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1 Introduction

Python is a widely used high-level programming language for general-purpose programming, cre-
ated by Guido van Rossum and first released in 1991. An interpreted language, Python has a
design philosophy which emphasizes code readability (notably using whitespace indentation to de-
limit code blocks rather than curly brackets or keywords), and a syntax which allows programmers
to express concepts in fewer lines of code than possible in languages such as C++ or Java. The
language provides constructs intended to enable writing clear programs on both a small and large
scale.

Python features a dynamic type system and automatic memory management and supports multi-
ple programming paradigms, including object-oriented, imperative, functional programming, and
procedural styles. It has a large and comprehensive standard library.

Python interpreters are available for many operating systems, allowing Python code to run on a
wide variety of systems. CPython, the reference implementation of Python, is open source software
and has a community-based development model, as do nearly all of its variant implementations.
CPython is managed by the non-profit Python Software Foundation.

Figure 1: The logo of Python programming language.
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2 Installation

To install Python, go to the following link and download the latest version for the appropriate
operating system. Complete the installation steps.

https://www.python.org/downloads/

The standard application launcher for Python is IDLE, which opens a Shell. A shell is a user
interface for access to an operating system’s services. In general, operating system shells use either
a command-line interface (CLI) or graphical user interface (GUI), depending on a computer’s role
and particular operation. It is named a shell because it is a layer around the operating system
kernel. IDLE is a CLI shell that is shown in Figure 2.

Figure 2: An example of the IDLE shell that is accessible by standard installation of Python on
Mac operating system.

Another application launcher for Python is IDE from PyCharm that can be downloaded from the
following link. Download the Community version of IDE from PyCharm, which is lightweight and
suitable for scientific development, for the appropriate operating system.

2



http://www.jetbrains.com/pycharm/download/

By launching IDE from PyCharm the following window opens that asks to open a new project or
an existing project, as shown in Figure 3. Chose to open a new project and specify the directory
path for the project files to be developed.

Figure 3: Openning screen of the IDE launcher.

3 Creating and Running a Simple Program

Click menu item File and then New to create a Python text file. Name the file the same as this lab’s
title, i.e. PythonProgramming. To run a simple python program to print Hello World! in the out-
put console, enter the following lines of code within the editor just created for PythonProgramming.

#Introduction to python programming

import numpy

#This line prints a message

print("Hello World!")

The import command allows us to use modules from various libraries in order to perform specific
programming tasks. The random module allows us to generate a random number. The sys and
os modules launch the operating system. The line #This line prints a message is a comment
that is not going to be executed. The print("...") command prints a message on the output
console. In Python programming both double quotations " and single quotations ’ perform the
same task. For instance we could have used print(’...’) in the above program.

Then click menu item Run and then click Run. A run console sub window opens within the IDE
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where the message Hello World! will be printed, as shown in Figure 4.

Figure 4: A simple program to print Hello World! in the output console.

4 Installing Python Interpreter Packages

Python programming is based on numerous interpreter packages that have been developed by
the community. The appropriate packages for a Python program must be installed before a
package can be used using the import command. To install an interpreter package the menu item
PyCharm Community Edition should be used and then Preferences must be clicked. When the
Preferences window opens, the Project Interpreter under the current project can be opened
and viewed, as shown in Figure 5.

The list of all interpreter packages can be viewed by double-clicking on a package. A list of all
interpreters sorter alphabetically can be obtained. It is possible to search for an interpreter by
starting to type the interpreter name as shown in Figure 6. For instance, information about the
numpy interpreter is shown in the Available Packages window. A brief description is provided on
the right. This interpreter is used for array processing for numbers, strings, records, and objects.
The Version and interpreter Author is also provided. It is possible to install the interpreter
package by selecting the desired version and then check marking the Install option. Finally the
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Figure 5: Preferences window and the Project Interpreter.

botton Install Package can be clicked. After installation, this package or module can be used
by the import command in the Python program.

5 Calculation of Reynolds Stress Tensor and Turbulent

Kinetic Energy

It was discussed in lectures that the instantaneous velocity vector in a turbulent flow can be
decomposed into the mean velocity and the turbulent fluctuating velocity in the so called Reynolds
decomposition, i.e.

U(x, t)︸ ︷︷ ︸
Instantaneous Velocity

= 〈U(x, t)〉︸ ︷︷ ︸
Mean Velocity

+ u(x, t)︸ ︷︷ ︸
Fluctuating Velocity

, (1)

where x is position and t is time. In the cartesian coordinates with x, y, and z coordinate axes,
the velocity components for this equation can be written as
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Figure 6: The numpy interpreter.

U = 〈U〉 + u (2)

V = 〈V 〉 + v (3)

W = 〈W 〉 + w. (4)

It is worth remembering that Reynolds stresses 〈uiuj〉 are components of a second-order tensor,
with the property that it is symmetric, i.e. 〈uiuj〉 = 〈ujui〉. The diagonal components of this
tensor, i.e. 〈u2

1〉 = 〈u1u1〉, 〈u2
2〉, and 〈u2

3〉 are called normal stresses, while the off-diagonal compo-
nents, e.g. 〈u1u2〉, are called shear stresses. The Reynolds stress tensor for a flow using a Cartesian
coordinate system can be shown in the matrix as follows

6



 〈u2〉 〈uv〉 〈uw〉
〈vu〉 〈v2〉 〈vw〉
〈wu〉 〈wv〉 〈w2〉


The turbulent kinetic energy is defined as the one half of the sum of the normal stresses of the
Reynolds stress tensor. In the Cartesian coordinate system, the turbulent kinetic energy can be
defined as

k =
1

2

(
〈u2〉 + 〈v2〉 + 〈w2〉

)
. (5)

In this lab we wish to calculate the components of the Reynolds stress tensor and the turbulent
kinetic energy for a fluid flow. A probe is used to make eight measurements of velocity components
in the x, y, and z directions. The measurements are shown in the table below.

Table 1: Turbulence probe measurements in a fluid flow
Measurement 1 2 3 4 5 6 7 8
U [m s−1] 1 2 4 3 5 1 2 6
V [m s−1] 2 3 2 4 6 2 3 5
W [m s−1] 4 3 1 2 2 3 2 5

We will use these measurements to calculate components of the Reynolds stress and the turbulent
kinetic energy. We can assume that the flow experiment is repeated eight times under identical
conditions and that the flow measurements are made at a specific and consistent location and time
for each experiment. As a result, all statistical means that are calculated are ensemble averages.

6 Python Script

Copy and paste the following code in the IDE environment. Note that you must have installed the
numpy package for this code to work.

#Introduction to python programming

import numpy

#Using arrays define instantaneous velocity in the x, y, and z directions [m s^-1]

U=[1, 2, 4, 3, 5, 1, 2, 6]

V=[2, 3, 2, 4, 6, 2, 3, 5]

W=[4, 3, 1, 2, 2, 3, 2, 5]

#Print newline and then the results

print("\n")

print("U=",U)

print("V=",V)

print("W=",W)
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#Calculate the ensemble mean for each instantaneous velocity measurement [m s^-1]

Umean=numpy.mean(U)

Vmean=numpy.mean(V)

Wmean=numpy.mean(W)

print("\n")

print("Umean=",Umean)

print("Vmean=",Vmean)

print("Wmean=",Wmean)

#Calculate turbulent velocity fluctuations [m s^-1]

u=U-Umean

v=V-Vmean

w=W-Wmean

print("\n")

print("u=",u)

print("v=",v)

print("w=",w)

#Calculate the square of the turbulent velocity fluctuation [m^2 s^-2]

u2=numpy.multiply(u,u)

v2=numpy.multiply(v,v)

w2=numpy.multiply(w,w)

print("\n")

print("u2=",u2)

print("v2=",v2)

print("w2=",w2)

#Calculate variances of turbulent velocity fluctuations [m^2 s^-2]

u2mean=numpy.mean(u2)

v2mean=numpy.mean(v2)

w2mean=numpy.mean(w2)

print("\n")

print("u2mean=",u2mean)

print("v2mean=",v2mean)

print("w2mean=",w2mean)

#Calculate the turbulent kinetic energy [m^2 s^-2]

k=0.5*(u2mean+v2mean+w2mean)

print("\n")

print("k=",k)
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#Calculate the products of velocity fluctuations [m^2 s^-2]

uv=numpy.multiply(u,v)

uw=numpy.multiply(u,w)

vw=numpy.multiply(v,w)

print("\n")

print("uv=",uv)

print("uw=",uw)

print("vw=",vw)

#Calculate the mean for products of velocity fluctuations [m^2 s^-2]

uvmean=numpy.mean(uv)

uwmean=numpy.mean(uw)

vwmean=numpy.mean(vw)

print("\n")

print("uvmean=",uvmean)

print("uwmean=",uwmean)

print("vwmean=",vwmean)

#Create the Reynolds Stress matrix

ReynoldsStress=[[u2mean, uvmean, uwmean],\

[uvmean, v2mean, vwmean],[uwmean, vwmean, w2mean]]

print("\n")

print("Reynolds Stress Tensor=", ReynoldsStress)

print("ReynoldsStress[0][2]=", ReynoldsStress[0][2])

This script utilizes the functionality of the numpy package to perform the calculation. Note that
each command like U=[] defines an array or vector. The command numpy.mean() calculates the
mean of the elements of an array. The command numpy.multiply() calculates multiplication of
two arrays, element by element. After the calculation of the components of the Reynolds stress, a
three by three matrix ReynoldsStress is defined to store the components of the Reynolds stress.
Note that each element of this matrix can be accessed by specifying indices in [][] format. For
instance ReynoldsStress[0][2] returns the element located on the zeroth row and the second
column. In Python programming, the indices for arrays and matrices start from 0. The results of
running this script should look like the following:

/Library/Frameworks/Python.framework/Versions/3.6/bin/python3.6 "/

Users/AmirAbbasAliabadi/Google Drive/U Guelph/Courses/ENGG6790/

Computer Labs/PythonProgramming/PythonProgramming"

U= [1, 2, 4, 3, 5, 1, 2, 6]

V= [2, 3, 2, 4, 6, 2, 3, 5]

W= [4, 3, 1, 2, 2, 3, 2, 5]
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Umean= 3.0

Vmean= 3.375

Wmean= 2.75

u= [-2. -1. 1. 0. 2. -2. -1. 3.]

v= [-1.375 -0.375 -1.375 0.625 2.625 -1.375 -0.375 1.625]

w= [ 1.25 0.25 -1.75 -0.75 -0.75 0.25 -0.75 2.25]

u2= [ 4. 1. 1. 0. 4. 4. 1. 9.]

v2= [ 1.890625 0.140625 1.890625 0.390625 6.890625 1.890625 0.140625

2.640625]

w2= [ 1.5625 0.0625 3.0625 0.5625 0.5625 0.0625 0.5625 5.0625]

u2mean= 3.0

v2mean= 1.984375

w2mean= 1.4375

k= 3.2109375

uv= [ 2.75 0.375 -1.375 0. 5.25 2.75 0.375 4.875]

uw= [-2.5 -0.25 -1.75 -0. -1.5 -0.5 0.75 6.75]

vw= [-1.71875 -0.09375 2.40625 -0.46875 -1.96875 -0.34375 0.28125 3.65625]

uvmean= 1.875

uwmean= 0.125

vwmean= 0.21875

Reynolds Stress Tensor= [[3.0, 1.875, 0.125], [1.875, 1.984375, 0.21875], ...

[0.125, 0.21875, 1.4375]]

ReynoldsStress[0][2]= 0.125

Process finished with exit code 0
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1 Introduction

In lectures we discuss the significance of the Reynolds stress tensor, which describes various statis-
tics such as normal stresses of all components of momentum as well as pair-wise components of
the shear stress:

 〈u21〉 〈u1u2〉 〈u1u3〉
〈u2u1〉 〈u22〉 〈u2u3〉
〈u3u1〉 〈u3u2〉 〈u23〉


The entries of the Reynolds stress tensor can also be described as one-point turbulent statistics
of the flow because they each report a turbulent quantity at one point in the domain. One-point
turbulent statistics in a flow can be calculated if time series of a measurement (or a number of
measurements such as momentum, temperature, concentration, etc.) is available at high frequency.

One-point statistics can be also described by alternative terminology. Consider a property in the
flow is measured at high frequency, such as velocity in the x−direction,

U = 〈U〉+ u (1)

The normal stress 〈u2〉 can also be called the variance of U . After all, if U is a random variable,
its variance in statistics gives the same mathematical quantity as the normal stress. The variance
of random variable U in statistics is shown with

var(U) = σ2
U = 〈u2〉 (2)

Some times in turbulence studies the variance is normalized by the square of the mean quantity
of the variable, for which the variance is being calculated. For instance, in the same example, the
variance can be normalized by 〈U〉2 so that the following quantity is reported,
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var(U)

〈U〉2
=

σ2
U

〈U〉2
=
〈u2〉
〈U〉2

(3)

The shear stress 〈uv〉 can also be called the covariance of U and V . After all, if U and V are
random variables, their covariance in statistics gives the same mathematical quantity as the shear
stress. The covariance of two random variables U and V in statistics is shown with

cov(U, V ) = 〈uv〉 (4)

In turbulence studies the covariance is also normalized by a mean quantity relevant to the study.
For instance, in the same example, the covariance can be normalized by one of the 〈U〉2, 〈V 〉2,
|〈U〉〈V 〉|, or even 〈U〉2 + 〈V 〉2, so that one of the following quantities may be reported,

cov(U, V )

〈U〉2
=
〈uv〉
〈U〉2

(5)

cov(U, V )

〈V 〉2
=
〈uv〉
〈V 〉2

(6)

cov(U, V )

|〈U〉〈V 〉|
=

〈uv〉
|〈U〉〈V 〉|

(7)

cov(U, V )

〈U〉2 + 〈V 〉2
=

〈uv〉
〈U〉2 + 〈V 〉2

(8)

The choice of the normalization statistic is somewhat arbitrary given the context of the study. For
instance, in meteorology, the statistic 〈U〉2 + 〈V 〉2 is used, which gives the average wind speed in
the horizontal direction, with x−direction and y−direction being horizontal and the z−direction
pointing normal to the earth surface with the positive sign upward.

It is also possible to calculate variance and covariance for any number or combination of variables.
For instance, if T = 〈T 〉+t is a random variable representing temperature, it is possible to calculate
var(T ), cov(W,T ), cov(U, T ), cov(U,W ), etc, with the appropriate normalization statistics.

In this lab, we wish to calculate turbulent statistics for airflow and temperature using a dataset
from a micro-climate study on the campus of the University of Guelph [Aliabadi et al., 2019,
Aliabadi et al., 2021]. The campaign was conducted from August 13, 2017 to August 25, 2017.
Part of the study involved installing a sonic anemometer on the roof of the Rozhanski Hall. The
anemometer measured air velocity in horizontal components U , V and vertical component W in
units of m s−1. Note that V was air velocity along canyon axis, while U was air velocity cross
canyon axis. It also measured air sonic temperature T in units of K. The measurement was
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Figure 1: University of Guelph micro-climate campaign in August 2017: campaign site (top) and
sonic anemometer installation on the roof of Rozhanski Hall (bottom)
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conducted at a sampling frequency of 4 Hz. Figure below shows the campaign site and the roof
anemometer.

We wish to compute the following statistics at time intervals of 30 min. The statistics involve
mean quantities of variables, variances, and covariances. Table below shows the statistics to
be calculated and the normalization statistics to be used. For temperature normalization, the
maximum half-hourly variation in temperature can be assumed, i.e. ∆T = Tmax − Tmin

Table 1: Turbulent statistics to be calculated and normalization statistics.

Statistic Description Normalization Units
avg(U) = 〈U〉 Mean velocity (x) - [m s−1]
avg(V ) = 〈V 〉 Mean velocity (y) - [m s−1]√
〈U〉2 + 〈V 〉2 Mean horizontal speed - [m s−1]

avg(W ) = 〈W 〉 Mean velocity (z) - [m s−1]
avg(T ) = 〈T 〉 Mean temperature - [K]
var(U) = σ2

U = 〈u2〉 Velocity variance (x) 〈U〉2 + 〈V 〉2 [m2 s−2]
var(V ) = σ2

V = 〈v2〉 Velocity variance (y) 〈U〉2 + 〈V 〉2 [m2 s−2]
var(W ) = σ2

W = 〈w2〉 Velocity variance (z) 〈U〉2 + 〈V 〉2 [m2 s−2]
var(T ) = σ2

T = 〈t2〉 Temperature variance ∆T 2 [K2]
k = 1

2
(〈u2〉+ 〈v2〉+ 〈w2〉) Turbulent kinetic energy 〈U〉2 + 〈V 〉2 [m2 s−2]

cov(U, V ) = 〈uv〉 Turbulent kinematic mass flux (x, y) 〈U〉2 + 〈V 〉2 [m2 s−2]
cov(U,W ) = 〈uw〉 Turbulent kinematic mass flux (x, z) 〈U〉2 + 〈V 〉2 [m2 s−2]
cov(V,W ) = 〈vw〉 Turbulent kinematic mass flux (y, z) 〈U〉2 + 〈V 〉2 [m2 s−2]

cov(U, T ) = 〈ut〉 Turbulent kinematic heat flux (x)
√
〈U〉2 + 〈V 〉2∆T [K m s−1]

cov(V, T ) = 〈vt〉 Turbulent kinematic heat flux (y)
√
〈U〉2 + 〈V 〉2∆T [K m s−1]

cov(W,T ) = 〈wt〉 Turbulent kinematic heat flux (z)
√
〈U〉2 + 〈V 〉2∆T [K m s−1]

2 Python Script

We perform the calculation of turbulent statistics in one script and the plotting of the results
in another script. Complete the following script for calculations. In this script, we define a file
name as "Roof4Hz.txt" to be read by the program. We subsequently define another file name as
"Roof4HzOnePointStatistics.txt" to write the result of our calculations. Note that the input
file name has many columns of data, not all of which need to be read by the program. Use of the
usecols=[...] argument in the numpy.loadtxt() function allows us to only read the columns
that we need.

An important requirement for calculating turbulent statistics is that the time series data must be
detrended for each time interval, in which we desire to calculate the turbulent statistics. The idea
behind detrending is that many environmental data show linear trends that must be eliminated (or
subracted) from the data before calculating turbulent statistics. These linear trends really do not
contribute to turbulence and are slow background variations (in this case diurnal variations). If
the linear trend is not removed from the data, one may report spuriously high turbulent statistics.
Figure below shows a trended and a detrended time series.
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Figure 2: A trended time series (left) and a detrended time series (right); turbulent statistics must
always be calculated after removing a trend from a time series, or else spurious statistics may be
reported.

Detrending of the time series is achieved by first fitting a first order polynomial to the time series
using the numpy.polyfit() function. Subsequently, a model is built based on this fit using the
numpy.polyval() function. Finally, the model, which is really only a line, is subtracted from the
original time series to give the detrended time series. All the subsequent turbulent statistics are
calculated from the detrended time series. Of course, the detrended time series contains all the
turbulent fluctuations.

To calculate the variances and covariances, we have used the numpy.cov() function. This function
is extremely useful. It takes two vectors as arguments and returns a 2 by 2 matrix. The main
diagonal elements of the matrix are the variances of the two vectors provided, and the off-diagonal
elements are covariances. The elements of the matrix can be accessed and assigned to appropriate
variable. Element [0,0] is the variance of the first vector argument, element [1,1] is the variance
of the second vector argument, and element [0,1] (the same as element [1,0]) is the covariance
of the two vectors.

Note that the iterations move forward for each 30 min window of data. In each iteration, the
program calculates the statistics, stores the statistics in vectors, and moves on to the next 30 min
window.

Finally, the data are written to a file with an appropriate header. Note that using #, or com-
ment line, in a text file results in useful header information that will not really be read by the
numpy.loadtxt() function. It is recommended to describe in the text file exactly what informa-
tion each column holds and the units associated with it. It is also useful to number the columns
so subsequently files can be read conveniently.

#Calculate one-point turbulent statistics

import numpy

#Define averaging period in number of data points: minutes * seconds * samples
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AverageSample=30*60*4

#Define file names

fileName = "Roof4Hz.txt"

outputFileNameOnePointStatistics="Roof4HzOnePointStatistics.txt"

#Load all data in a matrix

data4Hz = numpy.loadtxt(fileName, usecols=[0,1,2,3,4,5,8,9,10,11])

year4Hz=data4Hz[:,0]

month4Hz=data4Hz[:,1]

day4Hz=data4Hz[:,2]

timeHr4Hz=data4Hz[:,3]

timeMin4Hz=data4Hz[:,4]

timeSec4Hz=data4Hz[:,5]

U4Hz=data4Hz[:,6]

V4Hz=data4Hz[:,7]

W4Hz=data4Hz[:,8]

TSonic4Hz=data4Hz[:,9]

N4Hz=numpy.size(year4Hz)

#Calculate the number of samples and then detrend data

NSample=int(N4Hz/AverageSample)

#Define statistics, S is the wind speed in the horizontal direction

yearavg=numpy.zeros((NSample,1))

monthavg=...

dayavg=...

timeHravg=...

timeMinavg=...

Uavg=...

Vavg=...

Savg=...

Wavg=...

TSonicavg=...

Uvar=...

Vvar=...

Wvar=...

TSonicvar=...

k=...

UVcov=...

UWcov=...

VWcov=...

UTSoniccov=...
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VTSoniccov=...

WTSoniccov=...

for i in range(0,NSample):

#Calculate year, month, day, hour, and minute for each sample

yearavg[i] = numpy.mean(year4Hz[i*AverageSample:(i+1)*AverageSample])

monthavg[i] = numpy.mean(month4Hz[i*AverageSample:(i+1)*AverageSample])

dayavg[i] = ...

timeHravg[i] = ...

timeMinavg[i] = numpy.mean(timeMin4Hz[i*AverageSample:(i+1)*AverageSample])+1

#Calculate averages

Uavg[i] = numpy.mean(U4Hz[i*AverageSample:(i+1)*AverageSample])

Vavg[i] = ...

Wavg[i] = ...

TSonicavg[i] = ...

Savg[i] = numpy.mean(numpy.sqrt(U4Hz[i*AverageSample:(i+1)*AverageSample] ** 2 + \

V4Hz[i*AverageSample:(i+1)*AverageSample] ** 2))

#Define a vector for the number of data points in each sample

x = [j for j in range(0, AverageSample)]

#Detrend each sample, i.e. remove a straight line fit from the sample

U = U4Hz[i*AverageSample:(i+1)*AverageSample]

Umodel = numpy.polyfit(x,U,1)

Utrend = numpy.polyval(Umodel,x)

Udetrended = U - Utrend

V = ...

Vmodel = ...

Vtrend = ...

Vdetrended = ...

W = ...

Wmodel = ...

Wtrend = ...

Wdetrended = ...

TSonic = ...

TSonicmodel = ...

TSonictrend = ...

TSonicdetrended = ...

#Calculate variances, and covariances

UVCovMatrix = numpy.cov(Udetrended, Vdetrended)

UWCovMatrix = numpy.cov(Udetrended, Wdetrended)

VWCovMatrix = ...

UTSonicCovMatrix = ...

VTSonicCovMatrix = ...

WTSonicCovMatrix = ...
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Uvar[i] = UVCovMatrix[0,0]

Vvar[i] = UVCovMatrix[1,1]

Wvar[i] = ...

TSonicvar[i] = ...

k[i] = ...

UVcov[i] = UVCovMatrix[0,1]

UWcov[i] = ...

VWcov[i] = ...

UTSoniccov[i] = ...

VTSoniccov[i] = ...

WTSoniccov[i] = ...

#Write data to file

outputFile = open(outputFileNameOnePointStatistics, "w")

outputFile.write("#Times in Local Daylight Time \n")

outputFile.write("#0:Year \t 1:Month \t 2:Day \t 3:Hour \t 4:Minute \t \

5:Uavg (m s-1) \t 6:Vavg (m s-1) \t 7:Savg (m s-1) \t 8:Wavg (m s-1) \t \

9:TSonicavg (K) \t 10:Uvar (m2 s-2) \t 11:Vvar (m2 s-2) \t \

12:Wvar (m2 s-2) \t 13:TSonicvar (K2) \t 14:k (m2 s-2) \t \

15:UVcov (m2 s-2) \t 16:UWcov (m2 s-2) \t 17:VWcov (m2 s-2) \t \

18:UTSoniccov (Km s-1) \t 19:VTSoniccov (Km s-1) \t 20:WTSoniccov (Km s-1) \n")

for i in range(0,NSample):

outputFile.write("%i \t %i \t %i \t %i \t %i \t \

%f \t %f \t %f \t %f \t %f \t \

%f \t %f \t %f \t %f \t %f \t \

%f \t %f \t %f \

%f \t %f \t %f \n" \

% (yearavg[i], ...))

outputFile.close()

After running this script, we can generate a text file with all the turbulent statistics. The next
step is to run a new script for reading the results and plotting the turbulent statistics. This script
is given to you as PlotResults. In this script we use some new libraries that enable plotting
information versus date and time. These libraries are matplotlib.dates and datetime.

The script first reads the results text file and assigns the results to specific vectors. Next, it
finds the maximum variation in half-hourly temperature. This quantity is needed for normalizing
variances and covariances that involve temperature. The next step is to create a vector to contain
the time for each measurement in seconds. This is performed by giving the half-hourly year, month,
day, hour, and minute to the function datetime.datetime().timestap(). And finally there is
another command that allows creating a vector to contain date and time in the YYYY-MM-HH-mm-ss
format.
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For each turbulent statistic, two plots are generated. The first plot shows the time series for the
quantity of interest. The second plot shows the diurnal variation of the quantity of interest. The
diurnal plot overlays the quantity of interest over many days as a function of hour in the day from
0 to 23 of the Local Daylight Time zone. This helps identify which quantities exhibit a strong
diurnal variation. To plot all figures simultaneously, the function fig.show() is used for each
figure and finally the function plt.show() is used at the end of the script.

After successfully running the second script, the following figures should be obtained. Try to
answer the following questions.

� Which one of the mean velocities, i.e. Uavg, Vavg, Wavg, or (Uavg**2+Vavg**2)**0.5, show
a significant diurnal cycle?

� Does the mean temperature show a significant diurnal cycle? How do you interpret this
physically?

� On average, the variances of velocity components represent what fraction of the square mean
horizontal wind speed? 0.1%, 1%, 10% or 100%?

� Which one of the variances exhibit a significant diurnal cycle? How do you interpret this
physically?

� On average, the kinetic energy represents what fraction of the square mean horizontal wind
speed? 0.1%, 1%, 10% or 100%?

� Considering the turbulent kinematic heat fluxes, which fluxes exhibit both significantly pos-
itive and significantly negative values as a function of diurnal cycle? How do you interpret
this physically?

� Considering the turbulent kinematic heat fluxes, which fluxes exhibit only a significantly
positive or only a significantly negative value as a function of diurnal cycle? How do you
interpret this physically?

References

[Aliabadi et al., 2021] Aliabadi, A. A., Moradi, M., and Byerlay, R. A. E. (2021). The budgets
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Figure 3: Mean velocities and mean wind speed in the horizontal direction.

10



Figure 4: Mean temperature.
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Figure 5: Normalized variances of velocity components.
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Figure 6: Normalized variance of temperature.

Figure 7: Normalized turbulent kinetic energy.
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Figure 8: Normalized turbulent kinematic mass fluxes.
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Figure 9: Normalized turbulent kinematic heat fluxes.
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Environmental Fluid Mechanics

Discrete Fourier Transform Analysis in Time and Frequency Domains
Amir A. Aliabadi

January 31, 2022

1 Introduction

In the lectures the discrete Fourier transform analysis is introduced as a tool to represent a time
series signal in the frequency domain. There are a number of ways to describe frequency:

n = number of cycles per entire time period of signal P , (1)

f = number of cycles per second =
n

P
=

n

N∆t
, (2)

ω = radians per second = 2πf =
2πn

N∆t
. (3)

A frequency of zero (n = 0) denotes a mean value. The fundamental frequency, where n = 1,
means that exactly one wave fills the entire time period P . Higher frequencies correspond to
harmonics of the fundamental frequency.

Using Euler’s (1707-1783) formula, eix = cos(x)+i sin(x), as a short notation for sines and cosines,
we can write the forward Fourier-transform to express the relationship between a time series A(k)
and frequency domain FA(n) using

FA(n) =
N−1∑
k=0

[
A(k)

N

]
e−i2πnk/N . (4)

In turbulence studies, it is often desired to know how much of the variance of a fluctuating time
series signal is associated with a particular frequency or range of frequencies. The answer to this
question is possible using the discrete Fourier transform. The square of the norm of the complex
Fourier transform for any frequency n is given by
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|FA(n)|2 = [Freal(n)]2 + [Fimag(n)]2. (5)

When |FA(n)|2 is summed over frequencies from n = 1 to N − 1, the result equals the total biased
variance of the original time series, i.e.

σ2
A =

1

N

N−1∑
k=0

(A(k)− 〈A(k)〉T )2 =
N−1∑
n=1

|FA(n)|2 (6)

where the time average 〈〉T is the only average available to us for calculating the variance. Note
that the square of the norm of the complex Fourier transform is summed starting at n = 1 instead
of n = 0. This is trivial since there are no turbulent fluctuations associated with n = 0.

We can interpret |FA(n)|2 as the portion of variance explained by waves of frequency n. For
frequencies greater than the Nyquist frequency, the |FA(n)|2 values are identically equal to those at
the corresponding folded lower frequencies, since the Fourier transform of high frequencies are the
same as those for the low frequencies, except for a sign change in the imaginary part. Frequencies
higher than the Nyquist frequency cannot be resolved by Fourier transform, therefore, |FA(n)|2
values at high frequencies should be folded back and added to those at the lower frequencies.
Therefore, the discrete spectral intensity or discrete spectral energy, EA(n), is defined as EA(n) =
2|FA(n)|2, for n = 1 to n = nf , with N being odd, while for N being even, EA(n) = 2|FA(n)|2 for
frequencies from n = 1 to n = nf − 1, but EA(n) = |FA(n)|2 for n = nf .

In this lab we will analyze turbulence measurements of wind speed at a high frequency of 40 Hz
using an aircraft probe [Aliabadi et al., 2016a, Aliabadi et al., 2016b]. Figure 1 shows the Polar
6 aircraft with a meteorological sensor installed under its wing to measure the aerodynamic and
thermodynamic variables of the atmosphere.

The aircraft data is analyzed for a short time period associated with a slanted profile of about
200 m vertical displacement and a horizontal displacement of several hundred meters. During
this time, the aircraft climbed and approximately moved in a straight line. The key concept in
turbulence measurements using aircrafts is the Taylor hypothesis. When flying with an aircraft
that moves several times faster than the wind speed, it is possible to assume that atmospheric
turbulence is frozen–otherwise flying would be dangerous–and hence use of the Taylor hypothesis.
This gives an equivalency between stationary and moving probe measurements of turbulence. For
moving probes, the wavenumber can be given as

κ =
2π

λ
=

2πf

Va
=

2πn

PVa
(7)

where Va is the average horizontal velocity of the aircraft. In this lab the aircraft data is read into
Python from a text file. This text file lists probe measurements in various columns as a function
of time. Not all columns are read in this analysis, so that only selective columns are used. These
are time, wind speed in the horizontal and vertical directions, altitude, latitude, longitude, and
aircraft velocity in the horizontal directions. The horizontal directions are assumed in the North
and East directions, corresponding to the x and y directions respectively, while the upward vertical
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Figure 1: The Polar 6 research aircraft with a meteorological sensor installed under its wing.

direction is assumed as z. Note that this system of coordinates is not right handed, but for our
purposes this does not cause any problems. The number of data in the file is intentionally set as
odd, so that the analysis of discrete spectral energy will be simplified.

In this lab we also try to reconstruct the components of the Reynolds stress tensor using data
from both time and frequency domains. The components of the Reynolds stress tensor are given
as

 〈u21〉 〈u1u2〉 〈u1u3〉
〈u2u1〉 〈u22〉 〈u2u3〉
〈u3u1〉 〈u3u2〉 〈u23〉


2 Python Script

Complete the following script. Note that time, wind velocity toward the North, wind velocity
toward the East, latitude, longitude, altitude, probe velocity toward the North, probe velocity
toward the East, and the wind velocity are read from column 0, 4, 5, 6, 7, 8, 9, 10, and 16 of the
text file respectively. Since the number of data points is odd, we know exactly how to calculate
the Nyquist frequency.

#Discrete Fourier Tranform Analysis of wind velocity vector components measured using an aircraft
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import numpy

import matplotlib.pyplot as plt

#Load all data in a matrix

data = numpy.loadtxt("DiscreteFourierTransformData.txt")

#Extract time, t, in [hr] and then convert to [s]

t=data[:,0]

t=t*3600

#Extract wind speed blowing to North, U, and East V, in [m s^-1]

U=data[:,4]

V=data[:,5]

#Extract latitude and longitude in [deg]

Lat=data[:,6]

Lon=data[:,7]

#Extract altitude [m]

Alt=data[:,8]

#Extract probe velocity in the North and East directions [m s^-1]

ProbeVelN=data[:,9]

ProbeVelE=data[:,10]

#Extract wind speed in the vertical direction, downward positive, [m s^-1]

#Multiply by -1 so that upward is positive

W=data[:,16]

W=-W

#Extract the length of the sample, in this case it is odd

N=len(t)

#Calculate the Nyquist frequency for the odd N

nf=int((N+1)/2)

#Create frequency vector starting from 0 ending at nf

cycles=numpy.linspace(0,nf,nf+1)

#Calculate entire time period T [s]

P=t[N-1]-t[0]

#Calculate aircraft average velocity

ProbeVelNMean=numpy.mean(ProbeVelN)

ProbeVelEMean=numpy.mean(ProbeVelE)

ProbeVelMean=(ProbeVelNMean**2+ProbeVelEMean**2)**0.5
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#Calculate wavenumber for a moving probe

kappa=numpy.zeros((nf+1,1))

for n in range(0, nf+1):

kappa[n] =2*numpy.pi*cycles[n]/(P*ProbeVelMean)

#Define vectors in the frequency domain knowing that N is odd

FUreal=numpy.zeros((nf+1,1))

FUimag=numpy.zeros((nf+1,1))

FU2=numpy.zeros((nf+1,1))

EU=numpy.zeros((nf+1,1))

FVreal=numpy.zeros((nf+1,1))

FVimag=numpy.zeros((nf+1,1))

FV2=numpy.zeros((nf+1,1))

EV=numpy.zeros((nf+1,1))

FWreal=numpy.zeros((nf+1,1))

FWimag=numpy.zeros((nf+1,1))

FW2=numpy.zeros((nf+1,1))

EW=numpy.zeros((nf+1,1))

Ek=numpy.zeros((nf+1,1))

CoUV=numpy.zeros((nf+1,1))

EUV=numpy.zeros((nf+1,1))

CoUW=numpy.zeros((nf+1,1))

EUW=numpy.zeros((nf+1,1))

CoVW=numpy.zeros((nf+1,1))

EVW=numpy.zeros((nf+1,1))

#Perform a forward fourier transform for wind velocities knowing N is odd

for n in range(0, nf+1):

sumreal=0

sumimag=0

for k in range(0,N):

sumreal=sumreal+U[k]*numpy.cos(2*numpy.pi*n*k/N)

sumimag=sumimag-U[k]*numpy.sin(2*numpy.pi*n*k/N)

FUreal[n]=sumreal/N

FUimag[n]=sumimag/N

FU2[n]=(FUreal[n])**2+(FUimag[n])**2

for n in range(0, nf+1):
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sumreal=0

sumimag=0

for k in range(0,N):

sumreal=...

sumimag=...

FVreal[n]=sumreal/N

FVimag[n]=sumimag/N

FV2[n]=(FVreal[n])**2+(FVimag[n])**2

for n in range(0, nf+1):

sumreal=0

sumimag=0

for k in range(0,N):

sumreal=...

sumimag=...

FWreal[n]=sumreal/N

FWimag[n]=sumimag/N

FW2[n]=(FWreal[n])**2+(FWimag[n])**2

#Calculate discrete energy spectra for individual velocities

#turbulent kinetic energy, and the co-spectra for pair of velocities

for n in range(0, nf+1):

#Calculate spectral energy knowing that N is odd

EU[n]=2*FU2[n]

EV[n]=...

EW[n]=...

Ek[n]=0.5*(EU[n]+EV[n]+EW[n])

CoUV[n]=FUreal[n]*FVreal[n]+FUimag[n]*FVimag[n]

CoUW[n]=...

CoVW[n]=...

EUV[n]=2*CoUV[n]

EUW[n]=2*CoUW[n]

EVW[n]=2*CoVW[n]

#Print all components of the Reynolds stress using

#the frequency domain, remember to subtract the first term corresponding to n=0

u2meanFreq=numpy.sum(EU[1:nf+1])

uvmeanFreq=numpy.sum(EUV[1:nf+1])

uwmeanFreq=numpy.sum(EUW[1:nf+1])

uvmeanFreq=numpy.sum(EUV[1:nf+1])

v2meanFreq=numpy.sum(EV[1:nf+1])

vwmeanFreq=numpy.sum(EVW[1:nf+1])

uwmeanFreq=numpy.sum(EUW[1:nf+1])

vwmeanFreq=numpy.sum(EVW[1:nf+1])

w2meanFreq=numpy.sum(EW[1:nf+1])
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ReynoldsStressFrequencyDomain=[[u2meanFreq, uvmeanFreq, uwmeanFreq],\

[uvmeanFreq, v2meanFreq, vwmeanFreq],\

[uwmeanFreq, vwmeanFreq, w2meanFreq]]

print("ReynoldsStressFrequencyDomain=",ReynoldsStressFrequencyDomain)

#For comparison, we now calculate and print

#all components of the Reynolds stress using the time series

UmeanTime=numpy.mean(U)

VmeanTime=numpy.mean(V)

WmeanTime=numpy.mean(W)

u=U-UmeanTime

v=V-VmeanTime

w=W-WmeanTime

u2=numpy.multiply(u,u)

v2=numpy.multiply(v,v)

w2=numpy.multiply(w,w)

u2meanTime=numpy.mean(u2)

v2meanTime=numpy.mean(v2)

w2meanTime=numpy.mean(w2)

kTime=0.5*(u2meanTime+v2meanTime+w2meanTime)

uv=numpy.multiply(u,v)

uw=numpy.multiply(u,w)

vw=numpy.multiply(v,w)

uvmeanTime=numpy.mean(uv)

uwmeanTime=numpy.mean(uw)

vwmeanTime=numpy.mean(vw)

ReynoldsStressTimeDomain=[[u2meanTime, uvmeanTime, uwmeanTime],\

[uvmeanTime, v2meanTime, vwmeanTime],\

[uwmeanTime, vwmeanTime, w2meanTime]]

print("ReynoldsStressTimeDomain=",ReynoldsStressTimeDomain)

#Plot the aircraft latitude versus longitude

fig = plt.figure(figsize=(7,5))

plt.plot(Lon,Lat)

plt.xlabel(’Lon [deg]’)

plt.ylabel(’Lat [deg]’)

plt.title(’Aircraft Latitude versus Longitude’)
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plt.savefig(’LatLon.png’, bbox_inches=’tight’, dpi=300)

fig.show()

#Plot the aircraft altitude versus time

fig = plt.figure(figsize=(7,5))

plt.plot(t,Alt)

plt.xlabel(’t [s]’)

plt.ylabel(’Alt [m]’)

plt.title(’Aircraft Altitude versus Time’)

plt.savefig(’Alt.png’, bbox_inches=’tight’, dpi=300)

fig.show()

#Plot the frequency and energy spectra

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,FU2,’ko’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’FU2 [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’FU2 Frequency Spectrum’)

plt.savefig(’FU2.png’, bbox_inches=’tight’, dpi=300)

fig.show()

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,EU,’ko’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’EU [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EU Discrete Energy Spectrum’)

plt.savefig(’EU.png’, bbox_inches=’tight’, dpi=300)

fig.show()

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,FV2,’ro’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’FV2 [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’FV2 Frequency Spectrum’)

plt.savefig(’FV2.png’, bbox_inches=’tight’, dpi=300)

fig.show()

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,EV,’ro’)

plt.xlabel(’kappa [m^-1]’)
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plt.ylabel(’EV [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EV Discrete Energy Spectrum’)

plt.savefig(’EV.png’, bbox_inches=’tight’, dpi=300)

fig.show()

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,FW2,’bo’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’FW2 [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’FW2 Frequency Spectrum’)

plt.savefig(’FW2.png’, bbox_inches=’tight’, dpi=300)

fig.show()

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,EW,’bo’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’EW [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EW Discrete Energy Spectrum’)

plt.savefig(’EW.png’, bbox_inches=’tight’, dpi=300)

fig.show()

#Plot the discrete energy spectrum for turbulent kinetic energy

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,Ek,’go’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’Ek [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’Ek Discrete Energy Spectrum’)

plt.savefig(’Ek.png’, bbox_inches=’tight’, dpi=300)

fig.show()

#Plot absolute value of co-spectra and discrete energy co-spectra

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,numpy.absolute(CoUV),’ko’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’|CoUV| [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’CoUV Frequency Co-spectrum’)
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plt.savefig(’CoUV.png’, bbox_inches=’tight’, dpi=300)

fig.show()

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,numpy.absolute(EUV),’ko’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’|EUV| [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EUV Discrete Energy Co-spectrum’)

plt.savefig(’EUV.png’, bbox_inches=’tight’, dpi=300)

fig.show()

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,numpy.absolute(CoUW),’ro’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’|CoUW| [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’CoUW Frequency Co-spectrum’)

plt.savefig(’CoUW.png’, bbox_inches=’tight’, dpi=300)

fig.show()

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,numpy.absolute(EUW),’ro’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’|EUW| [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EUW Discrete Energy Co-spectrum’)

plt.savefig(’EUW.png’, bbox_inches=’tight’, dpi=300)

fig.show()

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,numpy.absolute(CoVW),’bo’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’|CoVW| [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’CoVW Frequency Co-spectrum’)

plt.savefig(’CoVW.png’, bbox_inches=’tight’, dpi=300)

fig.show()

fig = plt.figure(figsize=(7,5))

plt.plot(kappa,numpy.absolute(EVW),’bo’)

plt.xlabel(’kappa [m^-1]’)
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plt.ylabel(’|EVW| [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EVW Discrete Energy Co-spectrum’)

plt.savefig(’EVW.png’, bbox_inches=’tight’, dpi=300)

fig.show()

plt.show()

Upon running the code the latitude, longitude, and altitude positions of the aircraft are plotted
to show the coordinates of the slanted profile. This is shown in the figure below.

Figure 2: Plot of the aircraft movement; latitude vs. longitude (left); altitude vs. time (right).

The code also attempts to calculate all components of the Reynolds stress from both time domain
and frequency domain representations of data. Note that when calculating the components of
Reynolds stress from frequency domain data, one should not sum the discrete energy spectrum
or co-spectrum series from n = 0, but one should sum these series from n = 1. The code should
give the following results for the components of the Reynolds stress. Note that these components
are remarkably close regardless of being calculated using frequency domain or time domain data.
Also note that the normal stresses are always positive, while the shear stresses may be positive or
negative, as indicated below.

ReynoldsStressFrequencyDomain=

[[0.32312158616159103, 0.044177412862565171, -0.11039639236231739],

[0.044177412862565171, 0.16474804187050252, -0.008244878812666015],

[-0.11039639236231739, -0.008244878812666015, 0.046163483303131858]]

ReynoldsStressTimeDomain=

[[0.32309356521181865, 0.044162249233617584, -0.11038926755049001],

[0.044162249233617584, 0.16472656197684166, -0.0082437328261500652],

[-0.11038926755049001, -0.0082437328261500652, 0.046161118580248905]]

Upon running the code one may obtain the following discrete frequency and discrete spectral energy
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plots from the data. Note that the plots have been drawn using wave number representation for
frequency. Alternatively one could plot these spectra versus frequency f or number of cycles n per
time period P . The discrete spectral plots are more densely populated at higher wave numbers
(or frequencies) than they are at lower wave numbers.

The discrete energy spectrum for the turbulent kinetic energy can be obtained by combining the
discrete energy spectra for U , V , and W . As discussed in the lecture, this spectrum, once converted
to energy spectrum density, vs. wave number exhibits a slop of −5/3 in the inertial subrange,
when represented in the log-log scale. Of course, the inertial subrange only occupies a limited
region of measured wave numbers. The figure below is the resulting discrete energy spectrum for
the turbulent kinetic energy.

The absolute value of discrete frequency and discrete spectral energy for co-spectra is shown in
the figure below. Note that the absolute value of the co-spectra must be used so that all data can
appear in a log-log plot, otherwise negative values of co-spectra cannot be shown.

Try to answer the following questions.

� Explain why when calculating the components of Reynolds stress from frequency domain
data, one should not sum the discrete energy spectrum or co-spectrum series from n = 0,
but one should sum these series from n = 1?

� Why are the discrete spectral plots more densely populated at higher wave numbers (or
frequencies)?

� What is the difference between discrete frequency and discrete energy spectra?

� Would the shape of the spectral plots be different if they were plotted versus frequency f or
number of cycles n per time period P?

� Can you give an approximate range of wave numbers for the data set that corresponds to
the inertial subrange of turbulence?
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Figure 3: Plot of the discrete frequency and discrete spectral energy for U (top), V (middle), and
W (bottom).
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Figure 4: Plot of the discrete spectral energy for the turbulent kinetic energy.
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Figure 5: Plot of the absolute value of discrete frequency and discrete spectral energy for co-
spectra UV (top), UW (middle), and VW (bottom).
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Balloons
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1 Introduction

In lectures we discuss the tethered balloon as an in-situ technique for measuring atmospheric vari-
ables. Figure 1 shows such a balloon that was deployed at the University of Guelph [Aliabadi et al., 2021]
and at a mine field in northern Canada [Byerlay et al., 2020, Nambiar et al., 2020, Nahian et al., 2020].
This balloon is equipped with a mini weather station called TriSonica. It samples atmospheric
wind velocity components (as measured according to the sensor’s local coordinate system), head-
ing, pith, roll, and wind direction angles (also as measured according to the sensor’s local coor-
dinate system), at a sampling frequency of 10 Hz. The goal of this computer assignment is to
transform the wind velocity vector components from the sensor’s local coordinate system to a fixed
inertial reference frame.

Since balloons typically rotate about three axes once levitated in air, their measurements of wind
velocity vector components should be referenced to a frame with fixed coordinate axes directions
along east, north, and normal to the earth surface using rotation matrices. This is made possible
by use of the heading, roll, and pitch angles measured by sensors on board. Suppose that the
sensor has a coordinate system in which the +x axis is from local north NT of the sensor to local
south ST , the +y axis is from local east ET to local west WT , and the +z axis is downward, i.e.
toward the earth surface. This local coordinate system is right handed. Likewise, the velocities
measured by the sensor are positive along these axes. Let the sensor’s coordinate system be shown
by xT , yT , and zT and the corresponding velocities be shown by UT , VT , and WT [ms−1]. The
sensor measures heading h [◦], positive clockwise with respect to magnetic north NM . It measures
the pitch angle p [◦], which is a positive downward rotation of xT about yT , and the roll angle r
[◦], which is a positive downward rotation of yT about xT . The goal is to transform this coordinate
system, by means of rotation matrices, to align with a reference frame of the earth with xF pointing
from west to east, yF pointing from south to north, and zF pointing away upward from the surface
of the earth. This coordinate system is also right handed. The resulting velocity transformation
will provide UF , VF , and WF [ms−1] in the final coordinate system.

As depicted in Figure 2, the first rotation should be about the local yT axis by an angle γ = p
[◦]. This transformation results in an intermediate coordinate system x1, y1, and z1 so that the
x1 axis will be aligned with the horizon, i.e. parallel to the earth surface. Note that the figure is
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Figure 1: A tethered balloon system for atmospheric measurements controlled using two ropes.

viewed normal to yT = y1 and that in this coordinate system z1 is still not yet normal to the earth
surface and that y1 is still not yet aligned with the horizon. This transformation is given by

x1y1
z1

 =

 cos(γ) 0 sin(γ)
0 1 0

− sin(γ) 0 cos(γ)

xTyT
zT

 = Ry,γ

xTyT
zT

 . (1)

As depicted in Figure 3, the second rotation should be about x1 axis by an angle η = r [◦]. This
transformation results in another intermediate coordinate system x2, y2, and z2 so that now the
y2 axis will be aligned with the horizon, i.e. parallel to the earth surface. Note that the figure is
viewed normal to x1 = x2 and that in this coordinate system z2 is normal to the earth surface.
This transformation is given by

x2y2
z2

 =

1 0 0
0 cos(η) − sin(η)
0 sin(η) cos(η)

x1y1
z1

 = Rx,η

x1y1
z1

 . (2)

As depicted in Figure 4, the third rotation should be about z2 axis by an angle α = (δ+h+90)%360
[◦], where δ [◦] is the magnetic declination of the earth, which is dependent on a specific latitude
and longitude. For the current site δ = 13.5◦. Here the modulus with 360 is taken since the heading
angle can vary from 0 to 360◦. This transformation results in another intermediate coordinate
system x3, y3, and z3 so that now the y3 axis will be aligned from north to south and the x3
axis will be aligned from west to east. Note that the figure is viewed normal to z2 = z3. This
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Figure 2: Rotation about yT by γ = p [◦]; figure viewed normal to the yT = y1 axis

Figure 3: Rotation about x1 by η = r [◦]; figure viewed normal to the x1 = x2 axis

transformation is given by

x3y3
z3

 =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

x2y2
z2

 = Rz,α

x2y2
z2

 . (3)

As depicted in Figure 5, the fourth and final rotation should be about x3 axis by an angle 180◦. This
transformation results in the final coordinate system with xF , yF , and zF axes, which point west-to-
east, south-to-north, and normal upward from the earth surface, respectively. This transformation
is given by

xFyF
zF

 =

1 0 0
0 cos(180◦) − sin(180◦)
0 sin(180◦) cos(180◦)

x3y3
z3

 = Rx,180◦

x3y3
z3

 . (4)

In compressed form, the entire coordinate transformation can be shown as follows. This immedi-
ately implies a similar transformation for the measured velocities by the sensor.
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Figure 4: Rotation about z2 by α = (δ+h+ 90)%360 [◦]; figure viewed normal to the z2 = z3 axis

xFyF
zF

 = Rx,180◦Rz,αRx,ηRy,γ

xTyT
zT

 , (5)

UFVF
WF

 = Rx,180◦Rz,αRx,ηRy,γ

UTVT
WT

 . (6)

2 Python Script

The script begins by defining the magnetic declination angle and the input file name. This file
is associated with one among many of the balloon launches in the mine field. The magnetic
declination angle could vary from one location of the earth to another. It is also known to vary
over long periods of time. Rumor has it that in prehistoric times the magnetic north and south
poles were swapped!

#Implement rotation matrices to convert TriSonica’s measurements from

# TriSonica’s coordinate system to a fixed inertial coordinate system

import matplotlib.pyplot as plt

import numpy as np

#Magnetic declination [degrees]

delta = 13.5
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Figure 5: Rotation about x3 by 180◦; figure viewed normal to the z3 axis

#Define file name

fileNameData = "Balloon-Data-Calibrated.txt"

In the next step we read the wind direction angle, calibrated U, V, and W components of the
wind velocity vector, roll angle, and pitch angle, all measured with respect to the sensor’s local
coordinate system. Note that many columns of data are ignored for our analysis. Also note that
the vertical wind velocity vector is multiplied by minus one to ensure that the postive vertical
velocity points down toward the earth surface.

#Load all data; note: skip the U and V columns

data = np.loadtxt(fileNameData)

#Wind direction in local TriSonica’s coordinate system, clockwise from local North

WD = data[:,8]

#TriSonica U [m s^-1] assume local North to South positive

UCal = data[:,10]

#TriSonica V [m s^-1] assume local East to West positive

VCal = data[:,12]

#TroSonica W [m s^-1] MUST BE positive downward, so multiply by -1

WCal = -1*data[:,14]

Roll = data[:,19]

Pitch = data[:,20]

#Magnetic heading positive clockwise from local North

Heading = data[:,21]

N = np.size(WD)
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Next we correct the heading angle with the magnetic declination angle. We also convert all angles
from degrees to radians.

#Rotation angle about local z axis to align local x close to inertial x

alpha = (np.pi/180)*(((delta + Heading + 90) % 360))

#Rotation angle about local y axis to align local x,z close to intertial x,z

gamma = (np.pi/180)*Pitch

#Rotation angle about local x axis to align local y,z close to intertial y,z

eta = (np.pi/180)*Roll

In the next step, we define the rotation matrices. It is good practice to use extensive commenting
to prevent mistakes in defining the rotation matrices.

#Rzalpha: Rotation matrix to rotate about local z axis to align local x close to inertial x

# [cos alpha -sin alpha 0]

# [sin alpha cos alpha 0]

# [0 0 1]

Rzalpha11 = np.cos(alpha)

Rzalpha12 = -np.sin(alpha)

Rzalpha13 = 0

Rzalpha21 = np.sin(alpha)

Rzalpha22 = np.cos(alpha)

Rzalpha23 = 0

Rzalpha31 = 0

Rzalpha32 = 0

Rzalpha33 = 1

#Rxpi: Rotation matrix to rotate about local x axis to align local z close to inertial z

# [1 0 0 ]

# [0 cos pi -sin pi]

# [0 sin pi cos pi ]

Rxpi11 = ...

Rxpi12 = ...

Rxpi13 = ...

Rxpi21 = ...

Rxpi22 = ...

Rxpi23 = ...

Rxpi31 = ...
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Rxpi32 = ...

Rxpi33 = ...

#Rygamma: Rotation matrix to rotate about local y axis to align local x,z close to inertial x,z

# [cos gamma 0 sin gamma]

# [0 1 0 ]

# [-sin gamma 0 cos gamma]

Rygamma11 = ...

Rygamma12 = ...

Rygamma13 = ...

Rygamma21 = ...

Rygamma22 = ...

Rygamma23 = ...

Rygamma31 = -np.sin(gamma)

Rygamma32 = 0

Rygamma33 = np.cos(np.pi)

#Rxeta: Rotation matrix to rotate about local x axis to align local y,z close to inertial y,z

# [1 0 0 ]

# [0 cos eta -sin eta]

# [0 sin eta cos eta ]

Rxeta11 = ...

Rxeta12 = ...

Rxeta13 = ...

Rxeta21 = ...

Rxeta22 = ...

Rxeta23 = ...

Rxeta31 = ...

Rxeta32 = ...

Rxeta33 = ...

Once the rotation matrices is defined, it is time to perform the transformations one by one. This
is achieved via the following code.

# Perform rotation 1

U1 = Rygamma11 * UCal + Rygamma12 * VCal + Rygamma13 * WCal

V1 = Rygamma21 * UCal + Rygamma22 * VCal + Rygamma23 * WCal

W1 = Rygamma31 * UCal + Rygamma32 * VCal + Rygamma33 * WCal

# Perform rotation 2
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U2 = Rxeta11 * U1 + Rxeta12 * V1 + Rxeta13 * W1

V2 = Rxeta21 * U1 + Rxeta22 * V1 + Rxeta23 * W1

W2 = Rxeta31 * U1 + Rxeta32 * V1 + Rxeta33 * W1

# Perform rotation 3

U3 = Rzalpha11 * U2 + Rzalpha12 * V2 + Rzalpha13 * W2

V3 = Rzalpha21 * U2 + Rzalpha22 * V2 + Rzalpha23 * W2

W3 = Rzalpha31 * U2 + Rzalpha32 * V2 + Rzalpha33 * W2

# Perform rotation 4

# Finally, after these 4 rotations, we have the velocities in the inertial reference frame

U4 = Rxpi11 * U3 + Rxpi12 * V3 + Rxpi13 * W3

V4 = Rxpi21 * U3 + Rxpi22 * V3 + Rxpi23 * W3

W4 = Rxpi31 * U3 + Rxpi32 * V3 + Rxpi33 * W3

In the final step, we perform the plotting to visualize the angles and wind velocity vector compo-
nents. Note that the horizontal axis in all the plots is simply the sample number.

fig = plt.figure(figsize=(10,2))

plt.plot(Heading,’ko’,markersize=1,markeredgecolor=’k’,markerfacecolor=’k’)

plt.axhline(y=0, color=’k’, linestyle=’-’)

plt.xlabel(’Data Point’,fontsize=12)

plt.ylabel(’Heading [deg]’,fontsize=6)

plt.savefig(’HeadingAngle.pdf’, bbox_inches=’tight’, dpi=600)

fig.show()

fig = plt.figure(figsize=(10,2))

plt.plot(Pitch,’ko’,markersize=1,markeredgecolor=’k’,markerfacecolor=’k’)

plt.axhline(y=0, color=’k’, linestyle=’-’)

plt.xlabel(’Data Point’,fontsize=12)

plt.ylabel(’Pitch [deg]’,fontsize=6)

plt.savefig(’PitchAngle.pdf’, bbox_inches=’tight’, dpi=600)

fig.show()

fig = plt.figure(figsize=(10,2))

plt.plot(Roll,’ko’,markersize=1,markeredgecolor=’k’,markerfacecolor=’k’)

plt.axhline(y=0, color=’k’, linestyle=’-’)

plt.xlabel(’Data Point’,fontsize=12)

plt.ylabel(’Roll [deg]’,fontsize=6)

plt.savefig(’RollAngle.pdf’, bbox_inches=’tight’, dpi=600)

fig.show()

fig = plt.figure(figsize=(10,2))

plt.plot(WD,’ko’,markersize=1,markeredgecolor=’k’,markerfacecolor=’k’)

plt.axhline(y=0, color=’k’, linestyle=’-’)

plt.xlabel(’Data Point’,fontsize=12)
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plt.ylabel(’WD TriSonica [deg]’,fontsize=6)

plt.savefig(’WindDirectionAngleSensor.pdf’, bbox_inches=’tight’, dpi=600)

fig.show()

fig = plt.figure(figsize=(10,2))

plt.plot(UCal,’ko’,markersize=1,markeredgecolor=’k’,markerfacecolor=’k’,label=’UCal’)

plt.plot(VCal,’bo’,markersize=1,markeredgecolor=’b’,markerfacecolor=’b’,label=’Vcal’)

plt.axhline(y=0, color=’k’, linestyle=’-’)

plt.legend(loc=’upper center’)

plt.xlabel(’Data Point’,fontsize=12)

plt.ylabel(’UCal, VCal [m s^-1]’,fontsize=6)

plt.savefig(’UCalVCalSensor.pdf’, bbox_inches=’tight’, dpi=600)

plt.ylim((-10,10))

fig.show()

fig = plt.figure(figsize=(10,2))

plt.plot(U1,’ko’,markersize=1,markeredgecolor=’k’,markerfacecolor=’k’,label=’U1’)

plt.plot(V1,’bo’,markersize=1,markeredgecolor=’b’,markerfacecolor=’b’,label=’V1’)

plt.axhline(y=0, color=’k’, linestyle=’-’)

plt.legend(loc=’upper center’)

plt.xlabel(’Data Point’,fontsize=12)

plt.ylabel(’U1, V1 [m s^-1]’,fontsize=6)

plt.savefig(’U1V1.pdf’, bbox_inches=’tight’, dpi=600)

plt.ylim((-10,10))

fig.show()

...

fig = plt.figure(figsize=(10,2))

plt.plot(U4,’ko’,markersize=1,markeredgecolor=’k’,markerfacecolor=’k’,label=’U4’)

plt.plot(V4,’bo’,markersize=1,markeredgecolor=’b’,markerfacecolor=’b’,label=’V4’)

plt.axhline(y=0, color=’k’, linestyle=’-’)

plt.legend(loc=’upper center’)

plt.xlabel(’Data Point’,fontsize=12)

plt.ylabel(’U4, V4 [m s^-1]’,fontsize=6)

plt.savefig(’U4V4FixedInertialFrame.pdf’, bbox_inches=’tight’, dpi=600)

plt.ylim((-10,10))

fig.show()

fig = plt.figure(figsize=(10,2))

plt.plot(WCal,’ko’,markersize=1,markeredgecolor=’k’,markerfacecolor=’k’,label=’WCal’)

plt.plot(W1,’bo’,markersize=1,markeredgecolor=’b’,markerfacecolor=’b’,label=’W1’)

plt.plot(W2,’ro’,markersize=1,markeredgecolor=’r’,markerfacecolor=’r’,label=’W2’)

plt.plot(W3,’yo’,markersize=1,markeredgecolor=’y’,markerfacecolor=’y’,label=’W3’)

plt.plot(W4,’go’,markersize=1,markeredgecolor=’g’,markerfacecolor=’g’,label=’W4’)

plt.axhline(y=0, color=’k’, linestyle=’-’)
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plt.legend(loc=’upper center’)

plt.xlabel(’Data Point’,fontsize=12)

plt.ylabel(’WCal,1,2,3,4 [m s^-1]’,fontsize=6)

plt.savefig(’VerticalWind.pdf’, bbox_inches=’tight’, dpi=600)

plt.ylim((-5,5))

fig.show()

plt.show()

Complete the above lines of code. After successfully running the script, Figures 6, 7, and 8 should
be obtained. Try to answer the following questions.

� The pitch and roll angles are generally close to zero. What does this indicate with respect
to the balloon’s stability in wind?

� The heading angle of the balloon indicates that the sensor is oriented toward the south and
oscillates from south west to south east with respect to the magnetic north. Meanwhile,
considering the horizontal wind velocity vector component measurements with respect to
the sensor’s local coordinate system, the magnitude of UCal is large and its sign is positive,
while VCal is close to zero. What does this indicate with respect to the actual wind direction
with respect to the fixed inertial coordinate system?

� Given you answer to the previous item, what should you expect to get for horizontal velocity
vector components U4 and V4 with respect to the fixed inertial coordinate system. Do the
results meet your expectation?

� With regard to the vertical velocity vector component, explain the main important feature
in the results.
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Figure 6: Heading, Pitch, Roll, and Wind Direction Angles as measured by the meteorological
sensor on the balloon according to the local coordinate system of the sensor.

11



Figure 7: Horizontal velocity vector components of wind as measured according to the local coor-
dinate system of the sensor, throughout the coordinate transformation process, and as transformed
according to the fixed inertial frame.
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Figure 8: Vertical velocity vector component of wind as measured according to the local coordi-
nate system of the sensor, throughout the coordinate transformation process, and as transformed
according to the fixed inertial frame.
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1 Introduction

In lectures we discuss the SOnic Detection And Ranging (SODAR) as a class of atmospheric mea-
surement techniques that rely on the transmission and echo of sonic sound waves to measure wind
speed and direction in the atmosphere. Figure 1 shows a mini Sodar device that probes atmospheric
winds from 20 to 200 m elevation at a height resolution of up to 10 m. This Sodar instrument
was installed in the Turfgrass Institute, Guelph, in the summer of 2018 [Aliabadi et al., 2021] and
at a mine field in northern Canada in summer and fall of 2019 [Kia et al., 2021] for wind profile
measurements. It sampled one atmospheric profile every half hour. In this computer assignment
a selected part of the data set is used to classify wind speeds at selected altitudes of 40, 60, 80,
100, and 120 m for selected diurnal times of 0000, 0600, 1200, and 1800 Eastern Standard Time
(EST).

2 Python Script

Five text files are provided which contain the Sodar data. These are "Sodarh40.txt", "Sodarh60.txt",
"Sodarh80.txt", "Sodarh100.txt", and "Sodarh120.txt". The most important entries from
these text files are the hour of measurement and the measured wind speed. The python script
begins by reading the five input text files.

#Import mini SODAR data and plot wind profiles classified according to diurnal time and height

import numpy

import matplotlib.pyplot as plt

inputFileNameSodarh40="Sodarh40.txt"

inputFileNameSodarh60="Sodarh60.txt"

inputFileNameSodarh80="Sodarh80.txt"

inputFileNameSodarh100="Sodarh100.txt"

inputFileNameSodarh120="Sodarh120.txt"

The next step is to load the data into vectors. It is convenient to store each of the hours and
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Figure 1: A mini SODAR deployed at the Turfgrass Insititute, Guelph, in the summer of 2018 for
wind speed and direction profile measurements from 20 to 200 m elevation.

elevations of measurements in a separate vector. After loading the data, we can print the number
of data points in each vector to make sure they are of the same size.

#Load data into vectors

dataSodarh40 = numpy.loadtxt(inputFileNameSodarh40)

HourSodarh40=dataSodarh40[:,3]

SSodarh40=dataSodarh40[:,6]

NSodarh40 = numpy.size(HourSodarh40)

dataSodarh60 = numpy.loadtxt(inputFileNameSodarh60)

HourSodarh60=dataSodarh60[:,3]

SSodarh60=dataSodarh60[:,6]

NSodarh60 = numpy.size(HourSodarh60)

...

print(’The size of datasets: ’, NSodarh40, NSodarh60, NSodarh80, NSodarh100, NSodarh120)

Next, we define new vectors into which we classify measurements that occurred in a specific hour
and elevation. We should initialize the vectors with the value of Not a Number (nan) or numpy.nan.
This is required because the Sodar device can occasionally return nan if it cannot analyze the echo
of the transmitted sound signal.

2



#Define classified vectors

#For four diurnal times: 0000, 0600, 1200, and 1800 Eastern Standard Time (EST)

#For five elevations: 40m, 60m, 80m, 100m, and 120m

#Make vectors to contain wind speed

#Initialize values to Not A Number (nan)

SSodarh40t0000=numpy.zeros((NSodarh40))

SSodarh40t0000[:]=numpy.nan

SSodarh60t0000=numpy.zeros((NSodarh40))

SSodarh60t0000[:]=numpy.nan

SSodarh80t0000=numpy.zeros((NSodarh40))

SSodarh80t0000[:]=numpy.nan

SSodarh100t0000=numpy.zeros((NSodarh40))

SSodarh100t0000[:]=numpy.nan

SSodarh120t0000=numpy.zeros((NSodarh40))

SSodarh120t0000[:]=numpy.nan

SSodarh40t0600=numpy.zeros((NSodarh40))

SSodarh40t0600[:]=numpy.nan

SSodarh60t0600=numpy.zeros((NSodarh40))

SSodarh60t0600[:]=numpy.nan

SSodarh80t0600=numpy.zeros((NSodarh40))

SSodarh80t0600[:]=numpy.nan

SSodarh100t0600=numpy.zeros((NSodarh40))

SSodarh100t0600[:]=numpy.nan

SSodarh120t0600=numpy.zeros((NSodarh40))

SSodarh120t0600[:]=numpy.nan

...

Next we employ a series of conditional statements in a loop to assign measurements associated
with a particular hour to the classifying vector. Note that after this assignment, many entries of
the classifying vectors are still nan, but that is fine.

#Classify data based on diurnal time and elevation

for n in range(0, NSodarh40):

if (HourSodarh40[n] == 0):

SSodarh40t0000[n] = SSodarh40[n]

SSodarh60t0000[n] = SSodarh60[n]

SSodarh80t0000[n] = SSodarh80[n]

SSodarh100t0000[n] = SSodarh100[n]

SSodarh120t0000[n] = SSodarh120[n]

elif (HourSodarh40[n] == 6):

SSodarh40t0600[n] = SSodarh40[n]

SSodarh60t0600[n] = SSodarh60[n]

SSodarh80t0600[n] = SSodarh80[n]
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SSodarh100t0600[n] = SSodarh100[n]

SSodarh120t0600[n] = SSodarh120[n]

elif (HourSodarh40[n] == 12):

...

elif (HourSodarh40[n] == 18):

...

Finally, we can plot our results using the plt.boxplot() command. Before employing this com-
mand, the data can be reduced by removing the nan values. This can be accomplished in a very
compact coding syntax shown below.

#Plot results

fig = plt.figure(figsize=(6,6))

SSodar0000All = [SSodarh40t0000[~numpy.isnan(SSodarh40t0000)],

SSodarh60t0000[~numpy.isnan(SSodarh60t0000)],

SSodarh80t0000[~numpy.isnan(SSodarh80t0000)],

SSodarh100t0000[~numpy.isnan(SSodarh100t0000)],

SSodarh120t0000[~numpy.isnan(SSodarh120t0000)]]

plt.boxplot(SSodar0000All, 0, ’’, 0)

ax = fig.add_subplot(111)

ax.set_yticklabels([’40’, ’60’, ’80’, ’100’, ’120’])

ax.tick_params(axis=’both’, which=’major’, labelsize=13)

plt.ylabel(’z [m]’,fontsize=20)

plt.xlabel(’S [m s^-1]’,fontsize=20)

plt.xlim((0,17))

plt.tight_layout()

plt.savefig(’SSodart0000.pdf’, bbox_inches=’tight’, dpi=600)

fig.show()

...

plt.show()

Complete the above lines of code. After successfully running the script, Figure 2 should be
obtained. Try to answer the following questions.

� Open each of the text files Sodarh40.txt and Sodarh120.txt and briefly examine their
contents. Which file contains more nan values? why?

� Of the wind speed profile plots shown, which elevation shows greater diurnal variability in
wind speed?

� Of the wind speed profile plots shown, at which diurnal time is the profile of the wind speed
more uniformly distributed with altitude?
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Figure 2: Box plots showing the 5th, 25th, 50th, 75th, and 95th percentiles of wind speed at five
altitudes (40, 60, 80, 100, and 120 m); data are classified for four diurnal times 0000 (top left),
0600 (top right), 1200 (bottom left), and 1800 (bottom right), Eastern Standard Time (EST).
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