that study, the WRF uncertainty and average
wind speed from field observations were ∆U = 0.0819 and U = 2.614 (m s−1). In another
study, we quantified the WRF uncertainty in the mixing ratio of methane using aircraft
measurements in the same mine field [22]. In that study, the WRF uncertainty and average
mixing ratio from field observations were ∆S = 0.0543 and S = 0.417 (ppm). Using these
uncertainties and average values, we can estimate the uncertainty in WRF’s advective flux
(proxy for emission flux) using

∆F
F

≈

√(
∆U
U

)2
+

(
∆S
S

)2
=

√(
0.0819
2.614

)2
+

(
0.0543
0.417

)2
= 0.13, (3)

which suggests that the uncertainty in WRF’s prediction of the methane emission flux
is about 13%. Given the lack of alternative methods for prolonged measurements of the
emission flux, this uncertainty justifies the use of the WRF dataset as training data for the
ML model.

2.3. Machine Learning Model and Statistical Analysis

Under practical considerations, up to four measurement periods (fall, winter, spring,
and summer) with no more than 10 days per season are required to quantify emission
fluxes every year. This measurement period is sufficient because of the high cost of accurate
observation methods, such as deploying instrumented aircraft or another technologically
sophisticated system. The GBR, XGBOOST (XGB), SVM, and MLP are candidate ML models
that can be used operationally, while predicting the emission flux in the next hour with
LSTM, based on measuring the emission flux at the current hour, will remain as a research
tool. All the available data for the four campaigns include 10 days of observations and
WRF modelling for a given emission source (i.e., old mine, new mine, or pond).

Model tuning was achieved and optimal hyper-parameters were set by minimizing
the error statistics with respect to the reference dataset (emission flux predicted by WRF).
The settings can be provided as: GBR: number of estimators = 1000, minimum samples per
leaf = 4, minimum weight fraction per leaf = 0.01; XGBOOST: gamma = 1 × 10−4, max tree
depth = 20, number of estimators = 100, learning rate = 5 × 10−2, minimum child weight
= 2, sub-samples = 0.5; SVM: gamma = 1 × 10−2, epsilon = 1 × 10−3, C = 1 × 104, kernel
= rbf (radius basis function), cache = 1000 Mbytes; MLP: activation function = ReLu, loss
function = MSE, learning rate = 1 × 10−3, solver = ADAM, epsilon (for the ADA solver) =
1 × 10−8, number of hidden layers = 1 with 100 nodes, alpha (L2 penalty to control over-
fitting) = 1 × 10−4, batch size = 100. The ML model source code is developed in Python 3.8
(https://www.python.org/ (accessed 10 August 2021)), and it utilized python’s basic data
analysis and visualization packages [95,96]. Specific ML algorithms were imported from
the Scikit-Learn (sklearn) version 1.0 [97,98] and xgboost version 1.6 [99] libraries.

Figure 2 shows the methodology diagram for the present analysis. Overall, up to
10 features are chosen from WRF as input to the ML models. These are meteorological
variables: diurnal time (h), season, wind speed (m s−1) at 10 (m) above surface, temperature
(K) at 2 (m) above surface, precipitation (mm h−1), PBL height (m), surface pressure (Pa),
relative humidity (%), surface sensible heat flux (W m−2), and surface latent heat flux
(W m−2). These variables are averaged over the footprint of each emission source. The
WRF-generated emission flux is chosen as the training data for the ML models. The ML
models generate the emission flux as output. All the data are shuffled and 80% of data
are separated, as the training set from the remaining 20% of data, as the test set. Ten ML
algorithms are tested to check for the accuracy. Since the models are fairly simple and run
reasonably fast, it is needed to choose the models that best fit the purpose, ignoring the
“complexity" of the models. The inclusion of the deep neural network (DNN), in the form
of the MLP algorithm, indicated that the benefits of DNNs cannot be fully exploited here,

https://www.python.org/
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as the training dataset is limited, and therefore, traditional ML algorithms perform better,
with a reduced chance for over-fitting. In the present work the analysis is performed by
adding one input variable (called feature in the ML method) at a time to check the accuracy
of the prediction for a greater number of input variables.

Methane Mixing Ratio 
Measurements

Land Use and Topography 
Datasets

Weather Research and 
Forecasting (WRF) Model

Weather Research and 
Forecasting (WRF) Passive 
Tracer Dispersion Model

Meteorological Fields: 
Diurnal Time, Season, Wind 

Speed, Temperature, 
Precipitation, PBL Height, 

Pressure, Relative Humidity, 
Sensible/Latent Heat Flux

WRF-Generated Emission 
Flux

Machine Learning Models: 
GBR, XGBOOST (XGB), SVM, 

and MLP

Measured Data Model Model-Generated Data

Input
Training

Output

ML-Generated Emission Flux

Methane Mixing Ratio Monitoring and WRF Passive Tracer Dispersion Modelling to Estimate Emission Flux

Operational WRF and ML 
Modelling to Forecast 

Emission Flux

Global Data Assimilation 
System (GDAS)

Figure 2. Research methodology: the weather research and forecasting (WRF) model relies on mea-
sured methane mixing ratio data, land use data, topography data, and the Global Data Assimilation
System (GDAS) to generate the emission flux; the machine learning (ML) models use the WRF-
generated meteorological fields as input data and the WRF-generated emission flux as training data
to generate the emission flux as output data.

Quantitative comparisons between the model prediction (Mi) and a reference dataset
(Oi) (here methane emission flux from WRF) are performed by determining the bias and
root mean square error (RMSE) (Tonnes h−1) defined by

Bias = ∑n
i=1(Mi − Oi)

n
, (4)

RMSE =

√
∑n

i=1(Mi − Oi)2

n
, (5)

where n is the number of data points accounted for in the error statistic calculation. The
coefficient of determination R-squared (R2 (-)) is the statistical measure of the correlation
between a model’s performance and a reference dataset defined by

R2 =
[n ∑n

i=1(MiOi)− (∑n
i=1 Mi)(∑n

i=1 Oi)]
2

[n ∑n
i=1(Oi)2 − (∑n

i=1 Oi)2][n ∑n
i=1(Mi)2 − (∑n

i=1 Mi)2]
. (6)
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The Pearson’s correlation coefficient (PCC (-)) between Mi and Oi is often used to
assess the ability of a model to simulate temporal variation and is given by

PCC =
∑n

i=1(Mi − M)(Oi − O)√
∑n

i=1(Mi − M)2
√

∑n
i=1(Oi − O)2

, (7)

where overbars signify averages and n is the sample size.

3. Results and Discussion

Time series of wind speed at 10 (m) above surface, potential temperature at 2 (m)
above surface, surface heat flux, and emission flux of methane during 10 days of F19
campaign for the old/new mines and the pond are presented in Figure 3. All data shown
are extracted from WRF simulations. In the time period from 48 to 96 (hours), higher
wind speed and surface heat flux are predicted over the pond compared to the mines
(Figure 3a,c). The higher wind speed and surface heat flux caused a higher emission flux
from the pond (Figure 3d). Overall, the pond shows greater variability in the wind speed,
surface heat flux, and emission flux noticed by the peaks from Figure 3a,c,d. The reason for
such variations could be related to meteorological effects over water bodies. For the mines,
the emission flux drops during the night as the wind speed decreases over night in the mine
cavity. The change in the diurnal variation of temperature for the mines are higher than
the pond as the heat capacity of water bodies are higher than soil, which could damp the
amplitude of temperature oscillations in the atmosphere above the pond. Figure 3d shows
that as the new mine is more active, the emission flux from it is higher. The new mine
emission flux exhibits a notable diurnal pattern, possibly due to the regular schedule of
the mining activity. Meanwhile, such diurnal pattern is not as notable for the pond, which
emits methane given the natural variation in the meteorological conditions. Likewise, such
diurnal variability in the emission flux is weaker for the old mine.

Figures 4–6 show the PCC matrix computed for measured tracer (methane) mixing
ratio, normalized emission flux (computed by WRF), and other atmospheric state variables
(computed by WRF) for the old mine, new mine, and pond, respectively. For this analysis
all the data is used from the WRF simulations, i.e., the entire 2400 records, with 960, 960,
and 480 records related to the tailings pond, old mine, and new mine, respectively. As can
be seen for the old mine in Figure 4 for S18, W19, S19, and F19 cases, the emission flux
was greatly correlated with wind speed at 10 [m] above surface (S10) in all seasons but
highly correlated with Surface Heat Flux (SHF) (W m−2) only during the warm conditions
(S18 and S19 campaigns). For example, in the S18 case, the PCCs for S10 and SHF are
0.82 (-) and 0.74 (-), respectively, for the old mine (Figure 4a). The same correlation for
the new mine and pond can be seen for S10 and emission flux in warm conditions (S18
and S19 campaigns) (Figures 5a and 6a,c). The emission flux of the pond in S18 and S19
campaigns was highly correlated with S10 (PCC = 0.81, 0.62 (-)) but anti-correlated with
SHF (PCC = −0.43,−0.37(-)) (Figure 6a,c). The anti-correlation was foreseen having the
knowledge that the water temperature would be different than that of the nearby earth
surfaces. This is itself due to larger thermal capacity of water compared to soil [20].
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In S19 and F19 campaigns, the emission fluxes from the old and new mines were
highly correlated with S10 for the old mine (PCC = 0.74, 0.84 (-)) and for the new mine
(PCC = 0.89, 0.85 (-)). In S19 and F19 campaigns, the emission fluxes were highly correlated
with SHF for the old mine (PCC = 0.35, 0 (-)) and for the new mine (PCC = 0.4, 0.68
(-)). However, in S19 and F19 campaigns, the emission flux from the pond was highly
correlated with S10 (PCC = 0.62, 0.77 (-)), but either anti-correlated or correlated with SHF
(PCC = −0.37, 0.73 (-)), possibly due to transitioning from the warm to the cold conditions.
The greatest correlation with the emission flux is with the wind speed. The higher the
wind speed, the greater the emission flux. For the case of the mines, surface sensible heat
flux is positively correlated with the emission flux. On the other hand, for the case of
the pond, surface sensible heat flux is negatively correlated with the emission flux in the
warm conditions (PCC = −0.43,−0.37 (-) for S18 and S19, respectively) but positively
correlated with the emission flux in the cold conditions (PCC = 0.12, 0.73 (-) for W19 and
F19, respectively). This difference can be explained given the meteorological processes. In
the warm conditions (S18 and S19), the high emission flux is accompanied with high wind
speed during the daytime, where the pond surface is cooling the atmosphere due to being
at a lower temperature (negative heat flux). While in the cold conditions (W19 and F19), the
high emission flux is accompanied with high wind speed during synoptic events, where
the pond surface is warming the atmosphere due to being at a higher temperature (positive
heat flux).

(a) (b) 

(c) (d) 

Te
m

p
er

at
u

re
 a

t 
2

 m
 [

K
]

Figure 3. Time series of WRF predictions of (a) wind speed at 10 (m) above surface, (b) potential
temperature at 2 (m) above surface, (c) surface heat flux, and (d) emission flux of methane during 10
(days) of F19 campaign for emissions monitoring from the old/new mines and the pond.
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(a) Old Mine-S18 
 

(b) Old Mine-W19 
 

  

(c) Old Mine-S19 (d) Old Mine-F19 
 

Figure 4. Pearson’s correlation coefficient (PCC) of the old mine (a–d); tracer (methane) mixing ratio
(MR) measured near surface; WRF normalized emission flux (F̂CH4 ); WRF wind speed at 10 (m) (S10);
WRF upward surface sensible heat flux (SHF); WRF temperature at 2 (m) (T2); WRF relative humidity
at 2 (m) (RH2); and WRF sea level pressure (SLP).

(a) New Mine-S19 

 

 (b) New Mine-F19 

 
 

Figure 5. Pearson’s correlation coefficient (PCC) of the new mine (a,b); variables the same as in
Figure 4.
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(a) Pond-S18 
 

(b) Pond-W19 
 

 
 

(c) Pond-S19 (d) Pond-F19 
 

Figure 6. Pearson’s correlation coefficient (PCC) of the pond (a–d); variables the same as in Figure 4.

Figures 7–9 show the scatter plots of emission fluxes predicted by the MLP, GBR, XGB,
and SVM models versus the WRF predictions. This data is associated with the 20% testing
data, for which the ML models were not trained. On the same figures some statistics for
the comparison are calculated and reported, which include the Bias (Tonnes h−1), RMSE
(Tonnes h−1), and R2 (-) for the old mine, new mine, and the pond.

Table 3 shows the Bias (Tonnes h−1), RMSE (Tonnes h−1), and R2 (-) values for the
four machine learning methods (MLP, GBR, XGB, SVM) applied to the old and new mines
and the pond during the individual campaigns. The error statistics are associated with the
20% testing data, for which the ML models were not trained. The averaged Bias (Tonnes
h−1) shows lower values for the pond and new mine, while the old mine has the highest
Bias (Tonnes h−1) and RMSE (Tonnes h−1). This may suggest a more successful prediction
of emission flux by the ML methods for the pond and the new mine compared to the old
mine. The average R2 (-) of prediction by the deployed ML methods shows better forecast
for the new mine although the two other predictions have R2 (-) higher than 0.8 (-). This
may be due to more regular and scheduled mining activity in the new mine, compared to
the old mine and the pond. Comparing the Bias (Tonnes h−1), RMSE (Tonnes h−1), and R2

(-) shows that the GBR and XGB models performed better predictions for all the different
emission sources and seasons. The average WRF emission flux for the old mine, new mine,
and the pond are 9.90, 11.15, and 9.19 (Tonnes h−1), respectively. Considering the Bias
(Tonnes h−1), the ML-predicted emission fluxes are on average within 6.3%, 3.3%, and
0.3% of WRF prediction for the old mine, new mine, and the pond, respectively. The same
numbers considering RMSE (Tonnes h−1) would be around 30% of WRF predictions.
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Figure 7. Scatter plots of emission rates predicted by the MLP, GBR, XGB, and SVM models versus
the WRF predicted emission rates and the calculated Bias (Tonnes h−1), RMSE (Tonnes h−1), and R2

(-) for the old mine for S18, W19, S19, and F19 campaigns.

 MLP GBR XGB SVM 

New Mine 
(S19) 

    

New Mine 
(F19) 
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R2 = 0.94 

Figure 8. Scatter plots of emission rates predicted by the MLP, GBR, XGB, and SVM models versus
the WRF predicted emission rates and the calculated Bias (Tonnes h−1), RMSE (Tonnes h−1), and R2

(-) for the new mine for S19 and F19 campaigns.
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Figure 9. Scatter plots of emission rates predicted by the MLP, GBR, XGB, and SVM models versus
the WRF predicted emission rates and the calculated Bias (Tonnes h−1), RMSE (Tonnes h−1), and R2

(-) for the pond for S18, W19, S19, and F19 campaigns.

Table 3. Bias (Tonnes h−1), RMSE (Tonnes h−1), and R2 (-) values for the four machine learning
methods (MLP, GBR, XGB, SVM) of old and new mines and the pond for S18, W19, S19, and F19.

Old Mine (S18, W19, S19, F19) New Mine (S19, F19) Pond (S18, W19, S19, F19)

Bias (Tonnes h−1)

MLP −0.47

Average = −0.62

−0.51

Average = −0.37

0.25

Average = 0.03GBR −0.46 −0.17 0.11
XGB −0.63 −0.13 −0.06
SVM −0.91 −0.65 −0.20

RMSE (Tonnes h−1)

MLP 3.93

Average = 3.96

2.87

Average = 3.20

3.75

Average = 3.73GBR 3.85 3.57 3.96
XGB 4.04 3.36 3.81
SVM 4.02 2.98 3.38

R2 (-)

MLP 0.89

Average = 0.89

0.94

Average = 0.92

0.85

Average = 0.85GBR 0.89 0.90 0.83
XGB 0.88 0.91 0.84
SVM 0.89 0.94 0.88
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4. Conclusions and Recommendations

Open-pit mines represent an unusual topographic feature. The meteorological pat-
terns within and near these mines can be quite different from those of flat terrain, and
understanding these patterns is important given the environmental impact of mining activ-
ities. Mine activities often create large amounts of fugitive dust, odorous compounds, and
greenhouse gases (GHGs), the quantification of which is confounded by flow circulations,
shear layers, and plume meandering created by mine pits. Open-pit mine emissions mea-
surement techniques have limitation of spatio-temporal coverage. Although the diagnostic
models are computationally fast, the models have difficulty to estimates the emission flux
accurately. On the other hand, more accurate prognostic models are complicated to set up
and computationally expensive for operational use. The machine learning techniques are
fast, but require extensive training datasets to be accurate.

This work proposed a surrogate method with operational capability to estimate the
emission flux of GHGs from a mine pit in Canada fairly accurately and computationally
fast, identifying diurnal and seasonal variations of the flux. The study used Weather
Research and Forecasting (WRF) and machine learning (ML) methods. The in situ field
measurements of methane mixing ratio were conducted in various spots of two mine
pits, denominated old and new, as well as a tailings pond in May 2018 (S18), February–
March 2019 (W19), July–August 2019 (S19), and October–November 2019 (F19) to provide
tracer boundary conditions for WRF. Methane transport in WRF was simulated using a
passive tracer dispersion method. The meteorological variables and emission flux from
the WRF model were used as training and test datasets for various ML models. Four
ML techniques (multi-layer perceptron (MLP) artificial neural network, gradient boosting
(GBR), XGBOOST (XGB), and support vector machines (SVM)) were used as the main
modeling methods. The long short-term memory (LSTM) technique was considered as
a research model since, in the operational sense, it is difficult to measure the emission
flux at any given time interval on a continuous basis to predict the emissions in the next
time interval.

As the new mine was more active than the old mine, the emission flux out of the
new mine was higher than the old mine and showed significant diurnal variations. The
emission flux was greatly correlated with wind speed at 10 (m) above the surface (S10),
but it exhibited lower or anti-correlations with other meteorological variables. The ML
methods were more successful at the prediction of emission flux for the pond and the new
mine compared to the old mine. The average bias and RMSE (Tonnes h−1) were lower for
the pond and new mine, while the old mine had the highest bias (Tonnes h−1) and RMSE
(Tonnes h−1). Because of the more scheduled mining activity in the new mine, compared to
the old mine and the pond, the average R2 (-) of emission flux prediction by the deployed
ML methods was higher than the two other predictions; however, the old mine and pond
still exhibit an R2 (-) higher than 0.8 (-). Considering the bias (Tonnes h−1), RMSE (Tonnes
h−1), and R2 (-), the GBR and XGB algorithms performed better predictions for all the
different emission sources and seasons. Combining all emission sources (mines and pond),
seasons, and the four ML methods, the new WRF-ML modeling paradigm can predict the
emission flux with an average Bias, RMSE, R2 of −0.32 (Tonnes h−1), 3.63 (Tonnes h−1),
and 0.88 (-), which reveals a potential interest in use of ML methods for predicting emission
fluxes from the complex terrains of open-pit mines.

Some future work is possible. More accurate observations of methane mixing ratio
with higher spatial resolution near the surface and over prolonged periods can potentially
improve the WRF-ML prediction results. One of the main tasks which remains is whether
WRF can conserve the mass flux of methane near the surface and at the exit boundary of its
inner domain. If such conservation can be established, the proposed method can offer an
accurate proxy for the emission flux from open-pit mines.
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Nomenclature

∆A: Area element (m2)
Bias: Bias of emission flux (Tonne h−1)
F: Emission flux (Tonne h−1)
M: Modeled emission flux (Tonne h−1)
MR: Methane mixing ratio (ppm)
n: Sample size (-)
O: Reference emission flux (Tonne h−1)
PCC: Pearson’s correlation coefficient (-)
R2: Coefficient of determination (-)
RH2: Relative humidity at 2 m (%)
RMSE: Root mean square error of emission flux (Tonne h−1)
S: Concentration of passive tracer (µg m−3)
SHF: Surface Heat Flux (W m−2)
S10: Wind speed at 10 m (m s−1)
SLP: Sea level pressure (Pa)
T2: Temperature at 2 m (K)
U: Average wind velocity along x direction (m s−1)
V: Average wind velocity along y direction (m s−1)
W: Average wind velocity along z direction (m s−1)

Abbreviations

ABL: Atmospheric Boundary Layer
CALPUFF: CALifornia PUFF Model
FCs: Flux Chambers
GTOPO 30s: Global 30 Arc-Second
GDAS: Global Data Assimilation System
GBR: Gradient Boosting
GHG: Greenhouse Gas
IDM: Inverse Dispersion Modelling
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LS: Land Surface
LSTM: Long Short-Term Memory
LGR: Los Gatos Research
ML: Machine Learning
MODIS: Moderate Resolution Imaging Spectroradiometer
MLP: Multi-Layer Perceptron
NCEP: National Centers for Environmental Prediction
PBL: Planetary Boundary Layer
SRTM: Shuttle Radar Topography Mission
SVM: Support Vector Machines
SL: Surface Layer
TKE: Turbulence Kinetic Energy
WRF: Weather Research and Forecasting
XGB: XGBOOST
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