
ENGG*6790: Theory and Applications of Turbulence

Introduction to Python Programming
Amir A. Aliabadi

July 3, 2017

1 Introduction

Python is a widely used high-level programming language for general-purpose programming, cre-
ated by Guido van Rossum and first released in 1991. An interpreted language, Python has a
design philosophy which emphasizes code readability (notably using whitespace indentation to de-
limit code blocks rather than curly brackets or keywords), and a syntax which allows programmers
to express concepts in fewer lines of code than possible in languages such as C++ or Java. The
language provides constructs intended to enable writing clear programs on both a small and large
scale.

Python features a dynamic type system and automatic memory management and supports multi-
ple programming paradigms, including object-oriented, imperative, functional programming, and
procedural styles. It has a large and comprehensive standard library.

Python interpreters are available for many operating systems, allowing Python code to run on a
wide variety of systems. CPython, the reference implementation of Python, is open source software
and has a community-based development model, as do nearly all of its variant implementations.
CPython is managed by the non-profit Python Software Foundation.

Figure 1: The logo of Python programming language.

1

2 Installation

To install Python, go to the following link and download the latest version for the appropriate
operating system. Complete the installation steps.

https://www.python.org/downloads/

The standard application launcher for Python is IDLE, which opens a Shell. A shell is a user
interface for access to an operating system’s services. In general, operating system shells use either
a command-line interface (CLI) or graphical user interface (GUI), depending on a computer’s role
and particular operation. It is named a shell because it is a layer around the operating system
kernel. IDLE is a CLI shell that is shown in Figure 2.

Figure 2: An example of the IDLE shell that is accessible by standard installation of Python on
Mac operating system.

Another application launcher for Python is IDE from PyCharm that can be downloaded from the
following link. Download the Community version of IDE from PyCharm, which is lightweight and

2

suitable for scientific development, for the appropriate operating system.

http://www.jetbrains.com/pycharm/download/

By launching IDE from PyCharm the following window opens that asks to open a new project or
an existing project, as shown in Figure 3. Chose to open a new project and specify the directory
path for the project files to be developed.

Figure 3: Openning screen of the IDE launcher.

3 Creating and Running a Simple Program

Click menu item File and then New to create a Python text file. Name the file the same as this lab’s
title, i.e. PythonProgramming. To run a simple python program to print Hello World! in the out-
put console, enter the following lines of code within the editor just created for PythonProgramming.

import random

import sys

import os

#This line prints a message

print("Hello World!")

The import command allows us to use modules from various libraries in order to perform specific
programming tasks. The random module allows us to generate a random number. The sys and
os modules launch the operating system. The line #This line prints a message is a comment

3

that is not going to be executed. The print("...") command prints a message on the output
console. In Python programming both double quotations " and single quotations ’ perform the
same task. For instance we could have used print(’...’) in the above program.

Then click menu item Run and then click Run. A run console sub window opens within the IDE

where the message Hello World! will be printed, as shown in Figure 4.

Figure 4: A simple program to print Hello World! in the output console.

4 Installing Python Interpreter Packages

Python programming is based on numerous interpreter packages that have been developed by
the community. The appropriate packages for a Python program must be installed before a
package can be used using the import command. To install an interpreter package the menu item
PyCharm Community Edition should be used and then Preferences must be clicked. When the
Preferences window opens, the Project Interpreter under the current project can be opened
and viewed, as shown in Figure 5.

The list of all interpreter packages can be viewed by double-clicking on a package. A list of all

4

Figure 5: Preferences window and the Project Interpreter.

interpreters sorter alphabetically can be obtained. It is possible to search for an interpreter by
starting to type the interpreter name as shown in Figure 6. For instance, information about the
numpy interpreter is shown in the Available Packages window. A brief description is provided on
the right. This interpreter is used for array processing for numbers, strings, records, and objects.
The Version and interpreter Author is also provided. It is possible to install the interpreter
package by selecting the desired version and then check marking the Install option. Finally the
botton Install Package can be clicked. After installation, this package or module can be used
by the import command in the Python program.

5 Calculation of Reynolds Stress Tensor and Turbulent

Kinetic Energy

It was discussed in lectures that the instantaneous velocity vector in a turbulent flow can be
decomposed into the mean velocity and the turbulent fluctuating velocity in the so called Reynolds
decomposition, i.e.

5

Figure 6: The numpy interpreter.

U(x, t)︸ ︷︷ ︸
Instantaneous Velocity

= 〈U(x, t)〉︸ ︷︷ ︸
Mean Velocity

+ u(x, t)︸ ︷︷ ︸
Fluctuating Velocity

, (1)

where x is position and t is time. In the cartesian coordinates with x, y, and z coordinate axes,
the velocity components for this equation can be written as

U = 〈U〉 + u (2)

V = 〈V 〉 + v (3)

W = 〈W 〉 + w. (4)

It is worth remembering that Reynolds stresses 〈uiuj〉 are components of a second-order tensor,
with the property that it is symmetric, i.e. 〈uiuj〉 = 〈ujui〉. The diagonal components of this

6

tensor, i.e. 〈u2
1〉 = 〈u1u1〉, 〈u2

2〉, and 〈u2
3〉 are called normal stresses, while the off-diagonal compo-

nents, e.g. 〈u1u2〉, are called shear stresses. The Reynolds stress tensor for a flow using a Cartesian
coordinate system can be shown in the matrix as follows

 〈u2〉 〈uv〉 〈uw〉
〈vu〉 〈v2〉 〈vw〉
〈wu〉 〈wv〉 〈w2〉

The turbulent kinetic energy is defined as the one half of the sum of the normal stresses of the
Reynolds stress tensor. In the Cartesian coordinate system, the turbulent kinetic energy can be
defined as

k =
1

2

(
〈u2〉 + 〈v2〉 + 〈w2〉

)
. (5)

In this lab we wish to calculate the components of the Reynolds stress tensor and the turbulent
kinetic energy for a fluid flow. A probe is used to make eight measurements of velocity components
in the x, y, and z directions. The measurements are shown in the table below.

Table 1: Turbulence probe measurements in a fluid flow
Measurement 1 2 3 4 5 6 7 8
U [m s−1] 1 2 4 3 5 1 2 6
V [m s−1] 2 3 2 4 6 2 3 5
W [m s−1] 4 3 1 2 2 3 2 5

We will use these measurements to calculate components of the Reynolds stress and the turbulent
kinetic energy. We can assume that the flow experiment is repeated eight times under identical
conditions and that the flow measurements are made at a specific and consistent location and time
for each experiment. As a result, all statistical means that are calculated are ensemble averages.

6 Python Script

Copy and paste the following code in the IDE environment. Note that you must have installed the
numpy package for this code to work.

import random

import sys

import os

import numpy

#Using arrays define instantaneous velocity in the x, y, and z directions [m s^-1]

U=[1, 2, 4, 3, 5, 1, 2, 6]

7

V=[2, 3, 2, 4, 6, 2, 3, 5]

W=[4, 3, 1, 2, 2, 3, 2, 5]

#Print newline and then the results

print("\n")

print("U=",U)

print("V=",V)

print("W=",W)

#Calculate the ensemble mean for each instantaneous velocity measurement [m s^-1]

Umean=numpy.mean(U)

Vmean=numpy.mean(V)

Wmean=numpy.mean(W)

print("\n")

print("Umean=",Umean)

print("Vmean=",Vmean)

print("Wmean=",Wmean)

#Calculate turbulent velocity fluctuations [m s^-1]

u=U-Umean

v=V-Vmean

w=W-Wmean

print("\n")

print("u=",u)

print("v=",v)

print("w=",w)

#Calculate the square of the turbulent velocity fluctuation [m^2 s^-2]

u2=numpy.multiply(u,u)

v2=numpy.multiply(v,v)

w2=numpy.multiply(w,w)

print("\n")

print("u2=",u2)

print("v2=",v2)

print("w2=",w2)

#Calculate variances of turbulent velocity fluctuations [m^2 s^-2]

u2mean=numpy.mean(u2)

v2mean=numpy.mean(v2)

w2mean=numpy.mean(w2)

print("\n")

print("u2mean=",u2mean)

8

print("v2mean=",v2mean)

print("w2mean=",w2mean)

#Calculate the turbulent kinetic energy [m^2 s^-2]

k=0.5*(u2mean+v2mean+w2mean)

print("\n")

print("k=",k)

#Calculate the products of velocity fluctuations [m^2 s^-2]

uv=numpy.multiply(u,v)

uw=numpy.multiply(u,w)

vw=numpy.multiply(v,w)

print("\n")

print("uv=",uv)

print("uw=",uw)

print("vw=",vw)

#Calculate the mean for products of velocity fluctuations [m^2 s^-2]

uvmean=numpy.mean(uv)

uwmean=numpy.mean(uw)

vwmean=numpy.mean(vw)

print("\n")

print("uvmean=",uvmean)

print("uwmean=",uwmean)

print("vwmean=",vwmean)

#Create the Reynolds Stress matrix

ReynoldsStress=[[u2mean, uvmean, uwmean],\

[uvmean, v2mean, vwmean],[uwmean, vwmean, w2mean]]

print("\n")

print("Reynolds Stress Tensor=", ReynoldsStress)

print("ReynoldsStress[0][2]=", ReynoldsStress[0][2])

This script utilizes the functionality of the numpy package to perform the calculation. Note that
each command like U=[] defines an array or vector. The command numpy.mean() calculates the
mean of the elements of an array. The command numpy.multiply() calculates multiplication of
two arrays, element by element. After the calculation of the components of the Reynolds stress, a
three by three matrix ReynoldsStress is defined to store the components of the Reynolds stress.
Note that each element of this matrix can be accessed by specifying indices in [][] format. For
instance ReynoldsStress[0][2] returns the element located on the zeroth row and the second
column. In Python programming, the indices for arrays and matrices start from 0. The results of
running this script should look like the following:

9

/Library/Frameworks/Python.framework/Versions/3.6/bin/python3.6 "/

Users/AmirAbbasAliabadi/Google Drive/U Guelph/Courses/ENGG6790/

Computer Labs/PythonProgramming/PythonProgramming"

U= [1, 2, 4, 3, 5, 1, 2, 6]

V= [2, 3, 2, 4, 6, 2, 3, 5]

W= [4, 3, 1, 2, 2, 3, 2, 5]

Umean= 3.0

Vmean= 3.375

Wmean= 2.75

u= [-2. -1. 1. 0. 2. -2. -1. 3.]

v= [-1.375 -0.375 -1.375 0.625 2.625 -1.375 -0.375 1.625]

w= [1.25 0.25 -1.75 -0.75 -0.75 0.25 -0.75 2.25]

u2= [4. 1. 1. 0. 4. 4. 1. 9.]

v2= [1.890625 0.140625 1.890625 0.390625 6.890625 1.890625 0.140625

2.640625]

w2= [1.5625 0.0625 3.0625 0.5625 0.5625 0.0625 0.5625 5.0625]

u2mean= 3.0

v2mean= 1.984375

w2mean= 1.4375

k= 3.2109375

uv= [2.75 0.375 -1.375 0. 5.25 2.75 0.375 4.875]

uw= [-2.5 -0.25 -1.75 -0. -1.5 -0.5 0.75 6.75]

vw= [-1.71875 -0.09375 2.40625 -0.46875 -1.96875 -0.34375 0.28125 3.65625]

uvmean= 1.875

uwmean= 0.125

vwmean= 0.21875

Reynolds Stress Tensor= [[3.0, 1.875, 0.125], [1.875, 1.984375, 0.21875], ...

[0.125, 0.21875, 1.4375]]

ReynoldsStress[0][2]= 0.125

Process finished with exit code 0

10

ENGG*6790: Theory and Applications of Turbulence

One-point Turbulent Statistics
Amir A. Aliabadi

November 11, 2017

1 Introduction

In lectures we discuss the significance of the Reynolds stress tensor, which describes various statis-
tics such as normal stresses of all components of momentum as well as pair-wise components of
the shear stress:

 〈u21〉 〈u1u2〉 〈u1u3〉
〈u2u1〉 〈u22〉 〈u2u3〉
〈u3u1〉 〈u3u2〉 〈u23〉

The entries of the Reynolds stress tensor can also be described as one-point turbulent statistics
of the flow because they each report a turbulent quantity at one point in the domain. One-point
turbulent statistics in a flow can be calculated if time series of a measurement (or a number of
measurements such as momentum, temperature, concentration, etc.) is available at high frequency.

One-point statistics can be also described by alternative terminology. Consider a property in the
flow is measured at high frequency, such as velocity in the x−direction,

U = 〈U〉+ u (1)

The normal stress 〈u2〉 can also be called the variance of U . After all, if U is a random variable,
its variance in statistics gives the same mathematical quantity as the normal stress. The variance
of random variable U in statistics is shown with

var(U) = σ2
U = 〈u2〉 (2)

Some times in turbulence studies the variance is normalized by the square of the mean quantity
of the variable, for which the variance is being calculated. For instance, in the same example, the
variance can be normalized by 〈U〉2 so that the following quantity is reported,

1

var(U)

〈U〉2
=

σ2
U

〈U〉2
=
〈u2〉
〈U〉2

(3)

The shear stress 〈uv〉 can also be called the covariance of U and V . After all, if U and V are
random variables, their covariance in statistics gives the same mathematical quantity as the shear
stress. The covariance of two random variables U and V in statistics is shown with

cov(U, V) = 〈uv〉 (4)

In turbulence studies the covariance is also normalized by a mean quantity relevant to the study.
For instance, in the same example, the covariance can be normalized by one of the 〈U〉2, 〈V 〉2,
|〈U〉〈V 〉|, or even 〈U〉2 + 〈V 〉2, so that one of the following quantities may be reported,

cov(U, V)

〈U〉2
=
〈uv〉
〈U〉2

(5)

cov(U, V)

〈V 〉2
=
〈uv〉
〈V 〉2

(6)

cov(U, V)

|〈U〉〈V 〉|
=

〈uv〉
|〈U〉〈V 〉|

(7)

cov(U, V)

〈U〉2 + 〈V 〉2
=

〈uv〉
〈U〉2 + 〈V 〉2

(8)

The choice of the normalization statistic is somewhat arbitrary given the context of the study. For
instance, in meteorology, the statistic 〈U〉2 + 〈V 〉2 is used, which gives the average wind speed in
the horizontal direction, with x−direction and y−direction being horizontal and the z−direction
pointing normal to the earth surface with the positive sign upward.

It is also possible to calculate variance and covariance for any number or combination of variables.
For instance, if T = 〈T 〉+t is a random variable representing temperature, it is possible to calculate
var(T), cov(W,T), cov(U, T), cov(U,W), etc, with the appropriate normalization statistics.

In this lab, we wish to calculate turbulent statistics for airflow and temperature using a dataset
from a micro-climate study on the campus of the University of Guelph. The campaign was
conducted from August 13, 2017 to August 25, 2017. Part of the study involved installing a
sonic anemometer on the roof of the Rozhanski Hall. The anemometer measured air velocity in
horizontal components U , V and vertical component W in units of m s−1. Note that V was air
velocity along canyon axis, while U was air velocity cross canyon axis. It also measured air sonic
temperature T in units of K. The measurement was conducted at a sampling frequency of 4 Hz.
Figure below shows the campaign site and the roof anemometer.

2

Figure 1: University of Guelph micro-climate campaign in August 2017: campaign site (top) and
sonic anemometer installation on the roof of Rozhanski Hall (bottom)

3

We wish to compute the following statistics at time intervals of 30 min. The statistics involve
mean quantities of variables, variances, and covariances. Table below shows the statistics to
be calculated and the normalization statistics to be used. For temperature normalization, the
maximum half-hourly variation in temperature can be assumed, i.e. ∆T = Tmax − Tmin

Table 1: Turbulent statistics to be calculated and normalization statistics.

Statistic Description Normalization Units
avg(U) = 〈U〉 Mean velocity (x) - [m s−1]
avg(V) = 〈V 〉 Mean velocity (y) - [m s−1]√
〈U〉2 + 〈V 〉2 Mean horizontal speed - [m s−1]

avg(W) = 〈W 〉 Mean velocity (z) - [m s−1]
avg(T) = 〈T 〉 Mean temperature - [K]
var(U) = σ2

U = 〈u2〉 Velocity variance (x) 〈U〉2 + 〈V 〉2 [m2 s−2]
var(V) = σ2

V = 〈v2〉 Velocity variance (y) 〈U〉2 + 〈V 〉2 [m2 s−2]
var(W) = σ2

W = 〈w2〉 Velocity variance (z) 〈U〉2 + 〈V 〉2 [m2 s−2]
var(T) = σ2

T = 〈t2〉 Temperature variance ∆T 2 [K2]
k = 1

2
(〈u2〉+ 〈v2〉+ 〈w2〉) Turbulent kinetic energy 〈U〉2 + 〈V 〉2 [m2 s−2]

cov(U, V) = 〈uv〉 Turbulent kinematic mass flux (x, y) 〈U〉2 + 〈V 〉2 [m2 s−2]
cov(U,W) = 〈uw〉 Turbulent kinematic mass flux (x, z) 〈U〉2 + 〈V 〉2 [m2 s−2]
cov(V,W) = 〈vw〉 Turbulent kinematic mass flux (y, z) 〈U〉2 + 〈V 〉2 [m2 s−2]

cov(U, T) = 〈ut〉 Turbulent kinematic heat flux (x)
√
〈U〉2 + 〈V 〉2∆T [K m s−1]

cov(V, T) = 〈vt〉 Turbulent kinematic heat flux (y)
√
〈U〉2 + 〈V 〉2∆T [K m s−1]

cov(W,T) = 〈wt〉 Turbulent kinematic heat flux (z)
√
〈U〉2 + 〈V 〉2∆T [K m s−1]

2 Python Script

We perform the calculation of turbulent statistics in one script and the plotting of the results
in another script. Complete the following script for calculations. In this script, we define a file
name as "Roof4Hz.txt" to be read by the program. We subsequently define another file name as
"Roof4HzOnePointStatistics.txt" to write the result of our calculations. Note that the input
file name has many columns of data, not all of which need to be read by the program. Use of the
usecols=[...] argument in the numpy.loadtxt() function allows us to only read the columns
that we need.

An important requirement for calculating turbulent statistics is that the time series data must be
detrended for each time interval, in which we desire to calculate the turbulent statistics. The idea
behind detrending is that many environmental data show linear trends that must be eliminated (or
subracted) from the data before calculating turbulent statistics. These linear trends really do not
contribute to turbulence and are slow background variations (in this case diurnal variations). If
the linear trend is not removed from the data, one may report spuriously high turbulent statistics.
Figure below shows a trended and a detrended time series.

4

Figure 2: A trended time series (left) and a detrended time series (right); turbulent statistics must
always be calculated after removing a trend from a time series, or else spurious statistics may be
reported.

Detrending of the time series is achieved by first fitting a first order polynomial to the time series
using the numpy.polyfit() function. Subsequently, a model is built based on this fit using the
numpy.polyval() function. Finally, the model, which is really only a line, is subtracted from the
original time series to give the detrended time series. All the subsequent turbulent statistics are
calculated from the detrended time series. Of course, the detrended time series contains all the
turbulent fluctuations.

To calculate the variances and covariances, we have used the numpy.cov() function. This function
is extremely useful. It takes two vectors as arguments and returns a 2 by 2 matrix. The main
diagonal elements of the matrix are the variances of the two vectors provided, and the off-diagonal
elements are covariances. The elements of the matrix can be accessed and assigned to appropriate
variable. Element [0,0] is the variance of the first vector argument, element [1,1] is the variance
of the second vector argument, and element [0,1] (the same as element [1,0]) is the covariance
of the two vectors.

Note that the iterations move forward for each 30 min window of data. In each iteration, the
program calculates the statistics, stores the statistics in vectors, and moves on to the next 30 min
window.

Finally, the data are written to a file with an appropriate header. Note that using #, or com-
ment line, in a text file results in useful header information that will not really be read by the
numpy.loadtxt() function. It is recommended to describe in the text file exactly what informa-
tion each column holds and the units associated with it. It is also useful to number the columns
so subsequently files can be read conveniently.

#Calculate one-point turbulent statistics

import random

import sys

import os

5

import numpy

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

import datetime

#Define averaging period in number of data points: minutes * seconds * samples

AverageSample=30*60*4

#Define file names

fileName = "Roof4Hz.txt"

outputFileNameOnePointStatistics="Roof4HzOnePointStatistics.txt"

#Load all data in a matrix

data4Hz = numpy.loadtxt(fileName, usecols=[0,1,2,3,4,5,8,9,10,11])

year4Hz=data4Hz[:,0]

month4Hz=data4Hz[:,1]

day4Hz=data4Hz[:,2]

timeHr4Hz=data4Hz[:,3]

timeMin4Hz=data4Hz[:,4]

timeSec4Hz=data4Hz[:,5]

U4Hz=data4Hz[:,6]

V4Hz=data4Hz[:,7]

W4Hz=data4Hz[:,8]

TSonic4Hz=data4Hz[:,9]

N4Hz=numpy.size(year4Hz)

#Calculate the number of samples and then detrend data

NSample=int(N4Hz/AverageSample)

#Define statistics, S is the wind speed in the horizontal direction

yearavg=numpy.zeros((NSample,1))

monthavg=...

dayavg=...

timeHravg=...

timeMinavg=...

Uavg=...

Vavg=...

Savg=...

Wavg=...

TSonicavg=...

Uvar=...

Vvar=...

Wvar=...

6

TSonicvar=...

k=...

UVcov=...

UWcov=...

VWcov=...

UTSoniccov=...

VTSoniccov=...

WTSoniccov=...

for i in range(0,NSample):

#Calculate year, month, day, hour, and minute for each sample

yearavg[i] = numpy.mean(year4Hz[i*AverageSample:(i+1)*AverageSample])

monthavg[i] = numpy.mean(month4Hz[i*AverageSample:(i+1)*AverageSample])

dayavg[i] = ...

timeHravg[i] = ...

timeMinavg[i] = numpy.mean(timeMin4Hz[i*AverageSample:(i+1)*AverageSample])+1

#Calculate averages

Uavg[i] = numpy.mean(U4Hz[i*AverageSample:(i+1)*AverageSample])

Vavg[i] = ...

Wavg[i] = ...

TSonicavg[i] = ...

Savg[i] = numpy.mean(numpy.sqrt(U4Hz[i*AverageSample:(i+1)*AverageSample] ** 2 + \

V4Hz[i*AverageSample:(i+1)*AverageSample] ** 2))

#Define a vector for the number of data points in each sample

x = [j for j in range(0, AverageSample)]

#Detrend each sample, i.e. remove a straight line fit from the sample

U = U4Hz[i*AverageSample:(i+1)*AverageSample]

Umodel = numpy.polyfit(x,U,1)

Utrend = numpy.polyval(Umodel,x)

Udetrended = U - Utrend

V = ...

Vmodel = ...

Vtrend = ...

Vdetrended = ...

W = ...

Wmodel = ...

Wtrend = ...

Wdetrended = ...

TSonic = ...

TSonicmodel = ...

TSonictrend = ...

TSonicdetrended = ...

#Calculate variances, and covariances

7

UVCovMatrix = numpy.cov(Udetrended, Vdetrended)

UWCovMatrix = numpy.cov(Udetrended, Wdetrended)

VWCovMatrix = ...

UTSonicCovMatrix = ...

VTSonicCovMatrix = ...

WTSonicCovMatrix = ...

Uvar[i] = UVCovMatrix[0,0]

Vvar[i] = UVCovMatrix[1,1]

Wvar[i] = ...

TSonicvar[i] = ...

k[i] = ...

UVcov[i] = UVCovMatrix[0,1]

UWcov[i] = ...

VWcov[i] = ...

UTSoniccov[i] = ...

VTSoniccov[i] = ...

WTSoniccov[i] = ...

#Write data to file

outputFile = open(outputFileNameOnePointStatistics, "w")

outputFile.write("#Times in Local Daylight Time \n")

outputFile.write("#0:Year \t 1:Month \t 2:Day \t 3:Hour \t 4:Minute \t \

5:Uavg (m s-1) \t 6:Vavg (m s-1) \t 7:Savg (m s-1) \t 8:Wavg (m s-1) \t \

9:TSonicavg (K) \t 10:Uvar (m2 s-2) \t 11:Vvar (m2 s-2) \t \

12:Wvar (m2 s-2) \t 13:TSonicvar (K2) \t 14:k (m2 s-2) \t \

15:UVcov (m2 s-2) \t 16:UWcov (m2 s-2) \t 17:VWcov (m2 s-2) \t \

18:UTSoniccov (Km s-1) \t 19:VTSoniccov (Km s-1) \t 20:WTSoniccov (Km s-1) \n")

for i in range(0,NSample):

outputFile.write("%i \t %i \t %i \t %i \t %i \t \

%f \t %f \t %f \t %f \t %f \t \

%f \t %f \t %f \t %f \t %f \t \

%f \t %f \t %f \

%f \t %f \t %f \n" \

% (yearavg[i], ...))

outputFile.close()

After running this script, we can generate a text file with all the turbulent statistics. The next
step is to run a new script for reading the results and plotting the turbulent statistics. This script
is given to you as PlotResults. In this script we use some new libraries that enable plotting
information versus date and time. These libraries are matplotlib.dates and datetime.

The script first reads the results text file and assigns the results to specific vectors. Next, it
finds the maximum variation in half-hourly temperature. This quantity is needed for normalizing

8

variances and covariances that involve temperature. The next step is to create a vector to contain
the time for each measurement in seconds. This is performed by giving the half-hourly year, month,
day, hour, and minute to the function datetime.datetime().timestap(). And finally there is
another command that allows creating a vector to contain date and time in the YYYY-MM-HH-mm-ss
format.

For each turbulent statistic, two plots are generated. The first plot shows the time series for the
quantity of interest. The second plot shows the diurnal variation of the quantity of interest. The
diurnal plot overlays the quantity of interest over many days as a function of hour in the day from
0 to 23 of the Local Daylight Time zone. This helps identify which quantities exhibit a strong
diurnal variation. To plot all figures simultaneously, the function fig.show() is used for each
figure and finally the function plt.show() is used at the end of the script.

After successfully running the second script, the following figures should be obtained. Try to
answer the following questions.

• Which one of the mean velocity components or the horizontal wind speed show a significant
diurnal cycle?

• Does the mean temperature show a significant diurnal cycle? How do you interpret this
physically?

• On average, the variances of velocity components represent what fraction of the square mean
horizontal wind speed? 0.1%, 1%, 10% or 100%?

• Which one of the variances exhibit a significant diurnal cycle? How do you interpret this
physically?

• On average, the kinetic energy represents what fraction of the square mean horizontal wind
speed? 0.1%, 1%, 10% or 100%?

• Considering the turbulent kinematic heat fluxes, which fluxes exhibit both significantly pos-
itive and significantly negative values as a function of diurnal cycle? How do you interpret
this physically?

• Considering the turbulent kinematic heat fluxes, which fluxes exhibit only a significantly
positive or only a significantly negative value as a function of diurnal cycle? How do you
interpret this physically?

9

Figure 3: Mean velocities and mean wind speed in the horizontal direction.

10

Figure 4: Mean temperature.

Figure 5: Normalized variances of velocity components.

11

Figure 6: Normalized variance of temperature.

Figure 7: Normalized turbulent kinetic energy.

12

Figure 8: Normalized turbulent kinematic mass fluxes.

13

Figure 9: Normalized turbulent kinematic heat fluxes.

14

ENGG*6790: Theory and Applications of Turbulence

Round Jet Similarity
Amir A. Aliabadi

January 31, 2018

1 Introduction

Flow dynamics of a self-similar round jet is discussed in lectures. The jet is produced by ejecting
flow out of a nozzle with the following parameters, with the parameters explained in the figure
below.

UJ = 1 m s−1 (1)

d = 0.01 m (2)

x0 = 4d = 0.04 m (3)

B = 5.9 (4)

Figure 1: Schematic of a round jet nozzle with polar cylindrical and Cartesian coordinate systems.

It has been shown in the lectures that the mean axial velocity on the centre-line can be calculated
using the following formulat. The constants B and x0 have been fitted experimentally.

1

U0(x)

UJ

=
B

(x− x0)/d
(5)

Other turbulent statistics in the flow have been fitted experimentally using the following formulat
and table. These provide even functions with respect to η ≡ r/(x−x0). The multiplication of the
polynomial and exponential function provides an excellent fit over the range in which data were
taken.

p(η) =
[
C0 + C2η

2 + C4η
4 + ...

]
exp

(
−Aη2

)
. (6)

Table 1: Constants to determine turbulent properties of a self-similar round jet.
p(η) C0 C2 C4 C6 A
〈U〉/U0(x) 1.0 –1.925 0.0 0.0 63
〈u2〉/U2

0 (x) 7.778e–2 2.79e1 –2.02e3 4.3e5 257
〈v2〉/U2

0 (x) 5.457e–2 0.355 –4.298e1 0.0 89
〈w2〉/U2

0 (x) 5.78e–2 –1.71 2.73e–1 0.0 42
〈uv〉/U2

0 (x) 4.375e–1 –3.931e1 1.55e2 1.342e4 90
ε/ [U3

0 (x)/(x− x0)] 0.3549 11.99 –1635 43470 201

In this lab we desire to calculate the mean axial centre-line velocity U0(x) as a function of axial
distance x. We also wish to calculate various other quantities as a function of radial distance r
at selected axial distances. These are the mean axial velocity 〈U〉, turbulent fluctuating velocity
variances 〈u2〉, 〈v2〉, 〈w2〉, shear stress 〈uv〉, turbulent kinetic energy k, and dissipation rate ε.

2 Python Script

Copy and paste the following code in the IDE environment. Some lines of the code are shown
with ..., which require you to complete them as coding exercise. Note that you must install the
matplotlib package for this lab to enable plotting using Python.

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

Python provides the flexibility to define short form commands for faster programming. The
command import ... as ... enables you to do this. For instance the command plt is defined
here for plotting. First the jet parameters are defined:

#Define nozzle constants

d=0.01 #[m]

2

x0=4*d #[m]

B=5.9

#Define nozzle exit velocity [m s^-1]

UJ=1

The next step is to discretize the axial domain x by increments dx. The command numpy.linspace()

creates an array given a minimum value, maximum value, and the number of elements. Here it is
used to create the x array. The command len() fines the number of elements in an array. It is
used here to store the number of elements in the x array.

#Define x axis from x0+10*dx to xmax with dx increments

dx=0.01 #[m]

xmin=x0+10*dx #[m]

xmax=1 #[m]

x=numpy.linspace(xmin, xmax, (xmax-xmin+dx)/dx)

nx=len(x)

We discretize the radial domain r in slightly different way, not by specifying increments dr but by
specifying the number of elements.

#Define r axis from 0 to 0.3 with 0.01 [m] increments

r=numpy.linspace(0, 0.3, 31)

nr=len(r)

Python can perform vector calculations in a very concise syntax. For instance we can calculate
the centre-line mean axial velocity using the following line.

#Calculate centre-line mean axial velocity as a function of x [m s^-1]

U0=UJ*B/((x-x0)/d)

We can plot the centre-line mean axial velocity as a function of axial distance using the plt.plot()
command. The command takes two vectors of equal size and x and y vectors and creates a plot.
It is possible to label the plot using the plt.xlabel() and plt.ylabel() commands. It is also
possible to create a title for the plot using the plt.title() command. After creating the plot, it
will remain in the background. The plot can be shown in the foreground using the plt.show()

command. After running the code it is possible to obtain the following plot.

#Plot the mean centre-line axial velocity versus x

plt.plot(x,U0)

plt.xlabel(’x [m]’)

plt.ylabel(’U0(x) [m s^-1]’)

plt.title(’Mean Centre-line Axial Velocity as Function of x’)

plt.show()

Other solution variables must be obtained over the entire x − r domain so a two dimensional
variable or a matrix is necessary to define and initialize. The mean axial velocity as a function x

3

and r can be defined and initialized using the numpy.zeros((nx,nr)) command. This command
creates a two dimensional matrix with nx rows, each representing an axial location and nr columns,
each representing a radial location.

#Define and initialize a mean axial velocity [m s^-1]

Umean=numpy.zeros((nx,nr))

The mean axial velocity over the x − r domain can be calculated by looking up constants C0,
C2, C4, C6, and A, and iterating two nested for loops over i and j indices representing x and r

positions. Note that the exponential operation is specified using ** in Python as opposed to ^ in
other programming languages. The elements of an array can be accessed by specifying indices in
the [][] format. The exponential function can be deployed using the numpy.exp() syntax.

#Calculate mean axial velocity over the x-r domain

C0=1.0

C2=-1.925

C4=0

C6=0

A=63

for i in range(0, nx-1):

for j in range (0, nr-1):

eta=r[j]/(x[i]-x0)

Umean[i][j]=U0[i]*(C0+C2*eta**2+C4*eta**4+C6*eta**6)*numpy.exp(-A*eta**2)

Multiple figures can be plotted on the same graph using the following code. A label should be
defined by adding a few strings together using the + operator. The str() command takes a

4

numerical variable and returns it as a string. The command plt.legend() adds the legends to a
plot. The plot is automatically colour coded for each legend. After running the code the following
plot can be obtained.

#Plot the mean axial velocity versus r

plt.plot(r,Umean[20][:],label=’x=’+str(x[20])+’ [m]’)

plt.plot(r,Umean[40][:],label=’x=’+str(x[40])+’ [m]’)

plt.plot(r,Umean[60][:],label=’x=’+str(x[60])+’ [m]’)

plt.plot(r,Umean[80][:],label=’x=’+str(x[80])+’ [m]’)

plt.xlabel(’r [m]’)

plt.ylabel(’<U> [m s^-1]’)

plt.title(’Mean Axial Velocity as a Function of r’)

plt.legend()

plt.show()

The following code should be completed to obtained the rest of the variables for turbulent statistics.
Note that you should look up the proper constants for each variable. In addition, the expression
for the calculation of each variable should be appropriately adjusted.

#Define and initialize axial fluctuating velocity variance [m^2 s^-2]

u2mean=...

#Calculate axial fluctuating velocity variance over the x-r domain

C0=...

C2=...

C4=...

C6=...

5

A=...

for i in range(0, nx-1):

for j in range (0, nr-1):

eta=r[j]/(x[i]-x0)

u2mean[i][j]=U0[i]**2*\

(C0+C2*eta**2+C4*eta**4+C6*eta**6)*numpy.exp(-A*eta**2)

#Plot the axial fluctuating velocity variance versus r

plt.plot(...

plt.plot(...

plt.plot(...

plt.plot(...

plt.xlabel(’r [m]’)

plt.ylabel(’<u^2> [m^2 s^-2]’)

plt.title(’Axial Fluctuating Velocity Variance as a Function of r’)

plt.legend()

plt.show()

#Define and initialize radial fluctuating velocity variance [m^2 s^-2]

v2mean=...

#Calculate radial fluctuating velocity variance over the x-r domain

C0=...

C2=...

C4=...

C6=...

A=...

for i in range(0, nx-1):

for j in range (0, nr-1):

eta=r[j]/(x[i]-x0)

v2mean[i][j]=...

#Plot the radial fluctuating velocity variance versus r

plt.plot(...

plt.plot(...

plt.plot(...

plt.plot(...

plt.xlabel(’r [m]’)

plt.ylabel(’<v^2> [m^2 s^-2]’)

plt.title(’Radial Fluctuating Velocity Variance as a Function of r’)

plt.legend()

plt.show()

#Define and initialize circumferential fluctuating velocity variance [m^2 s^-2]

6

w2mean=...

#Calculate circumferential fluctuating velocity variance over the x-r domain

C0=...

C2=...

C4=...

C6=...

A=...

for i in range(0, nx-1):

for j in range (0, nr-1):

eta=r[j]/(x[i]-x0)

w2mean[i][j]=...

#Plot the circumferential fluctuating velocity variance versus r

plt.plot(...

plt.plot(...

plt.plot(...

plt.plot(...

plt.xlabel(’r [m]’)

plt.ylabel(’<w^2> [m^2 s^-2]’)

plt.title(’Circumferential Fluctuating Velocity Variance as a Function of r’)

plt.legend()

plt.show()

#Define and initialize shear stress [m^2 s^-2]

uvmean=...

#Calculate shear stress over the x-r domain

C0=...

C2=...

C4=...

C6=...

A=...

for i in range(0, nx-1):

for j in range (0, nr-1):

eta=r[j]/(x[i]-x0)

uvmean[i][j]=...

#Plot the shear stress versus r

plt.plot(...

plt.plot(...

plt.plot(...

plt.plot(...

plt.xlabel(’r [m]’)

7

plt.ylabel(’<uv> [m^2 s^-2]’)

plt.title(’Shear Stress as a Function of r’)

plt.legend()

plt.show()

#Calculate the turbulent kinetic energy [m^2 s^-2]

k=0.5*(u2mean+v2mean+w2mean)

#Plot the turbulent kinetic energy versus r

plt.plot(...

plt.plot(...

plt.plot(...

plt.plot(...

plt.xlabel(’r [m]’)

plt.ylabel(’k [m^2 s^-2]’)

plt.title(’Turbulent Kinetic Energy as a Function of r’)

plt.legend()

plt.show()

#Define and initialize dissipation rate [m^2 s^-3]

epsilon=...

#Calculate dissipation rate over the x-r domain

C0=...

C2=...

C4=...

C6=...

A=...

for i in range(0, nx-1):

for j in range (0, nr-1):

eta=r[j]/(x[i]-x0)

epsilon[i][j]=U0[i]**3/(x[i]-x0)*\

(C0+C2*eta**2+C4*eta**4+C6*eta**6)*numpy.exp(-A*eta**2)

#Plot the dissipation rate versus r

plt.plot(...

plt.plot(...

plt.plot(...

plt.plot(...

plt.xlabel(’r [m]’)

plt.ylabel(’epsilon [m^2 s^-3]’)

plt.title(’Dissipation Rate as a Function of r’)

plt.legend()

plt.show()

8

After executing the code the following plots must be obtained.

Try to answer the following questions.

• For which turbulent statistic(s) the peak for a given curve at an axial distance does not
occur at r = 0 m. Can this behaviour be normal?

• For some turbulent fluctuating velocity variances, i.e. 〈u2i 〉 , the curves slightly appear in
the negative region. Can this be physically possible? If not, what is the cause for this?

• What would happen if for each plot below, the turbulent statistic were normalized?

9

10

11

12

ENGG*6790: Theory and Applications of Turbulence

Two-point Turbulent Statistics
Amir A. Aliabadi

February 9, 2018

1 Introduction

In lectures various two-point turbulent statistics were introduced. The autocorrelation function
as a two-point and one-time statistic is given by finding the covariance of turbulent fluctuations
at two points x and x + r:

Rij(r,x, t) ≡ 〈ui(x + r, t)uj(x, t)〉. (1)

If such a correlation sharply decreases with the increasing distance between the two points, then
turbulent flow ought to exhibit small turbulent eddies. On the other hand if this correlation is
significant even at larger distances between the two points, then the flow exhibits large turbulent
eddies. In the limit of no separation distance between the two points, the correlation represent
the Reynolds stresses. In the limit of a very large distance between the two points, the correlation
ought to drop to zero since a flow cannot exhibit infinitely large turbulent eddies. The autocorre-
lation function can give the integral lengthscales of the flow, depending on which components of
velocity the autocorrelation is calculated for. For instance the longitudinal and transverse integral
lengthscales have been introduced.

Also, the second-order velocity structure functions were introduced as useful statistics to describe
the nature of turbulent flows. The second-order velocity structure function is the covariance of
the difference in velocity between two points x and x + r:

Dij(r,x, t) ≡ 〈[Ui(x + r, t)− Ui(x, t)][Uj(x + r, t)− Uj(x, t)]〉. (2)

It is understood that the structure function is computed as an ensemble average for a given location
x and the separation distance r, and at a particular time t for a turbulent flow. It seems that only
eddies of size |r| or smaller can make a significant contribution to the structure function. In other
words, if an eddy is much larger than |r|, then it affects velocities at two locations in a similar
way, which does not alter the correlation.

1

The structure function can be related to dissipation rate of turbulent kinetic energy in the flow,
and various correlations can be established between structure function and the dissipation rate.
Note that while the autocorrelation function is a covariance of the turbulent fluctuations, the
structure function is the covariance for the difference of velocities of interest at two points.

In this lab, we wish to calculate turbulent statistics for airflow and temperature using a dataset
from a micro-climate study on the campus of the University of Guelph. The campaign was
conducted from August 13, 2017 to August 25, 2017. Part of the study involved installing two
sonic anemometers: one on the roof of the Rozhanski Hall and the other on the street of Reek Walk.
The anemometers measured air velocity in horizontal components U , V and vertical component
W in units of m s−1. Note that V was air velocity along canyon axis, while U was air velocity
cross canyon axis. The anemometers also measured air sonic temperature T in units of K. The
measurement was conducted at a sampling frequency of 4 Hz. Figure below shows the campaign
site and the anemometers.

Figure 1: University of Guelph micro-climate campaign in August 2017: campaign site (top);
station 1: sonic anemometer installation on the roof of Rozhanski Hall (bottom left); station 2:
sonic anemometer installation on the street of Reek Walk (bottom right).

2

We wish to compute the following statistics at time intervals of 30 min. The statistics involve
autocorrelations and structure functions. Table below shows the statistics to be calculated. In
this lab we do not normalize the statistics.

Table 1: Turbulent statistics to be calculated; subscript 1 refers to the roof data and subscript 2
refers to the street data.

Statistic Units
RUU = 〈u1u2〉 [m2 s−2]
RV V = 〈v1v2〉 [m2 s−2]
RWW = 〈w1w2〉 [m2 s−2]
RUV = 〈u1v2〉 [m2 s−2]
RV U = 〈v1u2〉 [m2 s−2]
RUW = 〈u1w2〉 [m2 s−2]
RWU = 〈w1u2〉 [m2 s−2]
RVW = 〈v1w2〉 [m2 s−2]
RWV = 〈w1v2〉 [m2 s−2]
RTT = 〈t1t2〉 [K2]
RUT = 〈u1t2〉 [K m s−1]
RTU = 〈t1u2〉 [K m s−1]
RV T = 〈v1t2〉 [K m s−1]
RTV = 〈t1v2〉 [K m s−1]
RWT = 〈w1t2〉 [K m s−1]
RTW = 〈t1w2〉 [K m s−1]
DUU = 〈[U1 − U2][U1 − U2]〉 [m2 s−2]
DV V = 〈[V1 − V2][V1 − V2]〉 [m2 s−2]
DWW = 〈[W1 −W2][W1 −W2]〉 [m2 s−2]
DUV = 〈[U1 − U2][V1 − V2]〉 [m2 s−2]
DUW = 〈[U1 − U2][W1 −W2]〉 [m2 s−2]
DVW = 〈[V1 − V2][W1 −W2]〉 [m2 s−2]
DTT = 〈[T1 − T2][T1 − T2]〉 [K2]
DUT = 〈[U1 − U2][T1 − T2]〉 [K m s−1]
DV T = 〈[V1 − V2][T1 − T2]〉 [K m s−1]
DWT = 〈[W1 −W2][T1 − T2]〉 [K m s−1]

2 Python Script

We perform the calculation of turbulent statistics in one script and the plotting of the results
in another script. Complete the following script for calculations. In this script, we define two
file names as "Roof4Hz.txt" and "Street4Hz.txt" to be read by the program. We subsequently
define another file name as "4HzTwoPointStatistics.txt" to write the result of our calculations.
Note that the input file name has many columns of data, not all of which need to be read by the
program. Use of the usecols=[...] argument in the numpy.loadtxt() function allows us to
only read the columns that we need.

3

Note that turbulent fluctuations should only be detrended for the autocorrelation function and not
the structure function. The structure function should take the original observations. Complete
the first script below first.

#Calculate two-point turbulent statistics

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

import datetime

#Define averaging period in number of data points: minutes * seconds * samples

AverageSample=30*60*4

#Define file names 1: Roof, 2: Street

fileName1 = "Roof4Hz.txt"

fileName2 = "Street4Hz.txt"

outputFileNameTwoPointStatistics="4HzTwoPointStatistics.txt"

#Load all data in matrices

data4Hz1 = numpy.loadtxt(fileName1, usecols=[0,1,2,3,4,5,8,9,10,11])

year4Hz1=data4Hz1[:,0]

month4Hz1=data4Hz1[:,1]

day4Hz1=data4Hz1[:,2]

timeHr4Hz1=data4Hz1[:,3]

timeMin4Hz1=data4Hz1[:,4]

timeSec4Hz1=data4Hz1[:,5]

U4Hz1=data4Hz1[:,6]

V4Hz1=data4Hz1[:,7]

W4Hz1=data4Hz1[:,8]

TSonic4Hz1=data4Hz1[:,9]

N4Hz1=numpy.size(year4Hz1)

data4Hz2 = numpy.loadtxt(fileName2, usecols=[0,1,2,3,4,5,8,9,10,11])

year4Hz2=data4Hz2[:,0]

month4Hz2=data4Hz2[:,1]

day4Hz2=data4Hz2[:,2]

timeHr4Hz2=data4Hz2[:,3]

timeMin4Hz2=data4Hz2[:,4]

timeSec4Hz2=data4Hz2[:,5]

4

U4Hz2=data4Hz2[:,6]

V4Hz2=data4Hz2[:,7]

W4Hz2=data4Hz2[:,8]

TSonic4Hz2=data4Hz2[:,9]

#Calculate the number of samples

NSample=int(N4Hz1/AverageSample)

#Define statistics: the first subscript is for roof the second is for street

#R for two-point correlation

#D for structure function

yearavg=numpy.zeros((NSample,1))

monthavg=numpy.zeros((NSample,1))

dayavg=numpy.zeros((NSample,1))

timeHravg=numpy.zeros((NSample,1))

timeMinavg=numpy.zeros((NSample,1))

RUU=numpy.zeros((NSample,1))

RVV=...

RWW=...

RUV=...

RVU=...

RUW=...

RWU=...

RVW=...

RWV=...

RTT=...

RUT=...

RTU=...

RVT=...

RTV=...

RWT=...

RTW=...

DUU=...

DVV=...

DWW=...

DUV=...

DUW=...

DVW=...

DTT=...

DUT=...

DVT=...

DWT=...

for i in range(0,NSample):

#Calculate year, month, day, hour, and minute for each sample

yearavg[i] = numpy.mean(year4Hz1[i*AverageSample:(i+1)*AverageSample])

5

monthavg[i] = numpy.mean(month4Hz1[i*AverageSample:(i+1)*AverageSample])

dayavg[i] = numpy.mean(day4Hz1[i*AverageSample:(i+1)*AverageSample])

timeHravg[i] = numpy.mean(timeHr4Hz1[i*AverageSample:(i+1)*AverageSample])

timeMinavg[i] = numpy.mean(timeMin4Hz1[i*AverageSample:(i+1)*AverageSample])+1

#Define a vector for the number of data points in each sample

x = [j for j in range(0, AverageSample)]

#Detrend each sample, i.e. remove a straight line fit from the sample

U1 = U4Hz1[i*AverageSample:(i+1)*AverageSample]

Umodel1 = numpy.polyfit(x,U1,1)

Utrend1 = numpy.polyval(Umodel1,x)

Udetrended1 = U1 - Utrend1

U2 = U4Hz2[i*AverageSample:(i+1)*AverageSample]

Umodel2 = numpy.polyfit(x,U2,1)

Utrend2 = numpy.polyval(Umodel2,x)

Udetrended2 = U2 - Utrend2

V1 = ...

Vmodel1 = ...

Vtrend1 = ...

Vdetrended1 = ...

V2 = ...

Vmodel2 = ...

Vtrend2 = ...

Vdetrended2 = ...

W1 = ...

Wmodel1 = ...

Wtrend1 = ...

Wdetrended1 = ...

W2 = ...

Wmodel2 = ...

Wtrend2 = ...

Wdetrended2 = ...

TSonic1 = ...

TSonicmodel1 = ...

TSonictrend1 = ...

TSonicdetrended1 = ...

TSonic2 = ...

TSonicmodel2 = ...

TSonictrend2 = ...

TSonicdetrended2 = ...

#Calculate variances, and covariances

RUUCovMatrix = numpy.cov(Udetrended1, Udetrended2)

RVVCovMatrix = ...

RWWCovMatrix = ...

RUVCovMatrix = numpy.cov(Udetrended1, Vdetrended2)

6

RVUCovMatrix = ...

RUWCovMatrix = ...

RWUCovMatrix = ...

RVWCovMatrix = ...

RWVCovMatrix = ...

RTTCovMatrix = numpy.cov(TSonicdetrended1, TSonicdetrended2)

RUTCovMatrix = numpy.cov(Udetrended1, TSonicdetrended2)

RTUCovMatrix = ...

RVTCovMatrix = ...

RTVCovMatrix = ...

RWTCovMatrix = ...

RTWCovMatrix = ...

RUU[i] = RUUCovMatrix[1,0]

RVV[i] = RVVCovMatrix[1,0]

RWW[i] = RWWCovMatrix[1,0]

RUV[i] = RUVCovMatrix[1,0]

RVU[i] = ...

RUW[i] = ...

RWU[i] = ...

RVW[i] = ...

RWV[i] = ...

RTT[i] = ...

RUT[i] = ...

RTU[i] = ...

RVT[i] = ...

RTV[i] = ...

RWT[i] = ...

RTW[i] = ...

DUUCovMatrix = numpy.cov(U1-U2, U1-U2)

DVVCovMatrix = numpy.cov(V1-V2, V1-V2)

DWWCovMatrix = ...

DUVCovMatrix = ...

DUWCovMatrix = ...

DVWCovMatrix = ...

DTTCovMatrix = numpy.cov(TSonic1-TSonic2, TSonic1-TSonic2)

DUTCovMatrix = numpy.cov(U1-U2, TSonic1-TSonic2)

DVTCovMatrix = ...

DWTCovMatrix = ...

DUU[i] = DUUCovMatrix[1,0]

DVV[i] = DVVCovMatrix[1,0]

DWW[i] = DWWCovMatrix[1,0]

DUV[i] = DUVCovMatrix[1,0]

DUW[i] = ...

7

DVW[i] = ...

DTT[i] = ...

DUT[i] = ...

DVT[i] = ...

DWT[i] = ...

#Write data to file

outputFile = open(outputFileNameTwoPointStatistics, "w")

outputFile.write("#Times in Local Daylight Time \n")

outputFile.write("#0:Year \t 1:Month \t 2:Day \t 3:Hour \t 4:Minute \t \

5:RUU (m2 s-2) \t 6:RVV (m2 s-2) \t 7:RWW (m2 s-2) \t \

8:RUV (m2 s-2) \t 9:RVU (m2 s-2) \t 10:RUW (m2 s-2) \t \

11:RWU (m2 s-2) \t 12:RVW (m2 s-2) \t 13:RWV (m2 s-2) \t \

14:RTT (K2) \t 15:RUT (Km s-1) \t 16:RTU (Km s-1) \t \

17:RVT (Km s-1) \t 18:RTV (Km s-1) \t 19:RWT (Km s-1) \t 20:RTW (Km s-1) \t \

21:DUU (m2 s-2) \t 22:DVV (m2 s-2) \t 23:DWW (m2 s-2) \t 24:DUV (m2 s-2) \t \

25:DUW (m2 s-2) \t 26:DVW (m2 s-2) \t \

27:DTT (K2) \t 28:DUT (Km s-1) \t 29:DVT (Km s-1) \t 30:DWT (Km s-1) \n")

for i in range(0,NSample):

outputFile.write("%i \t %i \t %i \t %i \t %i \t \

%f \t %f \t %f \t \

%f \t %f \t %f \t %f \t %f \t %f \t \

%f \t %f \t %f \t \

%f \t %f \t %f \t %f \t \

%f \t %f \t %f \t %f \t %f \t %f \t \

%f \t %f \t %f \t %f \n" \

% (yearavg[i], ...))

outputFile.close()

After running this script, we can generate a text file with all the turbulent statistics. The next
step is to run a new script for reading the results and plotting the turbulent statistics. This script
is given to you as PlotResults. The script first reads the results text file and assigns the results
to specific vectors. The next step is to create a vector to contain the time for each measurement
in seconds.

For each turbulent statistic, two plots are generated. The first plot shows the time series for the
quantity of interest. The second plot shows the diurnal variation of the quantity of interest. The
diurnal plot overlays the quantity of interest over many days as a function of hour in the day
from 0 to 23 of the Local Daylight Time zone. This helps identify which quantities exhibit a
strong diurnal variation. Due to the presence of spurious data in this lab, we will limit the vertical
axis in the range [−0.5, 0.5] for autocorrelation functions and [−1, 3] for structure functions. This
can be done using the command plt.ylim((-0.5,0.5)) or plt.ylim((-1,3)) for each plot,
respectively.

After successfully running the second script, the following figures should be obtained. Try to

8

answer the following questions.

• We calculated both RUV and RV U , but we only calculated DUV . Why did we not calculate
DV U?

• Explain why the magnitudes of RUU and RV V during the early afternoon is greater than the
magnitude of RWW ? Try to explain why is RUU negative, while RV V is positive during the
early afternoon?

• Explain why the magnitudes of RUV and RV U are greater than the magnitudes of RUW ,
RWU , RVW , and RWV ?

• Considering all the autocorrelation functions for velocities, and knowing the fact that they
describe integral lengthscales, explain turbulent eddies in which direction and during what
time periods are the largest?

• We can observe the fact that RTT is positive during the early afternoon hours. Does this
suggest that the eddies causing rising hot thermals from the surfaces may have integral
lengthscales that can be as large as the building length scale?

• Mathematically, explain why DUU , DV V , DWW , and DTT are strictly positive? Why do they
peak in the early afternoon hours?

• Explain why DUU and DV V are greater than DWW ?

• Explain why DUV tends to be positive during the early afternoon hours?

• Explain why DVW tends to be negative during the early afternoon hours?

• Explain why DWT tends to be positive during the early afternoon hours?

9

Figure 2: Autocorrelation functions for RUU , RV V , and RWW .

10

Figure 3: Autocorrelation functions for RUV and RV U .

Figure 4: Autocorrelation functions for RUW and RWU .

11

Figure 5: Autocorrelation functions for RVW and RWV .

Figure 6: Autocorrelation functions for RTT .

12

Figure 7: Autocorrelation functions for RUT and RTU .

Figure 8: Autocorrelation functions for RV T and RTV .

13

Figure 9: Autocorrelation functions for RWT and RTW .

14

Figure 10: Structure functions for DUU , DV V , and DWW .

15

Figure 11: Structure functions for DUV , DUW , and DVW .

Figure 12: Structure functions for DTT .

16

Figure 13: Structure functions for DUT , DV T , and DWT .

17

ENGG*6790: Theory and Applications of Turbulence

Integral Time and Length Scales
Amir A. Aliabadi

November 11, 2017

1 Introduction

In lectures, the concepts of integral time and length scales are discussed. For a statistically
stationary process, the autocovariance is given by

Rii(s) ≡ 〈ui(t)ui(t+ s)〉 (1)

where a flow quantity is measured at the same location with a time shift s over an indefinite time
period. Note that autocovariance is not a function of time t but instead a function of time shift s.
Here, ui(t) ≡ Ui(t)− 〈Ui(t)〉 is the velocity fluctuation. Related to the concept of autocorrelation
is the concept of integral timescale. Usually the autocorrelation function diminishes quickly as a
function of time shift. This means that usually the integral of the autocorrelation function over
time shift converges to the integral timescale define as

τ ii =
1

〈u2i 〉

∫ ∞
0

Rii(s)ds. (2)

In essence, the integral timescale looks at the overall memory of the process and how strongly it
is influenced or correlated by state of the flow in a previous time. This integral timescale can be
understood as the characteristic time for eddies.

In a related concept, the two-point and one-time autocovariance for the same component of the
flow is defined by

Rii(r,x, t) ≡ 〈ui(x, t)ui(x + r, t)〉, (3)

which is also known as a two-point correlation. With this statistic it is possible to define an integral
lengthscale, for instance by

1

L11(x, t) ≡
1

R11(0,x, t)

∫ ∞
0

R11(e1r,x, t)dr, (4)

where e1 is the unit vector in the x1-coordinate direction. The integral length scale measures
the correlation distance of a process in terms of space or time. In essence, it looks at the overall
memory of the process and how it is influenced by previous positions and parameters. This integral
length scale can be understood as the characteristic size for eddies.

Measurement of the one-time and two-point velocity correlation function Rii(r) experimentally is
very difficult since this requires two stationary probes that need to be used in a large number
of experiments with variable separation distance r. Alternatively it is possible to use a moving
probe in turbulent flow that travels at very high speed V along r. Let us assume that r is in the
direction of the first component of the Cartesian coordinate system, i.e. r = re1, where e1 is the
unit vector along the first component. Now if the autocorrelation for the moving probe with a
time shift s is calculated, we obtain R

(m)
ii (s), where the superscript (m) signifies the moving probe.

On the other hand for a time shift of s, the probe has moved equal to

r = V s. (5)

It is possible to show that if the probe is moving infinitely fast in the flow, then this autocorrelation
is equal to the one-time and two-point velocity correlation, i.e.

R
(m)
ii (s) = Rii(r). (6)

This concept is the basis of turbulence measurements using flying hot-wire anemometers, where
a hot-wire anemometer that is very sensitive to flow measurements with a large sampling rate is
flown in a turbulent flow to reveal one-time and two-point velocity correlation functions. In many
studies, particularly in atmospheric flows, there is a simpler approach to use. In this technique
only a single stationary probe is required for the approximation to be valid so that

Rii(s) = Rii(r) (7)

where now V = r/s represents the average wind speed. The approximation of spatial correla-
tions by temporal correlations is known as the Taylor hypothesis and is only valid for the frozen
turbulence approximation. This approximation states that eddies can be conceived as frozen and
moving with the flow as they travel past a stationary probe. This condition occurs in the atmo-
sphere when turbulent fluctuations are much smaller in magnitude than the average flow velocity,
for instance

ui
〈Ui〉

� 1. (8)

Using the Taylor hypothesis, it is possible to approximate the integral length scale such that

2

Lii =
1

〈u2i 〉

∫ ∞
0

Rii(r, t)dr '
〈Ui〉
〈u2i 〉

∫ ∞
0

Rii(s, t)ds = 〈Ui〉τ ii (9)

In this lab, we wish to calculate turbulent statistics for airflow and temperature using a dataset
from a micro-climate study on the campus of the University of Guelph. The campaign was
conducted from August 13, 2017 to August 25, 2017. Part of the study involved installing a
sonic anemometer on the roof of the Rozhanski Hall. The anemometer measured air velocity in
horizontal components U , V and vertical component W in units of m s−1. Note that V was air
velocity along canyon axis, while U was air velocity cross canyon axis. It also measured air sonic
temperature T in units of K. The measurement was conducted at a sampling frequency of 4 Hz.
Figure below shows the campaign site and the roof anemometer.

We wish to compute the following integral scales at time intervals of 30 min. A particular challenge
is that due to the transient nature of the flow, we cannot integrate the necessary integrals to infinity.
Since our time intervals are limited we will perform the necessary integrations up to 1 minute and
2 minutes and compare the effects on the integral scales.

Table 1: Integral scales to be calculated
Statistic Description Units
τUU Integral timescale in x−direction [s]
τV V Integral timescale in y−direction [s]
τWW Integral timescale in z−direction [s]
τTT Integral timescale for thermal fluctuations [s]
LUU Integral lengthscale in x−direction [m]
LV V Integral lengthscale in y−direction [m]
LWW Integral lengthscale in z−direction [m]

2 Python Script

We perform the calculation of integral scales in one script and the plotting of the results in
another script. Complete the following script for calculations. In this script, we define a file
name as "Roof4Hz.txt" to be read by the program. We subsequently define another file name as
"Roof4HzIntegralScales.txt" to write the result of our calculations. Note that the input file
name has many columns of data, not all of which need to be read by the program. Use of the
usecols=[...] argument in the numpy.loadtxt() function allows us to only read the columns
that we need.

An important requirement for calculating the integral scales is that the time series data must be
detrended for each time interval, in which we desire to calculate the integral scales. The idea
behind detrending is that many environmental data show linear trends that must be eliminated
(or subracted) from the data before calculating turbulent statistics. These linear trends really do
not contribute to turbulence and are slow background variations (in this case diurnal variations).

3

Figure 1: University of Guelph micro-climate campaign in August 2017: campaign site (top) and
sonic anemometer installation on the roof of Rozhanski Hall (bottom)

4

If the linear trend is not removed from the data, one may report spuriously high integral scales.
Figure below shows a trended and a detrended time series.

Figure 2: A trended time series (left) and a detrended time series (right); integral scales must
always be calculated after removing a trend from a time series, or else spurious results may be
reported.

Detrending of the time series is achieved by first fitting a first order polynomial to the time series
using the numpy.polyfit() function. Subsequently, a model is built based on this fit using the
numpy.polyval() function. Finally, the model, which is really only a line, is subtracted from
the original time series to give the detrended time series. All the subsequent integral scales are
calculated from the detrended time series. Of course, the detrended time series contains all the
turbulent fluctuations.

To calculate autocorrelations with a time shift, we should use a sliding window, with variable
WindowLength, that is only half the width of each time interval, and then calculate the autocor-
relation for each time shift. It is trivial that the time shift cannot be greater than half of the
sampling interval, i.e. 15 minutes. We should also define a variable NIntegral that will cover
either 1 minutes or two minutes.

To calculate the variances, we have used the numpy.cov() function. This function is extremely
useful. It takes two vectors as arguments and returns a 2 by 2 matrix. The main diagonal elements
of the matrix are the variances of the two vectors provided, and the off-diagonal elements are
covariances. The elements of the matrix can be accessed and assigned to appropriate variables.
Element [0,0] is the variance of the first vector argument, element [1,1] is the variance of the
second vector argument, and element [0,1] (the same as element [1,0]) is the covariance of the
two vectors.

Note that the iterations move forward for each 30 min window of data. In each iteration, the
program calculates the integral scales, stores them in vectors, and moves on to the next 30 min
window. Since the volume of calculations is large for this lab, we print to screen the iteration
number after each iteration completed.

Finally, the data are written to a file with an appropriate header. Note that using #, or com-

5

ment line, in a text file results in useful header information that will not really be read by the
numpy.loadtxt() function. It is recommended to describe in the text file exactly what informa-
tion each column holds and the units associated with it. It is also useful to number the columns
so subsequently files can be read conveniently.

#Calculate integral time and length scales assuming Taylor hypothesis

#using roof/street weather stations with 4Hz sampling

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

import datetime

#Define averaging period in number of data points: minutes * seconds * samples

AverageSample=30*60*4

#Define averaging period for taking the integrals:

#this will be half of AverageSample since we have sliding window

WindowLength=int(AverageSample/2)

#Number of integration points: this is adjustable.

#This should be as large as possible

#Without making the integral time scale negative. Why?

NIntegral=1*60*4

#Sampling period [s]

dt=0.25

#Define file names

fileName = "Roof4Hz.txt"

outputFileName="Roof4HzIntegralScales.txt"

#Load all data in a matrix

data4Hz = numpy.loadtxt(fileName, usecols=[0,1,2,3,4,5,8,9,10,11])

year4Hz=data4Hz[:,0]

month4Hz=data4Hz[:,1]

day4Hz=data4Hz[:,2]

timeHr4Hz=data4Hz[:,3]

timeMin4Hz=data4Hz[:,4]

timeSec4Hz=data4Hz[:,5]

U4Hz=data4Hz[:,6]

V4Hz=data4Hz[:,7]

6

W4Hz=data4Hz[:,8]

TSonic4Hz=data4Hz[:,9]

N4Hz=numpy.size(year4Hz)

#Calculate the number of samples

NSample=int(N4Hz/AverageSample)

#Define statistics and integral scales

yearavg=numpy.zeros((NSample,1))

monthavg=numpy.zeros((NSample,1))

dayavg=numpy.zeros((NSample,1))

timeHravg=numpy.zeros((NSample,1))

timeMinavg=numpy.zeros((NSample,1))

Uavg=numpy.zeros((NSample,1))

Vavg=numpy.zeros((NSample,1))

Wavg=numpy.zeros((NSample,1))

TSonicavg=numpy.zeros((NSample,1))

Uvar=numpy.zeros((NSample,1))

Vvar=numpy.zeros((NSample,1))

Wvar=numpy.zeros((NSample,1))

TSonicvar=numpy.zeros((NSample,1))

TauUU=numpy.zeros((NSample,1))

TauVV=...

TauWW=...

TauTT=...

LUU=numpy.zeros((NSample,1))

LVV=...

LWW=...

#Define autocorrelation functions needed for each sample,

#i.e. R(s), where s is time shift

RUU=numpy.zeros((NIntegral,1))

RVV=...

RWW=...

RTT=...

RUUAll=numpy.zeros((WindowLength,1))

RVVAll=...

RWWAll=...

RTTAll=...

for i in range(0,NSample):

#Calculate year, month, day, hour, and minute for each sample

yearavg[i] = numpy.mean(year4Hz[i*AverageSample:(i+1)*AverageSample])

monthavg[i] = numpy.mean(month4Hz[i*AverageSample:(i+1)*AverageSample])

7

dayavg[i] = numpy.mean(day4Hz[i*AverageSample:(i+1)*AverageSample])

timeHravg[i] = numpy.mean(timeHr4Hz[i*AverageSample:(i+1)*AverageSample])

timeMinavg[i] = numpy.mean(timeMin4Hz[i*AverageSample:(i+1)*AverageSample])+1

#Calculate averages

Uavg[i] = numpy.mean(U4Hz[i*AverageSample:(i+1)*AverageSample])

Vavg[i] = numpy.mean(V4Hz[i*AverageSample:(i+1)*AverageSample])

Wavg[i] = ...

TSonicavg[i] = numpy.mean(TSonic4Hz[i*AverageSample:(i+1)*AverageSample])

#Define a vector for the number of data points in each sample

x = [j for j in range(0, AverageSample)]

#Detrend each sample, i.e. remove a straight line fit from the sample

U = U4Hz[i*AverageSample:(i+1)*AverageSample]

Umodel = numpy.polyfit(x,U,1)

Utrend = numpy.polyval(Umodel,x)

Udetrended = U - Utrend

V = V4Hz[i*AverageSample:(i+1)*AverageSample]

Vmodel = numpy.polyfit(x,V,1)

Vtrend = numpy.polyval(Vmodel,x)

Vdetrended = V - Vtrend

W = ...

Wmodel = ...

Wtrend = ...

Wdetrended = ...

TSonic = TSonic4Hz[i*AverageSample:(i+1)*AverageSample]

TSonicmodel = numpy.polyfit(x,TSonic,1)

TSonictrend = numpy.polyval(TSonicmodel,x)

TSonicdetrended = TSonic - TSonictrend

#Calculate variances

UVCovMatrix = numpy.cov(Udetrended, Vdetrended)

UWCovMatrix = numpy.cov(Udetrended, Wdetrended)

VWCovMatrix = ...

UTSonicCovMatrix = numpy.cov(Udetrended, TSonicdetrended)

VTSonicCovMatrix = numpy.cov(Vdetrended, TSonicdetrended)

WTSonicCovMatrix = numpy.cov(Wdetrended, TSonicdetrended)

Uvar[i] = UVCovMatrix[0,0]

Vvar[i] = UVCovMatrix[1,1]

Wvar[i] = VWCovMatrix[1,1]

TSonicvar[i] = UTSonicCovMatrix[1,1]

#Calculate autocorrelation functions for a sliding window,

#Half the size of each sample interval

#Iterate over s, i.e. the time shift

8

for s in range(0,NIntegral):

#For each time shift s, iterate over the sliding window

for k in range(0,WindowLength):

RUUAll[k] = Udetrended[k]*Udetrended[k+s]

RVVAll[k] = ...

RWWAll[k] = ...

RTTAll[k] = TSonicdetrended[k]*TSonicdetrended[k+s]

#Calculate autocorrelation function for each s

RUU[s] = numpy.mean(RUUAll)

RVV[s] = numpy.mean(RVVAll)

RWW[s] = ...

RTT[s] = ...

#Calculate integral scales

TauUU[i] = numpy.sum(RUU*dt)/Uvar[i]

TauVV[i] = ...

TauWW[i] = ...

TauTT[i] = numpy.sum(RTT*dt)/TSonicvar[i]

LUU[i] = numpy.absolute(TauUU[i]*Uavg[i])

LVV[i] = ...

LWW[i] = ...

#Print iteration number to see progress

print(’Iteration = ’,i)

#Write data to file

outputFile = open(outputFileName, "w")

outputFile.write("#Times in Local Daylight Time - Subtract 1 hour for LST \n")

outputFile.write("#0:Year \t 1:Month \t 2:Day \t 3:Hour \t 4:Minute \t \

5:Uavg (m s-1) \t 6:Vavg (m s-1) \t 7:Wavg (m s-1) \t 8:TSonicavg (K) \t \

9:TauUU (s) \t 10:TauVV (s) \t 11:TauWW (s) \t 12:TauTT (s) \

13:LUU (m) \t 14:LVV (m) \t 15:LWW (m) \n")

for i in range(0,NSample):

outputFile.write("%i \t %i \t %i \t %i \t %i \t \

%f \t %f \t %f \t %f \t \

%f \t %f \t %f \t %f \t \

%f \t %f \t %f \n" \

% (yearavg[i],monthavg[i],dayavg[i],timeHravg[i],timeMinavg[i], \

Uavg[i], Vavg[i], Wavg[i], TSonicavg[i], \

TauUU[i], TauVV[i], TauWW[i], TauTT[i], \

LUU[i], LVV[i], LWW[i]))

outputFile.close()

After running this script, we can generate a text file with all the integral scales. The next step

9

is to run a new script for reading the results and plotting the integral scales. This script is given
to you as PlotResults. In this script we use some new libraries that enable plotting information
versus date and time. These libraries are matplotlib.dates and datetime.

The script first reads the results text file and assigns the results to specific vectors. The next step is
to create a vector to contain the time for each measurement in seconds. This is performed by giving
the half-hourly year, month, day, hour, and minute to the function datetime.datetime().timestap().
And finally there is another command that allows creating a vector to contain date and time in
the YYYY-MM-HH-mm-ss format.

For each integral scale, two plots are generated. The first plot shows the time series for the quantity
of interest. The second plot shows the diurnal variation of the quantity of interest. The diurnal
plot overlays the quantity of interest over many days as a function of hour in the day from 0 to
23 of the Local Daylight Time zone. This helps identify which quantities exhibit a strong diurnal
variation. To plot all figures simultaneously, the function fig.show() is used for each figure and
finally the function plt.show() is used at the end of the script.

You need to run the analysis at least twice, once for 1 minute integration time and a second time
for 2 minute integration time. After successfully running the scripts, the following figures should
be obtained. Try to answer the following questions.

• On a daily average, rank the magnitude of the integral timescales from largest to smallest.
Explain your observation.

• On a daily average, rank the magnitude of the integral lengthscales from largest to smallest.
Explain your observation.

• Is there a relationship between the magnitudes of timescales and lengthscales?

• Which one of the scales exhibits a strong diurnal variation? Reason why it is so.

• Without reproducing the figures, what is the effect of increasing the integration time from
1 minute to 2 minutes on the integral scales calculated?

• Without reproducing the figures, increase the integration time to even a large value, such
as 5 minutes. What are the effects on the integral scales calculated? If your results are not
sensible, or appear to be spurious, suggest the possible reasons.

10

Figure 3: Integral timescales for 2 minute integration time.

11

Figure 4: Integral lengthscales for 2 minute integration time.

12

ENGG*6790: Theory and Applications of Turbulence

Analysis Using Statistical Percentiles
Amir A. Aliabadi

November 12, 2017

1 Introduction

Environmental data are often messy and contain many gaps. As a result, instead of mean and
standard deviation, sometimes other statistics such as percentiles are used. For instance the
median or 50th percentile gives an estimate of the centre of data. The 25th and 75th percentiles
also give an indication of data spread or variation.

In this lab, we wish to group and plot the 50th percentile for various turbulent statistics based on
wind angle for airflow and diurnal time using a dataset from a micro-climate study on the campus
of the University of Guelph. The campaign was conducted from August 13, 2017 to August 25,
2017. Part of the study involved installing a sonic anemometer on the roof of the Rozhanski Hall.
The anemometer measured air velocity in horizontal components U , V and vertical component
W in units of m s−1. Note that V was air velocity along canyon axis, while U was air velocity
cross canyon axis. It also measured air sonic temperature T in units of K. The measurement was
conducted at a sampling frequency of 4 Hz. Figure below shows the campaign site and the roof
anemometer.

We wish to group data based on wind angle on the roof level and diurnal time. The mean statistics
are collected at time intervals of 30 min from previous labs and will be used here. The wind angle
is considered as 0 (or 360) when blowing from Northwest along the street canyon axis. The wind
angle is considered positivie clockwise. Eight wind sectors are considred: N, NE, E, SE, S, SW,
W, and NW. Each sector is 45 degrees wide. A particular challenge in this lab is that there is not
always data available for a particular wind angle and diurnal time.

2 Python Script

Complete the following script for grouping of data. In this script, we define a file names as
"Roof30min.txt", Roof4HzOnePointStatistics.txt, and Roof4HzIntegralScales.txt to be
read by the program. The wind angle is read from the first file name, while various turbulent

1

Figure 1: University of Guelph micro-climate campaign in August 2017: campaign site (top) and
sonic anemometer installation on the roof of Rozhanski Hall (bottom)

2

statistics are read from the other two file names.

All entries for which there is no data are written as nan or not a number. Initially, when vectors
are defined, they are initialized with nan values using the expression numpy.nan. The script
carefully uses the modulus operator % to identify the proper index for various vectors or matrices
to write the data into the proper element. The particular function that help us calculate percentiles
of data containing nan values is numpy.nanpercentile.

#Data classification based on hour (equivalently Re and Ri) and wind angle

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

import datetime

#Define file names

#Always need Roof half-hourly data to retreive wind angle

Roof30minFileName = "Roof30min.txt"

StationOnePointStatisticsFileName = "Roof4HzOnePointStatistics.txt"

StationIntegralScalesFileName = "Roof4HzIntegralScales.txt"

#Must always load roof data

dataRoof30min = numpy.loadtxt(Roof30minFileName)

yearRoof=dataRoof30min[:,0]

monthRoof=dataRoof30min[:,1]

dayRoof=dataRoof30min[:,2]

timeHrRoof=dataRoof30min[:,3]

timeMinRoof=dataRoof30min[:,4]

RadAvgRoof=dataRoof30min[:,14]

RadStdRoof=dataRoof30min[:,15]

WDAvgRoof=dataRoof30min[:,16]

WDStdRoof=dataRoof30min[:,17]

NRoof=numpy.size(yearRoof)

#Correct for daylight saving to use time in local standard time

for i in range(0,NRoof):

if (timeHrRoof[i] > 0):

timeHrRoof[i] = timeHrRoof[i]-1

else:

timeHrRoof[i] = 23

dayRoof[i] = dayRoof[i] - 1

3

#Load data for either roof

dataStationOnePointStatistics = numpy.loadtxt(StationOnePointStatisticsFileName)

UAvgStation = dataStationOnePointStatistics[:, 5]

VAvgStation = dataStationOnePointStatistics[:, 6]

SAvgStation = dataStationOnePointStatistics[:, 7]

WAvgStation = dataStationOnePointStatistics[:, 8]

TSonicAvgStation = dataStationOnePointStatistics[:, 9]

UVarStation = dataStationOnePointStatistics[:, 10]

VVarStation = dataStationOnePointStatistics[:, 11]

WVarStation = dataStationOnePointStatistics[:, 12]

TSonicVarStation = dataStationOnePointStatistics[:, 13]

kStation = dataStationOnePointStatistics[:, 14]

UVCovStation = dataStationOnePointStatistics[:, 15]

UWCovStation = dataStationOnePointStatistics[:, 16]

VWCovStation = dataStationOnePointStatistics[:, 17]

UTSonicCovStation = dataStationOnePointStatistics[:, 18]

VTSonicCovStation = dataStationOnePointStatistics[:, 19]

WTSonicCovStation = dataStationOnePointStatistics[:, 20]

dataStationIntegralScales = numpy.loadtxt(StationIntegralScalesFileName)

TauUUStation = dataStationIntegralScales[:, 9]

TauVVStation = dataStationIntegralScales[:, 10]

TauWWStation = dataStationIntegralScales[:, 11]

TauTTStation = dataStationIntegralScales[:, 12]

LUUStation = dataStationIntegralScales[:, 13]

LVVStation = dataStationIntegralScales[:, 14]

LWWStation = dataStationIntegralScales[:, 15]

#Define classified matrices

timeHr=[10,11,12,13,14,15,16,17,18,19,20,21,22,23,0,1,2,3,4,5,6,7,8,9]

NSonicHourly=int(NRoof/24)

#Create matrices for all data: 24 times and 8 wind angles

UAvgStationAll=numpy.zeros((24,8,NSonicHourly))

UAvgStationAll[:]=numpy.nan

VAvgStationAll=numpy.zeros((24,8,NSonicHourly))

VAvgStationAll[:]=numpy.nan

SAvgStationAll=numpy.zeros((24,8,NSonicHourly))

SAvgStationAll[:]=numpy.nan

WAvgStationAll=numpy.zeros((24,8,NSonicHourly))

WAvgStationAll[:]=numpy.nan

4

TSonicAvgStationAll=numpy.zeros((24,8,NSonicHourly))

TSonicAvgStationAll[:]=numpy.nan

UVarStationAll=numpy.zeros((24,8,NSonicHourly))

UVarStationAll[:]=numpy.nan

VVarStationAll=numpy.zeros((24,8,NSonicHourly))

VVarStationAll[:]=numpy.nan

WVarStationAll=numpy.zeros((24,8,NSonicHourly))

WVarStationAll[:]=numpy.nan

TSonicVarStationAll=numpy.zeros((24,8,NSonicHourly))

TSonicVarStationAll[:]=numpy.nan

kStationAll=numpy.zeros((24,8,NSonicHourly))

kStationAll[:]=numpy.nan

UVCovStationAll=numpy.zeros((24,8,NSonicHourly))

UVCovStationAll[:]=numpy.nan

UWCovStationAll=numpy.zeros((24,8,NSonicHourly))

UWCovStationAll[:]=numpy.nan

VWCovStationAll=numpy.zeros((24,8,NSonicHourly))

VWCovStationAll[:]=numpy.nan

UTSonicCovStationAll=numpy.zeros((24,8,NSonicHourly))

UTSonicCovStationAll[:]=numpy.nan

VTSonicCovStationAll=numpy.zeros((24,8,NSonicHourly))

VTSonicCovStationAll[:]=numpy.nan

WTSonicCovStationAll=numpy.zeros((24,8,NSonicHourly))

WTSonicCovStationAll[:]=numpy.nan

TauUUStationAll=...

TauUUStationAll[:]=...

TauVVStationAll=...

TauVVStationAll[:]=...

TauWWStationAll=...

TauWWStationAll[:]=...

TauTTStationAll=...

TauTTStationAll[:]=...

LUUStationAll=...

LUUStationAll[:]=...

LVVStationAll=...

LVVStationAll[:]=...

LWWStationAll=...

LWWStationAll[:]=...

UAvgStation50=numpy.zeros((24,8))

UAvgStation50[:]=numpy.nan

VAvgStation50=numpy.zeros((24,8))

VAvgStation50[:]=numpy.nan

SAvgStation50=numpy.zeros((24,8))

SAvgStation50[:]=numpy.nan

WAvgStation50=numpy.zeros((24,8))

5

WAvgStation50[:]=numpy.nan

TSonicAvgStation50=numpy.zeros((24,8))

TSonicAvgStation50[:]=numpy.nan

UVarStation50=numpy.zeros((24,8))

UVarStation50[:]=numpy.nan

VVarStation50=numpy.zeros((24,8))

VVarStation50[:]=numpy.nan

WVarStation50=numpy.zeros((24,8))

WVarStation50[:]=numpy.nan

TSonicVarStation50=numpy.zeros((24,8))

TSonicVarStation50[:]=numpy.nan

kStation50=numpy.zeros((24,8))

kStation50[:]=numpy.nan

UVCovStation50=numpy.zeros((24,8))

UVCovStation50[:]=numpy.nan

UWCovStation50=numpy.zeros((24,8))

UWCovStation50[:]=numpy.nan

VWCovStation50=numpy.zeros((24,8))

VWCovStation50[:]=numpy.nan

UTSonicCovStation50=numpy.zeros((24,8))

UTSonicCovStation50[:]=numpy.nan

VTSonicCovStation50=numpy.zeros((24,8))

VTSonicCovStation50[:]=numpy.nan

WTSonicCovStation50=numpy.zeros((24,8))

WTSonicCovStation50[:]=numpy.nan

TauUUStation50=...

TauUUStation50[:]=...

TauVVStation50=...

TauVVStation50[:]=...

TauWWStation50=...

TauWWStation50[:]=...

TauTTStation50=...

TauTTStation50[:]=...

LUUStation50=...

LUUStation50[:]=...

LVVStation50=...

LVVStation50[:]=...

LWWStation50=...

LWWStation50[:]=...

#Calculate hourly and wind angle classified data

#Classify data based on time of day and wind angle on roof

for i in range(0,NRoof):

#Compute indices, for wind angle rotate -22.5 degrees then divide by 45. Why?

#Always classify by roof level wind angle

6

TimeIndex=int((i%48)/2)

AngleIndex=int(((WDAvgRoof[i]+360-22.5)%360)/45)

SampleIndex=int(i/48)*2+(i%2)

UAvgStationAll[TimeIndex][AngleIndex][SampleIndex]=UAvgStation[i]

VAvgStationAll[TimeIndex][AngleIndex][SampleIndex]=VAvgStation[i]

SAvgStationAll[TimeIndex][AngleIndex][SampleIndex]=SAvgStation[i]

WAvgStationAll[TimeIndex][AngleIndex][SampleIndex]=WAvgStation[i]

TSonicAvgStationAll[TimeIndex][AngleIndex][SampleIndex]=TSonicAvgStation[i]

UVarStationAll[TimeIndex][AngleIndex][SampleIndex]=UVarStation[i]

VVarStationAll[TimeIndex][AngleIndex][SampleIndex]=VVarStation[i]

WVarStationAll[TimeIndex][AngleIndex][SampleIndex]=WVarStation[i]

TSonicVarStationAll[TimeIndex][AngleIndex][SampleIndex]=TSonicVarStation[i]

kStationAll[TimeIndex][AngleIndex][SampleIndex]=kStation[i]

UVCovStationAll[TimeIndex][AngleIndex][SampleIndex]=UVCovStation[i]

UWCovStationAll[TimeIndex][AngleIndex][SampleIndex]=UWCovStation[i]

VWCovStationAll[TimeIndex][AngleIndex][SampleIndex]=VWCovStation[i]

UTSonicCovStationAll[TimeIndex][AngleIndex][SampleIndex]=UTSonicCovStation[i]

VTSonicCovStationAll[TimeIndex][AngleIndex][SampleIndex]=VTSonicCovStation[i]

WTSonicCovStationAll[TimeIndex][AngleIndex][SampleIndex]=WTSonicCovStation[i]

TauUUStationAll[TimeIndex][AngleIndex][SampleIndex]=...

TauVVStationAll[TimeIndex][AngleIndex][SampleIndex]=...

TauWWStationAll[TimeIndex][AngleIndex][SampleIndex]=...

TauTTStationAll[TimeIndex][AngleIndex][SampleIndex]=...

LUUStationAll[TimeIndex][AngleIndex][SampleIndex]=...

LVVStationAll[TimeIndex][AngleIndex][SampleIndex]=...

LWWStationAll[TimeIndex][AngleIndex][SampleIndex]=...

#Compute percentiles for Re and Ri

for i in range(0,24):

for j in range(0,8):

UAvgStation50[i][j]=numpy.nanpercentile(UAvgStationAll[i][j][:],50)

VAvgStation50[i][j]=numpy.nanpercentile(VAvgStationAll[i][j][:],50)

SAvgStation50[i][j]=numpy.nanpercentile(SAvgStationAll[i][j][:],50)

WAvgStation50[i][j]=numpy.nanpercentile(WAvgStationAll[i][j][:],50)

TSonicAvgStation50[i][j]=numpy.nanpercentile(TSonicAvgStationAll[i][j][:],50)

UVarStation50[i][j]=numpy.nanpercentile(UVarStationAll[i][j][:],50)

VVarStation50[i][j]=numpy.nanpercentile(VVarStationAll[i][j][:],50)

WVarStation50[i][j]=numpy.nanpercentile(WVarStationAll[i][j][:],50)

TSonicVarStation50[i][j]=numpy.nanpercentile(TSonicVarStationAll[i][j][:],50)

kStation50[i][j]=numpy.nanpercentile(kStationAll[i][j][:],50)

UVCovStation50[i][j]=numpy.nanpercentile(UVCovStationAll[i][j][:],50)

UWCovStation50[i][j]=numpy.nanpercentile(UWCovStationAll[i][j][:],50)

VWCovStation50[i][j]=numpy.nanpercentile(VWCovStationAll[i][j][:],50)

UTSonicCovStation50[i][j]=numpy.nanpercentile(UTSonicCovStationAll[i][j][:],50)

VTSonicCovStation50[i][j]=numpy.nanpercentile(VTSonicCovStationAll[i][j][:],50)

WTSonicCovStation50[i][j]=numpy.nanpercentile(WTSonicCovStationAll[i][j][:],50)

7

TauUUStation50[i][j]=...

TauVVStation50[i][j]=...

TauWWStation50[i][j]=...

TauTTStation50[i][j]=...

LUUStation50[i][j]=...

LVVStation50[i][j]=...

LWWStation50[i][j]=...

#Plot results

#The code is given.

Note that the plotting script is also given to you in the same script. Upon successfully running
the script, you should get the following figures.

• Explain if the effect of wind angle is evident on the median values of mean wind velocity
components.

• Is there a diurnal variation on turbulent variances? When do the median values for turbulent
variances peak?

• Explain if kinematic momentum fluxes are directional, i.e. depend on wind angle. Why?

• Explain if horizontal or vertical components of the kinematic heat flux are positive or nega-
tive. Why?

• How do you compare the integral timescale magnitudes as a function of directions?

• How do you compare the integral lengthscale magnitudes as a function of directions?

• Which one of the integral scales exhibit a significant diurnal variation? Why?

8

Figure 2: Medians for mean statistics grouped based on wind angle and time of day.

9

Figure 3: Medians for variance statistics grouped based on wind angle and time of day.

10

Figure 4: Medians for kinematic momentum fluxes grouped based on wind angle and time of day.

Figure 5: Medians for kinematic heat fluxes grouped based on wind angle and time of day.

11

Figure 6: Medians for integral timescales grouped based on wind angle and time of day.

Figure 7: Medians for integral lengthscales grouped based on wind angle and time of day.

12

ENGG*6790: Theory and Applications of Turbulence

Discrete Fourier Transform Analysis in Time and Frequency Domains
Amir A. Aliabadi

August 20, 2018

1 Introduction

In the lectures the discrete Fourier transform analysis is introduced as a tool to represent a time
series signal in the frequency domain. There are a number of ways to describe frequency:

n = number of cycles per entire time period of signal P , (1)

f = number of cycles per second =
n

P
=

n

N∆t
, (2)

ω = radians per second = 2πf =
2πn

N∆t
. (3)

A frequency of zero (n = 0) denotes a mean value. The fundamental frequency, where n = 1,
means that exactly one wave fills the entire time period P . Higher frequencies correspond to
harmonics of the fundamental frequency.

Using Euler’s (1707-1783) formula, eix = cos(x)+i sin(x), as a short notation for sines and cosines,
we can write the forward Fourier-transform to express the relationship between a time series A(k)
and frequency domain FA(n) using

FA(n) =
N−1∑
k=0

[
A(k)

N

]
e−i2πnk/N . (4)

In turbulence studies, it is often desired to know how much of the variance of a fluctuating time
series signal is associated with a particular frequency or range of frequencies. The answer to this
question is possible using the discrete Fourier transform. The square of the norm of the complex
Fourier transform for any frequency n is given by

1

|FA(n)|2 = [Freal(n)]2 + [Fimag(n)]2. (5)

When |FA(n)|2 is summed over frequencies from n = 1 to N − 1, the result equals the total biased
variance of the original time series, i.e.

σ2
A =

1

N

N−1∑
k=0

(A(k)− 〈A(k)〉T)2 =
N−1∑
n=1

|FA(n)|2 (6)

where the time average 〈〉T is the only average available to us for calculating the variance. Note
that the square of the norm of the complex Fourier transform is summed starting at n = 1 instead
of n = 0. This is trivial since there are no turbulent fluctuations associated with n = 0.

We can interpret |FA(n)|2 as the portion of variance explained by waves of frequency n. For
frequencies greater than the Nyquist frequency, the |FA(n)|2 values are identically equal to those at
the corresponding folded lower frequencies, since the Fourier transform of high frequencies are the
same as those for the low frequencies, except for a sign change in the imaginary part. Frequencies
higher than the Nyquist frequency cannot be resolved by Fourier transform, therefore, |FA(n)|2
values at high frequencies should be folded back and added to those at the lower frequencies.
Therefore, the discrete spectral intensity or discrete spectral energy, EA(n), is defined as EA(n) =
2|FA(n)|2, for n = 1 to n = nf , with N being odd, while for N being even, EA(n) = 2|FA(n)|2 for
frequencies from n = 1 to n = nf − 1, but EA(n) = |FA(n)|2 for n = nf .

In this lab we will analyze turbulence measurements of wind speed at a high frequency of 40 Hz
using an aircraft probe. The aircraft data is analyzed for a short time period associated with
a slanted profile of about 200 m vertical displacement and a horizontal displacement of several
hundred meters. During this time, the aircraft climbed and approximately moved in a straight
line. The key concept in turbulence measurements using aircrafts is the Taylor hypothesis. When
flying with an aircraft that moves several times faster than the wind speed, it is possible to assume
that atmospheric turbulence is frozen–otherwise flying would be dangerous–and hence use of the
Taylor hypothesis. This gives an equivalency between stationary and moving probe measurements
of turbulence. For moving probes, the wavenumber can be given as

κ =
2π

λ
=

2πf

Va
=

2πn

PVa
(7)

where Va is the average horizontal velocity of the aircraft. In this lab the aircraft data is read into
Python from a text file. This text file lists probe measurements in various columns as a function
of time. Not all columns are read in this analysis, so that only selective columns are used. These
are time, wind speed in the horizontal and vertical directions, altitude, latitude, longitude, and
aircraft velocity in the horizontal directions. The horizontal directions are assumed in the North
and East directions, corresponding to the x and y directions respectively, while the upward vertical
direction is assumed as z. Note that this system of coordinates is not right handed, but for our
purposes this does not cause any problems. The number of data in the file is intentionally set as
odd, so that the analysis of discrete spectral energy will be simplified.

2

In this lab we also try to reconstruct the components of the Reynolds stress tensor using data
from both time and frequency domains. The components of the Reynolds stress tensor are given
as

 〈u21〉 〈u1u2〉 〈u1u3〉
〈u2u1〉 〈u22〉 〈u2u3〉
〈u3u1〉 〈u3u2〉 〈u23〉

2 Python Script

Complete the following script. Note that time, wind velocity toward the North, wind velocity
toward the East, latitude, longitude, altitude, probe velocity toward the North, probe velocity
toward the East, and the wind velocity are read from column 0, 4, 5, 6, 7, 8, 9, 10, and 16 of the
text file respectively. Since the number of data points is odd, we know exactly how to calculate
the Nyquist frequency.

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

#Load all data in a matrix

data = numpy.loadtxt("DiscreteFourierTransformData.txt")

#Extract time, t, in [hr] and then convert to [s]

t=data[:,0]

t=t*3600

#Extract wind speed blowing to North, U, and East V, in [m s^-1]

U=data[:,4]

V=data[:,5]

#Extract latitude and longitude in [deg]

Lat=data[:,6]

Lon=data[:,7]

#Extract altitude [m]

Alt=data[:,8]

#Extract probe velocity in the North and East directions [m s^-1]

ProbeVelN=data[:,9]

ProbeVelE=data[:,10]

3

#Extract wind speed in the vertical direction, downward positive, [m s^-1]

#Multiply by -1 so that upward is positive

W=data[:,16]

W=-W

#Extract the length of the sample, in this case it is odd

N=len(t)

#Calculate the Nyquist frequency for the odd N

nf=int((N+1)/2)

#Create frequency vector starting from 0 ending at nf

cycles=numpy.linspace(0,nf,nf+1)

#Calculate entire time period T [s]

P=t[N-1]-t[0]

#Calculate aircraft average velocity

ProbeVelNMean=numpy.mean(ProbeVelN)

ProbeVelEMean=numpy.mean(ProbeVelE)

ProbeVelMean=(ProbeVelNMean**2+ProbeVelEMean**2)**0.5

#Calculate wavenumber for a moving probe

kappa=numpy.zeros((nf+1,1))

for n in range(0, nf+1):

kappa[n] =2*numpy.pi*cycles[n]/(P*ProbeVelMean)

#Define vectors in the frequency domain knowing that N is odd

FUreal=numpy.zeros((nf+1,1))

FUimag=numpy.zeros((nf+1,1))

FU2=numpy.zeros((nf+1,1))

EU=numpy.zeros((nf+1,1))

FVreal=numpy.zeros((nf+1,1))

FVimag=numpy.zeros((nf+1,1))

FV2=numpy.zeros((nf+1,1))

EV=numpy.zeros((nf+1,1))

FWreal=numpy.zeros((nf+1,1))

FWimag=numpy.zeros((nf+1,1))

FW2=numpy.zeros((nf+1,1))

EW=numpy.zeros((nf+1,1))

Ek=numpy.zeros((nf+1,1))

4

CoUV=numpy.zeros((nf+1,1))

EUV=numpy.zeros((nf+1,1))

CoUW=numpy.zeros((nf+1,1))

EUW=numpy.zeros((nf+1,1))

CoVW=numpy.zeros((nf+1,1))

EVW=numpy.zeros((nf+1,1))

#Perform a forward fourier transform for wind velocities knowing N is odd

for n in range(0, nf+1):

sumreal=0

sumimag=0

for k in range(0,N):

sumreal=sumreal+U[k]*numpy.cos(2*numpy.pi*n*k/N)

sumimag=sumimag-U[k]*numpy.sin(2*numpy.pi*n*k/N)

FUreal[n]=sumreal/N

FUimag[n]=sumimag/N

FU2[n]=(FUreal[n])**2+(FUimag[n])**2

for n in range(0, nf+1):

sumreal=0

sumimag=0

for k in range(0,N):

sumreal=...

sumimag=...

FVreal[n]=sumreal/N

FVimag[n]=sumimag/N

FV2[n]=(FVreal[n])**2+(FVimag[n])**2

for n in range(0, nf+1):

sumreal=0

sumimag=0

for k in range(0,N):

sumreal=...

sumimag=...

FWreal[n]=sumreal/N

FWimag[n]=sumimag/N

FW2[n]=(FWreal[n])**2+(FWimag[n])**2

#Calculate discrete energy spectra for individual velocities

#turbulent kinetic energy, and the co-spectra for pair of velocities

for n in range(0, nf+1):

#Calculate spectral energy knowing that N is odd

EU[n]=2*FU2[n]

5

EV[n]=...

EW[n]=...

Ek[n]=0.5*(EU[n]+EV[n]+EW[n])

CoUV[n]=FUreal[n]*FVreal[n]+FUimag[n]*FVimag[n]

CoUW[n]=...

CoVW[n]=...

EUV[n]=2*CoUV[n]

EUW[n]=2*CoUW[n]

EVW[n]=2*CoVW[n]

#Print all components of the Reynolds stress using

#the frequency domain, remember to subtract the first term corresponding to n=0

u2meanFreq=numpy.sum(EU[1:nf+1])

uvmeanFreq=numpy.sum(EUV[1:nf+1])

uwmeanFreq=numpy.sum(EUW[1:nf+1])

uvmeanFreq=numpy.sum(EUV[1:nf+1])

v2meanFreq=numpy.sum(EV[1:nf+1])

vwmeanFreq=numpy.sum(EVW[1:nf+1])

uwmeanFreq=numpy.sum(EUW[1:nf+1])

vwmeanFreq=numpy.sum(EVW[1:nf+1])

w2meanFreq=numpy.sum(EW[1:nf+1])

ReynoldsStressFrequencyDomain=[[u2meanFreq, uvmeanFreq, uwmeanFreq],\

[uvmeanFreq, v2meanFreq, vwmeanFreq],\

[uwmeanFreq, vwmeanFreq, w2meanFreq]]

print("ReynoldsStressFrequencyDomain=",ReynoldsStressFrequencyDomain)

#For comparison, we now calculate and print

#all components of the Reynolds stress using the time series

UmeanTime=numpy.mean(U)

VmeanTime=numpy.mean(V)

WmeanTime=numpy.mean(W)

u=U-UmeanTime

v=V-VmeanTime

w=W-WmeanTime

u2=numpy.multiply(u,u)

v2=numpy.multiply(v,v)

w2=numpy.multiply(w,w)

u2meanTime=numpy.mean(u2)

v2meanTime=numpy.mean(v2)

w2meanTime=numpy.mean(w2)

6

kTime=0.5*(u2meanTime+v2meanTime+w2meanTime)

uv=numpy.multiply(u,v)

uw=numpy.multiply(u,w)

vw=numpy.multiply(v,w)

uvmeanTime=numpy.mean(uv)

uwmeanTime=numpy.mean(uw)

vwmeanTime=numpy.mean(vw)

ReynoldsStressTimeDomain=[[u2meanTime, uvmeanTime, uwmeanTime],\

[uvmeanTime, v2meanTime, vwmeanTime],\

[uwmeanTime, vwmeanTime, w2meanTime]]

print("ReynoldsStressTimeDomain=",ReynoldsStressTimeDomain)

#Plot the aircraft latitude versus longitude

plt.plot(Lon,Lat)

plt.xlabel(’Lon [deg]’)

plt.ylabel(’Lat [deg]’)

plt.title(’Aircraft Latitude versus Longitude’)

plt.show()

#Plot the aircraft altitude versus time

plt.plot(t,Alt)

plt.xlabel(’t [s]’)

plt.ylabel(’Alt [m]’)

plt.title(’Aircraft Altitude versus Time’)

plt.show()

#Plot the frequency and energy spectra

plt.plot(kappa,FU2,’ko’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’FU2 [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’FU2 Frequency Spectrum’)

plt.show()

plt.plot(kappa,EU,’ko’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’EU [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EU Discrete Energy Spectrum’)

plt.show()

7

plt.plot(kappa,FV2,’ro’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’FV2 [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’FV2 Frequency Spectrum’)

plt.show()

plt.plot(kappa,EV,’ro’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’EV [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EV Discrete Energy Spectrum’)

plt.show()

plt.plot(kappa,FW2,’bo’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’FW2 [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’FW2 Frequency Spectrum’)

plt.show()

plt.plot(kappa,EW,’bo’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’EW [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EW Discrete Energy Spectrum’)

plt.show()

#Plot the discrete energy spectrum for turbulent kinetic energy

plt.plot(kappa,Ek,’go’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’Ek [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’Ek Discrete Energy Spectrum’)

plt.show()

#Plot absolute value of co-spectra and discrete energy co-spectra

plt.plot(kappa,numpy.absolute(CoUV),’ko’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’|CoUV| [m^2 s^-2]’)

8

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’CoUV Frequency Co-spectrum’)

plt.show()

plt.plot(kappa,numpy.absolute(EUV),’ko’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’|EUV| [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EUV Discrete Energy Co-spectrum’)

plt.show()

plt.plot(kappa,numpy.absolute(CoUW),’ro’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’|CoUW| [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’CoUW Frequency Co-spectrum’)

plt.show()

plt.plot(kappa,numpy.absolute(EUW),’ro’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’|EUW| [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EUW Discrete Energy Co-spectrum’)

plt.show()

plt.plot(kappa,numpy.absolute(CoVW),’bo’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’|CoVW| [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’CoVW Frequency Co-spectrum’)

plt.show()

plt.plot(kappa,numpy.absolute(EVW),’bo’)

plt.xlabel(’kappa [m^-1]’)

plt.ylabel(’|EVW| [m^2 s^-2]’)

plt.xscale(’log’)

plt.yscale(’log’)

plt.title(’EVW Discrete Energy Co-spectrum’)

plt.show()

Upon running the code the latitude, longitude, and altitude positions of the aircraft are plotted

9

to show the coordinates of the slanted profile. This is shown in the figure below.

Figure 1: Plot of the aircraft movement; latitude vs. longitude (left); altitude vs. time (right).

The code also attempts to calculate all components of the Reynolds stress from both time domain
and frequency domain representations of data. Note that when calculating the components of
Reynolds stress from frequency domain data, one should not sum the discrete energy spectrum
or co-spectrum series from n = 0, but one should sum these series from n = 1. The code should
give the following results for the components of the Reynolds stress. Note that these components
are remarkably close regardless of being calculated using frequency domain or time domain data.
Also note that the normal stresses are always positive, while the shear stresses may be positive or
negative, as indicated below.

ReynoldsStressFrequencyDomain=

[[0.32312158616159103, 0.044177412862565171, -0.11039639236231739],

[0.044177412862565171, 0.16474804187050252, -0.008244878812666015],

[-0.11039639236231739, -0.008244878812666015, 0.046163483303131858]]

ReynoldsStressTimeDomain=

[[0.32309356521181865, 0.044162249233617584, -0.11038926755049001],

[0.044162249233617584, 0.16472656197684166, -0.0082437328261500652],

[-0.11038926755049001, -0.0082437328261500652, 0.046161118580248905]]

Upon running the code one may obtain the following discrete frequency and discrete spectral energy
plots from the data. Note that the plots have been drawn using wave number representation for
frequency. Alternatively one could plot these spectra versus frequency f or number of cycles n per
time period P . The discrete spectral plots are more densely populated at higher wave numbers
(or frequencies) than they are at lower wave numbers.

The discrete energy spectrum for the turbulent kinetic energy can be obtained by combining the
discrete energy spectra for U , V , and W . As discussed in the lecture, this spectrum, once converted
to energy spectrum density, vs. wave number exhibits a slop of −5/3 in the inertial subrange,
when represented in the log-log scale. Of course, the inertial subrange only occupies a limited

10

region of measured wave numbers. The figure below is the resulting discrete energy spectrum for
the turbulent kinetic energy.

The absolute value of discrete frequency and discrete spectral energy for co-spectra is shown in
the figure below. Note that the absolute value of the co-spectra must be used so that all data can
appear in a log-log plot, otherwise negative values of co-spectra cannot be shown.

Try to answer the following questions.

• Explain why when calculating the components of Reynolds stress from frequency domain
data, one should not sum the discrete energy spectrum or co-spectrum series from n = 0,
but one should sum these series from n = 1?

• Why are the discrete spectral plots more densely populated at higher wave numbers (or
frequencies)?

• What is the difference between discrete frequency and discrete energy spectra?

• Would the shape of the spectral plots be different if they were plotted versus frequency f or
number of cycles n per time period P?

• Can you give an approximate range of wave numbers for the data set that corresponds to
the inertial subrange of turbulence?

11

Figure 2: Plot of the discrete frequency and discrete spectral energy for U (top), V (middle), and
W (bottom).

12

Figure 3: Plot of the discrete spectral energy for the turbulent kinetic energy.

13

Figure 4: Plot of the absolute value of discrete frequency and discrete spectral energy for co-spectra
UV (top), UW (middle), and VW (bottom).

14

ENGG*6790: Theory and Applications of Turbulence

1D Momentum Equation over Flat Surface with Constant Effective Viscosity
Amir A. Aliabadi

March 6, 2018

1 Introduction

In this lab we will solve the steady 1D momentum equation over flat surface with constant effective
viscosity using a finite difference scheme. We assume that the flow represents atmospheric flow
over flat terrain. In the lectures, using gradient-diffusion hypothesis, the momentum equation is
provided as

D

Dt
〈Uj〉︸ ︷︷ ︸

Material Derivative of Mean

=
∂

∂xi

[
νeff

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)]
︸ ︷︷ ︸

Surface Forces and Reynolds Stress

− 1

ρ

∂

∂xj
(〈p〉+

2

3
ρk)︸ ︷︷ ︸

Modified Pressure

, (1)

The effective viscosity is the sum of the molecular viscosity and the turbulent viscosity, such that

νeff (x, t)︸ ︷︷ ︸
Effective Viscosity

= ν︸︷︷︸
Molecular Viscosity

+ νT (x, t)︸ ︷︷ ︸
Turbulent Viscosity

. (2)

Suppose we use the Cartesian coordinate system with coordinate axes of x, y, and z, and velocities
corresponding to these axes being U = 〈U〉+u, V = 〈V 〉+v, W = 〈W 〉+w, respectively, as shown
in the schematic. We can assume that mean flow is only in the x direction parallel to the surface
and that the direction z is normal to the surface. Under steady state conditions 〈V 〉 = 〈W 〉 = 0.
In addition, the mean velocity 〈U〉 in the x and y directions does not change. Also assume that
the modified pressure has a constant gradient in the x direction. The 1D momentum equation
then simplifies to

0 = νeff
d2〈U〉
dz2

− τ. (3)

where τ is the constant modified pressure gradient in the x direction divided by density. Using a
finite difference scheme we can assume a uniform vertical discretization of ∆z and approximate

1

Figure 1: Schematic of 1D flow over flat surface using Cartesian coordinate system; finite difference
representation of the 1D flow.

the second derivative of 〈U〉 with

(
d2〈U〉
dz2

)
i

≈ 〈U〉i+1 − 2〈U〉i + 〈U〉i−1

(∆z)2
. (4)

Therefore, the finite difference representation of the 1D momentum equation can be provided using
the following equation, which can be rearranged to the following form for simplicity

0 = νeff
〈U〉i+1 − 2〈U〉i + 〈U〉i−1

(∆z)2
− τ. (5)

〈U〉i−1 − 2〈U〉i + 〈U〉i+1 =
τ(∆z)2

νeff
= b. (6)

Note that 〈U〉i represents the velocity at node i. i varies from 0 to N and the total number of
nodes are N + 1. 〈U〉0 represents velocity at the surface while 〈U〉N represents velocity at the
final node. It is assumed that the vertical domain is Z. The vertical discretization can be given
by ∆Z = Z/N .

For the interior of the domain we can obtain N−1 linear equations, while there are N+1 unknown
velocities 〈U〉i. The extra two equations necessary to solve the linear system of equations can be
obtained assuming boundary conditions. At the wall we can assume the no-slip boundary condition
which requires

〈U〉0 = 0, (7)

2

while at the top of the domain we can assume the zero-gradient boundary condition, justified by
the fact that velocity far away from the surface should not change as a function of height

〈U〉N = 〈U〉N−1. (8)

The overall equations to be solved can be listed as follows, which can also be shown in matrix
form for notational conciseness. The resulting A matrix is usually very sparse and a handful of
efficient numerical techniques can be used to solve the system of equations. For instance, these
equations can be solved using the Gaussian elimination technique or a simple matrix inversion if
the system is small.

〈U〉0 = 0

〈U〉0 − 2〈U〉1 + 〈U〉2 = b

〈U〉1 − 2〈U〉2 + 〈U〉3 = b

...

〈U〉N−2 − 2〈U〉N−1 + 〈U〉N = b

〈U〉N − 〈U〉N−1 = 0. (9)

A〈U〉 = B (10)

1 0 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
0 0 1 −2 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . −2 1 0
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 −1 1

〈U〉0
〈U〉1
〈U〉2
〈U〉3

...
〈U〉N−2

〈U〉N−1

〈U〉N

=

0
b
b
b
...
b
b
0

The simulation is desired for 4 combinations of τ and νeff shown in table below. Case 1 represents
a low pressure gradient and low effective viscosity. Case 2 represents a high pressure gradient and
low effective viscosity. Case 3 represents a low pressure gradient and high effective viscosity. Case
4 represents a high pressure gradient and high effective viscosity.

2 Python Script

Complete the following code. Note that to solve a linear system of equation, the command
numpy.linalg.solve() can be used, which is a functionality of the numpy interpreter package.

3

Table 1: Simulation cases with varying amount of horizontal pressure gradient and and effective
viscosities.

Case τ [m s−2] νeff [m2 s−1]
1 −0.01 5
2 −0.02 5
3 −0.01 10
4 −0.02 10

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

#Define horizontal pressure gradient divided by density [m s^-2]

tau=-0.01

#Define effective viscosity [m^2 s^-1]

nuEff=5

#Define z axis from 0 to Z with dz increments

Z=100 #[m]

N=20

dz=Z/N #[m]

z=numpy.linspace(0, Z, N+1)

#Define and initialize a mean velocity vector [m s^-1]

Umean=numpy.zeros((N+1,1))

#Define and initialize the A matrix

A=numpy.zeros((N+1,N+1))

A[0][0]=1

for i in range(1, N):

A[i][i-1]=1

A[i][i]=-2

A[i][i+1]=1

A[N][N-1]=-1

A[N][N]=1

#Define and initialize the B vector

b=...

B=...

B[0]=...

for i in range (1, N):

B[i]=...

4

B[N]=...

#Solve the linear system of equations A Umean = B

Umean = numpy.linalg.solve(A, B)

#Plot the mean velocity versus z

plt.plot(Umean,z)

plt.xlabel(’<U> [m s^-1]’)

plt.ylabel(’z [m]’)

plt.title(’Mean Velocity as Function of z’)

plt.show()

Upon completing the code. You should get the following figures. Try to answer the following
questions.

• For a constant effective viscosity, what is the role of pressure gradient on wind speed?

• For a constant pressure gradient, what is the role of effective viscosity on wind speed?

• Why is the solution for cases 1 and 4 identical? try to reason by interpreting the simplified
1D momentum equation.

5

Figure 2: Case1 (top left), Case 2 (top right), Case 3 (bottom left), Case 4 (bottom right)

6

ENGG*6790: Theory and Applications of Turbulence

1D Momentum Equation over Flat Surface
with Effective Viscosity Formulated by a Mixing Length Model

Amir A. Aliabadi

March 8, 2018

1 Introduction

In this lab we will solve the steady 1D momentum equation over flat surface with effective vis-
cosity formulated by mixing length using a finite difference scheme. We assume that the flow
represents atmospheric flow over flat terrain. In the lectures, using gradient-diffusion hypothesis,
the momentum equation is provided as

D

Dt
〈Uj〉︸ ︷︷ ︸

Material Derivative of Mean

=
∂

∂xi

[
νeff

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)]
︸ ︷︷ ︸

Surface Forces and Reynolds Stress

− 1

ρ

∂

∂xj
(〈p〉+

2

3
ρk)︸ ︷︷ ︸

Modified Pressure

, (1)

The effective viscosity is the sum of the molecular viscosity and the turbulent viscosity, such that

νeff (x, t)︸ ︷︷ ︸
Effective Viscosity

= ν︸︷︷︸
Molecular Viscosity

+ νT (x, t)︸ ︷︷ ︸
Turbulent Viscosity

. (2)

Suppose we use the Cartesian coordinate system with coordinate axes of x, y, and z, and velocities
corresponding to these axes being U = 〈U〉+u, V = 〈V 〉+v, W = 〈W 〉+w, respectively, as shown
in the schematic. We can assume that mean flow is only in the x direction parallel to the surface
and that the direction z is normal to the surface. Under steady state conditions 〈V 〉 = 〈W 〉 = 0.
In addition, the mean velocity 〈U〉 in the x and y directions does not change. Assume that the
modified pressure has a constant gradient in the x direction, and that effective viscosity can be
approximate by the turbulent viscosity νeff ≈ νT , the 1D momentum equation then simplifies to

0 =
d

dz

(
νT
d〈U〉
dz

)
− τ. (3)

1

Figure 1: Schematic of 1D flow over flat surface using Cartesian coordinate system; finite difference
representation of the 1D flow.

where τ is the constant modified pressure gradient in the x direction divided by density. Note
that turbulent viscosity itself is a function of z so it cannot be taken out of the outer derivative.
Instead the outer derivative operation should be applied such that

0 =
dνT
dz

d〈U〉
dz

+ νT
d2〈U〉
dz2

− τ. (4)

This momentum equation is highly nonlinear because it has a product of zeroth, first, and second
order derivatives. The turbulent viscosity itself can be formulated using the mixing length model
such that

νT = `2
m|
d〈U〉
dz
| = `2

m

d〈U〉
dz

(5)

where the absolute value around the derivative of mean velocity is removed assuming that this
derivative is positive. The mixing length `m is formulated using

`m =
κz

1 + κz
`0

(6)

where κ = 0.41 is the von Kármán constant, and `0 is the maximum mixing length. This for-
mulation for mixing length has the nice property that it is bounded between zero and `0, which
is physically sound since mixing length increases linearly in the log-law sublayer near a wall but
cannot increase indefinitely in the interior of the domain. This formulation results in

{
z → 0 `m → κz

z →∞ `m → `0

2

So we have two equations: momentum and viscosity, which can be linearized and solved using a
finite difference scheme. For notational convenience we can represent derivatives by superscripts
such that

{
ν

(0)
T = νT , ν

(1)
T = dνT

dz

〈U〉(0) = 〈U〉, 〈U〉(1) = d〈U〉
dz
, 〈U〉(2) = d2〈U〉

dz2

The two equations to be solved can be formulated as follows, where each term in each equation
can be renamed by a function f

0 = ν
(1)
T 〈U〉

(1)︸ ︷︷ ︸
f1,mom.

+ ν
(0)
T 〈U〉

(2)︸ ︷︷ ︸
f2,mom.

−τ (7)

0 = −ν(0)
T︸ ︷︷ ︸

f1,vis.

+ `2
m〈U〉(1)︸ ︷︷ ︸
f2,vis.

(8)

Each f function can be replaced by its approximate using the Newton method expressing the
function around an arbitrary point zi. Beginning with the momentum equation the f function
approximations are

f1,mom. ≈ f1,mom.(zi) +
∂f1,mom.

∂ν
(1)
T

|zi
[
ν

(1)
T (z)− ν(1)

T (zi)
]

+
∂f1,mom.

∂〈U〉(1)
|zi
[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= ν

(1)
T (zi)〈U〉(1)(zi) + 〈U〉(1)(zi)

[
ν

(1)
T (z)− ν(1)

T (zi)
]

+ ν
(1)
T (zi)

[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= −ν(1)

T (zi)〈U〉(1)(zi) + ν
(1)
T (zi)〈U〉(1)(z) + 〈U〉(1)(zi)ν

(1)
T (z) (9)

Note that f1,mom. has been replaced by a linear combinations of ν
(1)
T (z) and 〈U〉(1)(z). In a similar

fashion, f2,mom. can be replaced by its linearized approximation such that

f2,mom. ≈ f2,mom.(zi) +
∂f2,mom.

∂ν
(0)
T

|zi
[
ν

(0)
T (z)− ν(0)

T (zi)
]

+
∂f2,mom.

∂〈U〉(2)
|zi
[
〈U〉(2)(z)− 〈U〉(2)(zi)

]
= ν

(0)
T (zi)〈U〉(2)(zi) + 〈U〉(2)(zi)

[
ν

(0)
T (z)− ν(0)

T (zi)
]

+ ν
(0)
T (zi)

[
〈U〉(2)(z)− 〈U〉(2)(zi)

]
= −ν(0)

T (zi)〈U〉(2)(zi) + ν
(0)
T (zi)〈U〉(2)(z) + 〈U〉(2)(zi)ν

(0)
T (z) (10)

Note that f2,mom. has been replaced by a linear combinations of ν
(0)
T (z) and 〈U〉(2)(z). Therefore,

the momentum equation can be replaced by the following equation

3

c1〈U〉(1) + c2〈U〉(2) + c3ν
(0)
T + c4ν

(1)
T = cb (11)

where c1, c2, c3, c4, and cb, are constants that can be calculated using the linearized equations
above such that

c1 = ν
(1)
T (zi)

c2 = ν
(0)
T (zi)

c3 = 〈U〉(2)(zi)

c4 = 〈U〉(1)(zi)

cb = −
[
−ν(1)

T (zi)〈U〉(1)(zi)− ν(0)
T (zi)〈U〉(2)(zi)− τ

]
We can now focus our attention on linearizing the turbulent viscosity equation. The first term is
already linearized so we do not need to apply the Newton’s method, i.e.

f1,vis. = −ν(0)
T (z) (12)

The second term f2,vis. can be linearized conveniently. Here we can treat `m as a constant, after
all, it can be simply calculated for any zi

f2,vis. ≈ f2,vis.(zi) +
df2,vis.

d〈U〉(1)
|zi
[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= `2

m(zi)〈U〉(1)(zi) + `2
m(zi)

[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= `2

m(zi)〈U〉(1)(z) (13)

Therefore, the turbulent viscosity equation can be replaced by the following equation

d1ν
(0)
T + d2〈U〉(1) = db (14)

where d1, d2, and db, are constants that can be calculated using the linearized equations above
such that

d1 = −1

d2 = `2
m(zi)

db = 0

Now consider that we want to represent the linearized momentum and turbulent viscosity equations
using finite differences. Consider a vertical discretization ∆z as shown in the figure. Using central
differencing the derivatives can be replaced by values at indices i− 1, i, and i+ 1 such that

4

c1

2∆z
(〈U〉i+1−〈U〉i−1) +

c2

(∆z)2
(〈U〉i+1− 2〈U〉i + 〈U〉i−1) + c3νT,i +

c4

2∆z
(νT,i+1− νT,i−1) = cb (15)

d1νT,i +
d2

2∆z
(〈U〉i+1 − 〈U〉i−1) = db (16)

As can bee seen the unknowns 〈U〉i and νT,i appear in both discretized momentum and turbulent
viscosity equations. Therefore, these equations should be combined to arrive at a linear system
of equations and subsequently solved using a linear algebra solver. Let us define the unknowns
vector X such that

X =

x0

x1
...

xN−1

xN
xN+1

xN+2
...

x2N

x2N+1

=

〈U〉0
〈U〉1

...
〈U〉N−1

〈U〉N
νT,0
νT,1

...
νT,N−1

νT,N

As can be seen the first half of vector X contains the 〈U〉i solutions and the second half of vector
X contains the νT,i solutions. Note that νT,i maps to xN+1+i. Now we need 2N+2 linear equations
to solve for X.

Equation 0: a0,0x0 + a0,1x1 + ...+ a0,2Nx2N + a0,2N+1x2N+1 = b0

Equation 1: a1,0x0 + a1,1x1 + ...+ a1,2Nx2N + a1,2N+1x2N+1 = b1

...

Equation i: ai,0x0 + ai,1x1 + ...+ ai,2Nx2N + ai,2N+1x2N+1 = bi

...

Equation 2N : a2N,0x0 + a2N,1x1 + ...+ a2N,2Nx2N + a2N,2N+1x2N+1 = b2N

Equation 2N + 1: a2N+1,0x0 + a2N+1,1x1 + ...+ a2N+1,2Nx2N + a2N+1,2N+1x2N+1 = b2N+1

Our next task is to identify ai,j and bi. These can be inferred from the discretized momentum and
turbulent viscosity equations. ai,j are mostly zero except for where there is a non-zero coefficient
in the corresponding equations. The first N equations (equation 0, equation 1, ... equation N)
are the momentum equations. The boundary condition for 〈U〉 at the surface provides the zeroth
equation, i.e.

5

x0 = 0

a0,0 = 1

b0 = 0

The next i : 1 → N − 1 equations correspond to the momentum equation in the interior of the
domain, so the coefficients can be obtained as follows

(
−c1
2∆z

+ c2
(∆z)2

)
xi−1 +

(
−2c2
(∆z)2

)
xi +

(
c1

2∆z
+ c2

(∆z)2

)
xi+1+(−c4

2∆z

)
xi−1+N+1 + c3xi+N+1 +

(
c4

2∆z

)
xi+1+N+1 = cb

ai,i−1 = −c1
2∆z

+ c2
(∆z)2

ai,i = −2c2
(∆z)2

ai,i+1 = c1
2∆z

+ c2
(∆z)2

ai,i−1+N+1 = −c4
2∆z

ai,i+N+1 = c3

ai,i+1+N+1 = c4
2∆z

bi = cb

Note that where the turbulent viscosity term appears the index is shifted by N+1. The boundary
condition for 〈U〉 at the top of the domain provides the N th equation, i.e.

xN−1 − xN = 0

aN,N−1 = 1

aN,N = −1

bN = 0

The boundary condition for νT at the surface provides the N + 1th equation, i.e.

xN+1 = 0

aN+1,N+1 = 1

bN+1 = 0

The next i : N + 2→ 2N equations correspond to the turbulent viscosity equation in the interior
of the domain, so the coefficients can be obtained as follows

6

(−d2
2∆z

)
xi−1−(N+1) +

(
d2

2∆z

)
xi+1−(N+1) + d1xi = db

ai,i−1−(N+1) = −d2
2∆z

ai,i+1−(N+1) = d2
2∆z

ai,i = d1

bi = db

Note that where the momentum term appears the index is shifted by −(N + 1). The boundary
condition for νT at the top of the domain provides the 2N + 1th equation. Knowing that the
velocity gradient at this boundary is zero, the turbulent viscosity must also be zero, i.e.

x2N+1 = 0

a2N+1,2N+1 = 1

b2N+1 = 0

Finally, we have arrived at linear system of equations that can be solved to provide the unknowns.
This system is given as follows

AX = B (17)

a0,0 a0,1 . . . a0,2N a0,2N+1

a1,0 a1,1 . . . a1,2N a1,2N+1
...

...
...

...
...

a2N,0 a2N,1 . . . a2N,2N a2N,2N+1

a2N+1,0 a2N+1,1 . . . a2N+1,2N a2N+1,2N+1

x0

x1
...

x2N

x2N+1

 =

b0

b1
...
b2N

b2N+1

Note that the coefficients identified, themselves, depend on the solution. As a result the solution
to the system of equations above must be found iteratively. That is, an initial guess for the
solution vector X must be assumed. Then the system of equations must be solved iteratively.
After each iteration the solutions must be updated. Subsequently, the system of equations must
be solved again, until the difference between successive solutions is less than a specified error. For
this purpose, the maximum norm can be considered. Suppose that a relative error of Err = 0.01
is specified for either the momentum or turbulent viscosity solution. Also suppose the xi and
x

(new)
i represent two successive solutions for a specific point. The iteration can be stopped if the

following conditions are met

L∞,mom. = max

(
|x

(new)
0 −x0
x0

|, |x
(new)
1 −x1
x1

|, ..., |x
(new)
N −xN
xN

|
)
< Err

L∞,vis. = max

(
|x

(new)
N+1 −xN+1

xN+1
|, |x

(new)
N+2 −xN+2

xN+2
|, ..., |x

(new)
2N+1−x2N+1

x2N+1
|
)
< Err

7

The simulation is desired for 4 combinations of τ and `0 shown in table below. Case 1 represents
a low pressure gradient and small mixing length. Case 2 represents a high pressure gradient and
small mixing length. Case 3 represents a low pressure gradient and large mixing length. Case 4
represents a high pressure gradient and large mixing length.

Table 1: Simulation cases with varying amount of horizontal pressure gradient and mixing length.
Case τ [m s−2] `0 [m]
1 −0.005 10
2 −0.01 10
3 −0.005 20
4 −0.01 20

2 Python Script

Complete the following code. Note that since we are solving the system of linear equations
iteratively, we must initialize our solution. Conditional statements in Python are similar to other
languages, i.e. if and else syntax is used. The conditional statement used in the loop checks if
both relative errors are less than the maximum error defined in the code. If the condition is met
the loop is broken using the break command. After the execution of the loop, the relative errors
are checked again and solutions are plotted only if these errors are less than the maximum error
defined.

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

#Define horizontal pressure gradient divided by density [m s^-2]

tau=-0.005

#Define von Karman constant

kappa=0.41

#Define maximum mixing length [m]

l0=10

#Define maximum iteration number

MaxIter=100

#Define relative error

Err=0.01

8

#Define z axis from 0 to Z with dz increments

Z=100 #[m]

N=50

dz=Z/N #[m]

z=numpy.linspace(0, Z, N+1)

#Define and initialize a mean velocity vector [m s^-1]

Uinitial=1

Umean=numpy.zeros((N+1,1))

Umean[:]=Uinitial

#Define and initialize turbulent viscosity [m^2 s^-1]

nuTinitial=1

nuT=numpy.zeros((N+1,1))

nuT[:]=nuTinitial

#Define unknown vector X, coefficient matrix A, and vector B, in AX=B

x=numpy.zeros((2*N+2,1))

xnew=numpy.zeros((2*N+2,1))

b=numpy.zeros((2*N+2,1))

a=numpy.zeros((2*N+2,2*N+2))

#Initialize solution vector X

#This is a short syntax for for loop

x[0:N+1]=Umean[0:N+1]

x[N+1:2*N+2]=nuT[0:N+1]

for iter in range(1, MaxIter):

#Momentum equations

#i = 0

a[0][0]=1

b[0]=0

#i = 1 to N-1

for i in range(1, N):

#Calculate derivatives by finite differences for the current i index

#Remember to shift indices by N+1 if needed

nuT0=x[i+N+1]

nuT1=(x[i+1+N+1]-x[i-1+N+1])/(2*dz)

Umean1=(x[i+1]-x[i-1])/(2*dz)

Umean2=(x[i+1]-2*x[i]+x[i-1])/(dz**2)

#Set constants necessary to build the coefficient matrix

c1=nuT1

c2=nuT0

c3=Umean2

c4=Umean1

9

cb=-(-nuT1*Umean1-nuT0*Umean2-tau)

#Set the coefficient matrix and the B vector

a[i][i-1]=-c1/(2*dz)+c2/(dz**2)

a[i][i]=-2*c2/(dz**2)

a[i][i+1]=c1/(2*dz)+c2/(dz**2)

a[i][i-1+N+1]=-c4/(2*dz)

a[i][i+N+1]=c3

a[i][i+1+N+1]=c4/(2*dz)

b[i]=cb

#i = N

a[N][N-1]=1

a[N][N]=-1

b[N]=0

#Turbulent viscosity equations

#i = N+1

a[N+1][N+1]=...

b[N+1]=...

#i = N+2 to 2N

for i in range(N+2, 2*N+1):

#Here there are no derivatives to calculate for the current i index

#Set constants necessary to build the coefficient matrix

#Shift indices by -(N+1) if needed

d1=-1

d2=(kappa*z[i-(N+1)]/(1+(kappa*z[i-(N+1)])/l0))**2

db=0

#Set the coefficient matrix and the B vector

a[i][i-1-(N+1)]=...

a[i][i+1-(N+1)]=...

a[i][i]=...

b[i]=...

#i = 2N+1

a[2*N+1][2*N+1]=...

b[2*N+1]=...

xnew=numpy.linalg.solve(a,b)

#Calculate maximum norm errors for both momentum and turbulent viscosity

ErrUmean=numpy.max(numpy.abs(numpy.divide(xnew[1:N+1]-x[1:N+1],x[1:N+1])))

ErrnuT=...

if ErrUmean < Err and ErrnuT < Err:

print(’Solutions converged at iteration: ’,iter)

#Exit the loop

break

10

#Update solution

x[:]=xnew[:]

#Assign the X vector to the original Umean and nuT vectors

Umean[0:N+1]=x[0:N+1]

nuT[0:N+1]=x[N+1:2*N+2]

if ErrUmean < Err and ErrnuT < Err:

#Plot the mean velocity versus z

plt.plot(Umean,z)

plt.xlabel(’<U> [m s^-1]’)

plt.ylabel(’z [m]’)

plt.title(’Mean Velocity as Function of z’)

plt.show()

#Plot the turbulent viscosity versus z

plt.plot(nuT,z)

plt.xlabel(’nuT [m^2 s^-1]’)

plt.ylabel(’z [m]’)

plt.title(’Turbulent Viscosity as Function of z’)

plt.show()

else:

print(’Solutions did not converge!’)

Upon completing the code. You should get the following figures. Try to answer the following
questions.

• What is the effect of increasing pressure gradient on mean velocity and turbulent viscosity?

• What is the effect of increasing mixing length on mean velocity and turbulent viscosity?

• Instead of a non-zero initial turbulent viscosity, initialize nuTinitial to 0. Can you obtain
a converged solution? Reason why.

11

Figure 2: Momentum for Case1 (top left), Case 2 (top right), Case 3 (bottom left), Case 4 (bottom
right)

12

Figure 3: Turbulent viscosity for Case1 (top left), Case 2 (top right), Case 3 (bottom left), Case
4 (bottom right)

13

ENGG*6790: Theory and Applications of Turbulence

1D Momentum and Turbulent Kinetic Energy Equations over Flat Surface
Formulated as a Steady Model and Analyzed for Grid Convergence

Amir A. Aliabadi

March 14, 2019

1 Introduction

In this lab we wish to quantify order of convergence and the Grid Convergence Index (GCI) for a
steady 1D momentum and turbulent kinetic energy model of turbulence. In the lectures, the order
of grid convergence was introduced as a quantity and quantifies the behaviour of the solution error
defined as the difference between the discrete solution and the exact solution,

E = f(h)− fexact = Chp +H.O.T. (1)

where C is a constant, h is some measure of mesh spacing, and p is the order of convergence. The
Higher Order Terms (H.O.T.) are negligible compared to Chp.

A numerical code uses a numerical algorithm that will provide a theoretical order of convergence;
however, the boundary conditions, numerical models, and mesh will reduce this order so that the
observed order of convergence will likely be lower. Neglecting H.O.T and taking the logarithm of
both sides of the above equation result in

lnE = lnC + p lnh. (2)

The order of convergence p can be obtained from the slope of the curve of lnE versus lnh. If such
data points are available, the slope can be read from the graph or the slope can be computed from
a least-squares fit to the data.

Once the order of convergence is determined, it is possible to calculate the Grid Convergence
Index (GCI). The GCI is a measure of the percentage the computed solution is away from the
asymptotic computed solution. It indicates an error band on how far the solution is from the
asymptotic value and how much the solution would change with a further refinement of the mesh.
A small value of GCI indicates that the computation is within the asymptotic range. The GCI is
defined as

1

GCImn =
Fs|εmn|
rp − 1

(3)

where Fs is a factor of safety. The refinement may be in either space or time. The factor of
safety is recommended to be 3.0 for comparisons of two meshes and 1.25 for comparison over three
meshes or more. The relative error εmn is defined by

εmn =
φm − φn
φn

. (4)

where φm and φn are any solution of interest at two consecutive levels, or resolutions, of the mesh.
The choice of Fs is affected by whether two or three levels of mesh have been used to estimate p.

In the lectures the turbulent kinetic energy model was introduced as one transport equation to
predict the turbulent kinetic energy. This turbulent kinetic energy was then used to formulate
turbulent viscosity so that the momentum equation can be solved. The turbulent kinetic energy
equation is given as

Dk

Dt︸︷︷︸
Material Derivative

≡ ∂k

∂t︸︷︷︸
Storage

+ 〈U〉.∇k︸ ︷︷ ︸
Advection

= ∇.
(
νT
σk
∇k
)

︸ ︷︷ ︸
Energy Flux Divergence

+ P︸︷︷︸
Production

− ε︸︷︷︸
Dissipation

, (5)

νT = ck1/2`m,

ε = CD
k3/2

`m
,

`m(x, t) known.

This model can be employed to develop a one-dimensional transport model for momentum and
turbulent kinetic energy under steady-state conditions. Suppose we use the Cartesian coordinate
system with coordinate axes of x, y, and z, and velocities corresponding to these axes being
U = 〈U〉+u, V = 〈V 〉+v, W = 〈W 〉+w, respectively, as shown in the schematic. We can assume
that mean flow is only in the x direction parallel to the surface and that the direction z is normal
to the surface so that 〈V 〉 = 〈W 〉 = 0. Assume that the modified pressure has a constant gradient
in the x direction, the 1D momentum equation then simplifies to

0 =
∂

∂z

(
νT
∂〈U〉
∂z

)
︸ ︷︷ ︸

Surface Forces and Reynolds Stress

− τ︸︷︷︸
Modified Pressure Forces

(6)

The one-dimensional turbulent kinetic energy equation can be developed as follows

0 =
∂

∂z

(
νT
σk

∂k

∂z

)
︸ ︷︷ ︸

Energy Flux Divergence

+ νT

(
∂〈U〉
∂z

)2

︸ ︷︷ ︸
Shear Production

− ε︸︷︷︸
Dissipation

(7)

2

where the energy flux divergence was discussed in the lectures. This term ensures that the resulting
model transport equation for k yields smooth solutions, and that a boundary condition can be
imposed on k everywhere in the boundary of the domain. Otherwise the model may diverge if other
transport mechanisms for k are much smaller than this term. The shear production term, is an
example of a production term P , that contributes to the generation of the turbulent kinetic energy.
Here, when there is non-zero mean velocity gradient, turbulent kinetic energy is generated. The
dissipation term is responsible for consuming turbulent kinetic energy down the energy cascade.

To close the turbulence model we can assume that the turbulent Prandtl number is unity, i.e.
σk = 1. We can model turbulent viscosity, dissipation rate, and the appropriate mixing length as
follows.

νT = Ck`mk

1/2,

ε = Cε`
−1
m k3/2,

`m = κz/(1 + κz
`0

).

where κ = 0.41 is the von Kármán constant, and `0 is the maximum mixing length. This for-
mulation for mixing length has the nice property that it is bounded between zero and `0, which
is physically sound since mixing length increases linearly in the log-law sublayer near a wall but
cannot increase indefinitely in the interior of the domain. This formulation results in

{
z → 0 `m → κz

z →∞ `m → `0

So we have two equations: momentum and turbulent kinetic energy. We can eliminate νT and ε
from the momentum and turbulent kinetic energy equations by direct substitutions and simplifi-
cations using the chain rule. So the two equations can be re-expressed as

0 =
∂

∂z

(
Ck`mk

1/2∂〈U〉
∂z

)
− τ

= 0.5Ck`mk
−1/2∂k

∂z

∂〈U〉
∂z

+ Ck`mk
1/2∂

2〈U〉
∂z2

− τ (8)

0 =
∂

∂z

(
Ck`mk

1/2∂k

∂z

)
+ Ck`mk

1/2

(
∂〈U〉
∂z

)2

− Cε`−1
m k3/2

= 0.5Ck`mk
−1/2

(
∂k

∂z

)2

+ Ck`mk
1/2∂

2k

∂z2
+ Ck`mk

1/2

(
∂〈U〉
∂z

)2

− Cε`−1
m k3/2. (9)

As can be seen the two equations are extremely non-linear. They involve non-integer powers of
the unknowns and their derivatives. They also involve the multiplication of the unknowns and

3

derivatives. These equations can be linearized and solved using a finite difference scheme. Figure
below shows the finite difference representation of the solution spaces for momentum and turbulent
kinetic energy.

Figure 1: Schematic of 1D flow over flat surface using Cartesian coordinate system; finite difference
representation of the 1D flow.

For notational convenience we can represent derivatives by superscripts and subsequently re-
express the momentum and turbulent kinetic energy equations using this notation.

{
〈U〉(0) = 〈U〉, 〈U〉(1) = ∂〈U〉

∂z
, 〈U〉(2) = ∂2〈U〉

∂z2

k(0) = k, k(1) = ∂k
∂z
, k(2) = ∂2k

∂z2

0 = 0.5Ck`m(k(0))−1/2k(1)〈U〉(1)︸ ︷︷ ︸
f1,mom

+Ck`m(k(0))1/2〈U〉(2)︸ ︷︷ ︸
f2,mom

−τ (10)

0 = 0.5Ck`m(k(0))−1/2(k(1))2︸ ︷︷ ︸
f1,tke

+Ck`m(k(0))1/2k(2)︸ ︷︷ ︸
f2,tke

+Ck`m(k(0))1/2(〈U〉(1))2︸ ︷︷ ︸
f3,tke

−Cε`−1
m (k(0))3/2︸ ︷︷ ︸
f4,tke

. (11)

where each non-linear term in the equations have been renamed by a function f , Next, each f func-
tion can be replaced by its approximate using the Newton method expressing the function around
an arbitrary point zi. Beginning with the momentum equation the f function approximations are

4

f1,mom. ≈ f1,mom.(zi)

+
∂f1,mom.

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f1,mom.

∂k(1)
|zi
[
k(1)(z)− k(1)(zi)

]
+
∂f1,mom.

∂〈U〉(1)
|zi
[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= 0.5Ck`m(k(0))−1/2(zi)k

(1)(zi)〈U〉(1)(zi)

− 0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi)[k

(0)(z)− k(0)(zi)]

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)[k
(1)(z)− k(1)(zi)]

+ 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)

[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= −0.25Ck`m(k(0))−1/2(zi)k

(1)(zi)〈U〉(1)(zi)

− 0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi)k

(0)(z)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)k
(1)(z)

+ 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)〈U〉(1)(z) (12)

f2,mom. ≈ f2,mom.(zi)

+
∂f2,mom.

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f2,mom.

∂〈U〉(2)
|zi
[
〈U〉(2)(z)− 〈U〉(2)(zi)

]
= Ck`m(k(0))1/2(zi)〈U〉(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)
[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))1/2(zi)

[
〈U〉(2)(z)− 〈U〉(2)(zi)

]
= −0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k

(0)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k
(0)(z)

+ Ck`m(k(0))1/2(zi)〈U〉(2)(z) (13)

5

f1,tke ≈ f1,tke(zi)

+
∂f1,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f1,tke

∂k(1)
|zi
[
k(1)(z)− k(1)(zi)

]
= 0.5Ck`m(k(0))−1/2(zi)(k

(1))2(zi)

− 0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi)

[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))−1/2(zi)k

(1)(zi)
[
k(1)(z)− k(1)(zi)

]
= −0.25Ck`m(k(0))−1/2(zi)(k

(1))2(zi)

− 0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi)k

(0)(z)

+ Ck`m(k(0))−1/2(zi)k
(1)(zi)k

(1)(z) (14)

f2,tke ≈ f2,tke(zi)

+
∂f2,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f2,tke

∂k(2)
|zi
[
k(2)(z)− k(2)(zi)

]
= Ck`m(k(0))1/2(zi)k

(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)k
(2)(zi)

[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))1/2(zi)

[
k(2)(z)− k(2)(zi)

]
= −0.5Ck`m(k(0))1/2(zi)k

(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)k
(2)(zi)k

(0)(z)

+ Ck`m(k(0))1/2(zi)k
(2)(z) (15)

f3,tke ≈ f3,tke(zi)

+
∂f3,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+

∂f3,tke

∂〈U〉(1)
|zi
[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi)

+ 0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)
[
k(0)(z)− k(0)(zi)

]
+ 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)

[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= −1.5Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi)

+ 0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)k
(0)(z)

+ 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)〈U〉(1)(z) (16)

6

f4,tke ≈ f4,tke(zi)

+
∂f4,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
= −Cε`−1

m (k(0))3/2(zi)

− 1.5Cε`
−1
m (k(0))1/2(zi)

[
k(0)(z)− k(0)(zi)

]
= 0.5Cε`

−1
m (k(0))3/2(zi)

− 1.5Cε`
−1
m (k(0))1/2(zi)k

(0)(z) (17)

Now we can write the linearized forms of the momentum and turbulent kinetic energy equations.

c1〈U〉(1) + c2〈U〉(2) + c3k
(0) + c4k

(1) = cb (18)

c1 = 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)

c2 = Ck`m(k(0))1/2(zi)

c3 = −0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi) + 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)

c4 = 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)

cb = −
[
−0.25Ck`m(k(0))−1/2(zi)k

(1)(zi)〈U〉(1)(zi)− 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k
(0)(zi)− τ

]
d1k

(0) + d2k
(1) + d3k

(2) + d4〈U〉(1) = db (19)

d1 = −0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi) + 0.5Ck`m(k(0))−1/2(zi)k

(2)(zi)

+0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)− 1.5Cε`
−1
m (k(0))1/2(zi)

d2 = Ck`m(k(0))−1/2(zi)k
(1)(zi)

d3 = Ck`m(k(0))1/2(zi)

d4 = 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)

db = −
[
−0.25Ck`m(k(0))−1/2(zi)(k

(1))2(zi)− 0.5Ck`m(k(0))1/2(zi)k
(2)(zi)

]
−
[
−1.5Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi) + 0.5Cε`

−1
m (k(0))3/2(zi)

]
Now consider that we want to represent the linearized momentum and turbulent kinetic energy
equations using finite differences. Consider a vertical discretization ∆z as shown in the figure.
Using central differencing the spatial derivatives can be replaced by values at indices i− 1, i, and
i+ 1. We can replace the momentum and turbulent kinetic energy equations by their discretized
versions as follows

c1
〈U〉i+1 − 〈U〉i−1

2∆z
+ c2
〈U〉i+1 − 2〈U〉i + 〈U〉i−1

(∆z)2
+ c3ki + c4

ki+1 − ki−1

2∆z
= cb (20)

7

d1ki + d2
ki+1 − ki−1

2∆z
+ d3

ki+1 − 2ki + ki−1

(∆z)2
+ d4
〈U〉i+1 − 〈U〉i−1

2∆z
= db (21)

The above equations must be rearranged as follows.

(
− c1

2∆z
+

c2

(∆z)2

)
〈U〉i−1 +

(
− 2c2

(∆z)2

)
〈U〉i +

(
c1

2∆z
+

c2

(∆z)2

)
〈U〉i+1

+
(
− c4

2∆z

)
ki−1 + c3ki +

(c4

2∆z

)
ki+1 = cb (22)

(
− d2

2∆z
+

d3

(∆z)2

)
ki−1 +

(
d1 −

2d3

(∆z)2

)
ki +

(
d2

2∆z
+

d3

(∆z)2

)
ki+1

+

(
− d4

2∆z

)
〈U〉i−1 +

(
d4

2∆z

)
〈U〉i+1 = db (23)

As can bee seen the unknowns 〈U〉i and ki appear in both discretized momentum and turbulent
kinetic energy equations. Therefore, these equations should be combined to arrive at a linear
system of equations and subsequently solved using a linear algebra solver. Let us define the
unknowns vector X such that

X =

x0

x1
...

xN−1

xN
xN+1

xN+2
...

x2N

x2N+1

=

〈U〉0
〈U〉1

...
〈U〉N−1

〈U〉N
k0

k1
...

kN−1

kN

As can be seen the first half of vector X contains the 〈U〉i solutions and the second half of vector
X contains the ki solutions. Note that ki maps to xi+N+1. Now we need 2N + 2 linear equations
to solve for X, i.e.

8

Equation 0: a0,0x0 + a0,1x1 + ...+ a0,2Nx2N + a0,2N+1x2N+1 = b0

Equation 1: a1,0x0 + a1,1x1 + ...+ a1,2Nx2N + a1,2N+1x2N+1 = b1

...

Equation i: ai,0x0 + ai,1x1 + ...+ ai,2Nx2N + ai,2N+1x2N+1 = bi

...

Equation 2N : a2N,0x0 + a2N,1x1 + ...+ a2N,2Nx2N + a2N,2N+1x2N+1 = b2N

Equation 2N + 1: a2N+1,0x0 + a2N+1,1x1 + ...+ a2N+1,2Nx2N + a2N+1,2N+1x2N+1 = b2N+1

Our next task is to identify ai,j and bi. These can be inferred from the discretized momentum
and turbulent kinetic energy equations. ai,j are mostly zero except for where there is a non-
zero coefficient in the corresponding equations. The first N equations (equation 0, equation 1,
... equation N) are the momentum equations. The boundary condition for 〈U〉 at the surface
provides the zeroth equation, i.e.

x0 = 0

a0,0 = 1

b0 = 0

The next i : 1 → N − 1 equations correspond to the momentum equation in the interior of the
domain, so the coefficients can be obtained as follows

(
− c1

2∆z
+ c2

(∆z)2

)
xi−1 +

(
− 2c2

(∆z)2

)
xi +

(
c1

2∆z
+ c2

(∆z)2

)
xi+1

+
(
− c4

2∆z

)
xi−1+N+1 + c3xi+N+1 +

(
c4

2∆z

)
xi+1+N+1 = cb

ai,i−1 = − c1
2∆z

+ c2
(∆z)2

ai,i = − 2c2
(∆z)2

ai,i+1 = c1
2∆z

+ c2
(∆z)2

ai,i−1+N+1 = − c4
2∆z

ai,i+N+1 = c3

ai,i+1+N+1 = c4
2∆z

bi = cb

Note that where the turbulent kinetic energy term appears the index is shifted by N + 1. The
boundary condition for 〈U〉 at the top of the domain provides the N th equation, i.e.

9

xN−1 − xN = 0

aN,N−1 = 1

aN,N = −1

bN = 0

The boundary condition for k at the surface provides the N + 1th equation, i.e.

xN+1 = 0

aN+1,N+1 = 1

bN+1 = 0

The next i : N + 2 → 2N equations correspond to the turbulent kinetic energy equation in the
interior of the domain, so the coefficients can be obtained as follows

(
− d2

2∆z
+ d3

(∆z)2

)
xi−1 +

(
d1 − 2d3

(∆z)2

)
xi +

(
d2

2∆z
+ d3

(∆z)2

)
xi+1

+
(
− d4

2∆z

)
xi−1−(N+1) +

(
d4

2∆z

)
xi+1−(N+1) = db

ai,i−1−(N+1) = − d4
2∆z

ai,i+1−(N+1) = d4
2∆z

ai,i−1 = − d2
2∆z

+ d3
(∆z)2

ai,i = d1 − 2d3
(∆z)2

ai,i+1 = d2
2∆z

+ d3
(∆z)2

bi = db

Note that where the momentum term appears the index is shifted by −(N + 1). The boundary
condition for k at the top of the domain provides the 2N + 1th equation. The vertical gradient of
the turbulent kinetic energy must be zero, i.e.

x2N − x2N+1 = 0

a2N+1,2N = 1

a2N+1,2N+1 = −1

b2N+1 = 0

Finally, we have arrived at linear system of equations that can be solved to provide the unknowns.
This system is given as follows

AX = B (24)

10

a0,0 a0,1 . . . a0,2N a0,2N+1

a1,0 a1,1 . . . a1,2N a1,2N+1
...

...
...

...
...

a2N,0 a2N,1 . . . a2N,2N a2N,2N+1

a2N+1,0 a2N+1,1 . . . a2N+1,2N a2N+1,2N+1

x0

x1
...

x2N

x2N+1

 =

b0

b1
...
b2N

b2N+1

Note that the coefficients identified, themselves, depend on the solution. As a result the solution
to the system of equations above must be found iteratively. That is, an initial guess for the
solution vector X must be assumed. Then the system of equations must be solved iteratively.
After each iteration the solutions must be updated. The system of equations must be solved
iteratively until the difference between successive solutions is less than a specified error. For this
purpose, the maximum norm can be considered. Suppose that a relative error of Err = 0.01 is
specified for either the momentum or turbulent kinetic energy solution. Also suppose the xi and
x

(new)
i represent two successive solutions for a specific point. The iteration can be stopped if the

following conditions are met

L∞,mom. = max

(
|x

(new)
0 −x0
x0

|, |x
(new)
1 −x1
x1

|, ..., |x
(new)
N −xN
xN

|
)
< Err

L∞,tke = max

(
|x

(new)
N+1 −xN+1

xN+1
|, |x

(new)
N+2 −xN+2

xN+2
|, ..., |x

(new)
2N+1−x2N+1

x2N+1
|
)
< Err

When solving a system of equations iteratively, it is sometimes more stable to only partially
update a solution after each iteration. This is known as under relaxation. Consider that φn−1 is
the solution space found in the previous iteration and φnew is the newly found solution. With the
under relaxation factor 0 < α < 1, the solution can be updated for the next iteration such that

φn = φn−1 + α(φnew − φn−1). (25)

Particularly, whenever solving non-linear system of equations, this method improves stability of
obtaining a numerical solution.

The simulation is desired for 6 levels of mesh shown in table below. These levels are ordered from
finest to coarsest. The finest mesh is simulated to approximate an exact solution, while the GCI
is desired for the maximum velocity on top of the domain. Five GCI levels, 1, 2, 3, 4, and 5, will
be calculated for mesh levels 21, 32, 43, 54, 65.

2 Python Script

Complete the following code.

import random

11

Table 1: Simulation cases with various mesh resolutions
Mesh Level N h[m]
0 1000 0.1
1 64 1.5625
2 32 3.125
3 16 6.25
4 8 12.5
5 4 25
6 2 50

import sys

import os

import numpy

import matplotlib.pyplot as plt

#Define under-relaxation factor

alpha=0.1

#Define horizontal pressure gradient divided by density [m s^-2]

tau=-0.005

#Define von Karman constant

kappa=0.41

#Define maximum mixing length [m]

l0=10

#Define turbulence model constants, Martilli et al. (2002)

Ck=0.4

Ce=0.71

#Define maximum iteration number

MaxIter=100

#Define relative error

Err=0.01

#Define z axis from 0 to Z with dz increments

Z=100 #[m]

N=2

dz=Z/N #[m]

z=numpy.linspace(0,Z,N+1)

#Define and initialize a mean velocity vector [m s^-1]

Uinitial=1

12

Umean=numpy.zeros((N+1,1))

Umean[:]=Uinitial

#Define and initialize turbulent kinetic energy [m^2 s^-2]

kinitial=0.1

k=numpy.zeros((N+1,1))

k[:]=kinitial

#Define unknown vector X, coefficient matrix A, and vector B, in AX=B

x=numpy.zeros((2*N+2,1))

xnew=numpy.zeros((2*N+2,1))

b=numpy.zeros((2*N+2,1))

a=numpy.zeros((2*N+2,2*N+2))

#Initialize solution vector X

#This is a short syntax for for loop

x[0:N+1]=Umean[0:N+1]

x[N+1:2*N+2]=k[0:N+1]

for iter in range(1, MaxIter):

#Momentum equations

#i=0

a[0][0]=1

b[0]=0

#i=1 to N-1

for i in range(1, N):

#Calculate derivatives by finite differences for the current i index

#Remember to shift indices by N+1 if needed

lm=kappa*z[i]/(1+(kappa*z[i])/l0)

k0=x[i+N+1]

k1=(x[i+1+N+1]-x[i-1+N+1])/(2*dz)

k2=(x[i+1+N+1]-2*x[i+N+1]+x[i-1+N+1])/(dz**2)

Umean0=x[i]

Umean1=(x[i+1]-x[i-1])/(2*dz)

Umean2=(x[i+1]-2*x[i]+x[i-1])/(dz**2)

Set constants necessary to build the coefficient matrix

c1=0.5*Ck*lm*k0**(-1/2)*k1

c2=Ck*lm*k0**(1/2)

c3=-0.25*Ck*lm*k0**(-3/2)*k1*Umean1+0.5*Ck*lm*k0**(-1/2)*Umean2

c4=0.5*Ck*lm*k0**(-1/2)*Umean1

cb=-(-0.25*Ck*lm*k0**(-1/2)*k1*Umean1-0.5*Ck*lm*k0**(-1/2)*Umean2*k0-tau)

Set the coefficient matrix and the B vector

a[i][i-1]=...

a[i][i]=...

a[i][i+1]=...

a[i][i-1+N+1]=...

13

a[i][i+N+1]=...

a[i][i+1+N+1]=...

b[i]=...

#i=N

a[N][N-1]=...

a[N][N]=...

b[N]=...

#Kinetic energy equations

#i=N+1

a[N+1][N+1]=1

b[N+1]=0

#i=N+2 to 2N

for i in range(N+2, 2*N+1):

#Calculate derivatives by finite differences for the current i index

#Shift indices by -(N+1) if needed

lm=kappa*z[i-(N+1)]/(1+(kappa*z[i-(N+1)])/l0)

k0=x[i]

k1=(x[i+1]-x[i-1])/(2*dz)

k2=(x[i+1]-2*x[i]+x[i-1])/(dz ** 2)

Umean0=x[i-(N+1)]

Umean1=(x[i+1-(N+1)]-x[i-1-(N+1)])/(2*dz)

Umean2=(x[i+1-(N+1)]-2*x[i-(N+1)]+x[i-1-(N+1)])/(dz**2)

#Set constants necessary to build the coefficient matrix

d1=-0.25*Ck*lm*k0**(-3/2)*k1**2+0.5*Ck*lm*k0**(-1/2)*k2\

+0.5*Ck*lm*k0**(-1/2)*Umean1**2-1.5*Ce*lm**(-1)*k0**(1/2)

d2=Ck*lm*k0**(-1/2)*k1

d3=Ck*lm*k0**(1/2)

d4=2*Ck*lm*k0**(1/2)*Umean1

db=-(-0.25*Ck*lm*k0**(-1/2)*k1**2-0.5*Ck*lm*k0**(1/2)*k2)\

-(-1.5*Ck*lm*k0**(1/2)*Umean1**2+0.5*Ce*lm**(-1)*k0**(3/2))

Set the coefficient matrix and the B vector

a[i][i-1-(N+1)]=...

a[i][i+1-(N+1)]=...

a[i][i-1]=...

a[i][i]=...

a[i][i+1]=...

b[i]=...

i=2N+1

a[2*N+1][2*N]=...

a[2*N+1][2*N+1]=...

b[2*N+1]=...

#print(a)

xnew = numpy.linalg.solve(a, b)

14

Calculate maximum norm errors for both momentum and turbulent kinetic energy

ErrUmean=numpy.max(numpy.abs(numpy.divide(xnew[1:N+1]-x[1:N+1],x[1:N+1])))

Errk=...

print(’Iteration=’,iter,’ErrUmean=’,ErrUmean,’Errk=’,Errk)

if ErrUmean < Err and Errk < Err:

print(’Solutions converged at iteration: ’, iter)

Exit the loop

break

Update solution

x[:]=x[:]+alpha*(xnew[:]-x[:])

#Assign the X vector to the original Umean and k vectors

Umean[0:N+1]=...

k[0:N+1]=...

#Print the solution monitor as the velocity on top of the model domain

print(’Maximum Umean=’,Umean[N])

#Plot the mean velocity versus z

plt.plot(Umean, z)

plt.xlabel(’ < U > [m s ^ -1]’)

plt.ylabel(’z [m]’)

plt.title(’Mean Velocity as Function of z’)

plt.show()

Plot the turbulent viscosity versus z

plt.plot(k, z)

plt.xlabel(’k [m^2 s^-2]’)

plt.ylabel(’z [m]’)

plt.title(’Turbulent Kinetic Energy as Function of z’)

plt.show()

Upon completing the code. You should get the following output from the console. For each
iteration the convergence criteria is printed to the screen to monitor the solution behaviour. Note
that with only a few tens of iterations using the Newton method, it is possible to converge to a
solution with a relative error less than 1%.

...

Iteration= 43 ErrUmean= 0.00536326893688 Errk= 0.0123014708332

Iteration= 44 ErrUmean= 0.00482027210921 Errk= 0.0110574058777

Iteration= 45 ErrUmean= 0.00433285589024 Errk= 0.00994041815673

Solutions converged at iteration: 45

Maximum Umean= [10.24023021]

15

Run the code for all mesh levels and record the maximum velocity on the top of the domain on
paper. Some example results are shown below for mesh levels 5 and 0. Observe that the solution
curves are smoother for higher resolution simulations.

Figure 2: Momentum and turbulent kinetic energy for mesh level 5 (top) and mesh level 0 (bottom)

Next the GCI must be calculated, using the maximum velocity values you recorded on paper,
complete the following script. This script indicates that the order of convergence p for maximum
velocity on top of the domain is approximately 0.5 as shown in the figure below. The information
obtained thus far can be used to calculate the GCI levels, ,1, 2, 3, 4, 5, for mesh levels 21, 32,
43, 54, 65. Note that on the GCI plot the value calculated for each successive pair of meshes,
decreases GCI, indicating that the solution is approaching asymptotically to the exact solution.

#Now perform GCI analysis

#h for N=2, 4, 8, 16, 32, 64

h=numpy.zeros((6,1))

h[0]=50

h[1]=25

h[2]=12.5

h[3]=6.25

h[4]=3.125

16

h[5]=1.5625

#fexact calculated for N=1000

fexact=numpy.zeros((6,1))

fexact[0]=17.0

fexact[1]=17.0

fexact[2]=...

fexact[3]=...

fexact[4]=...

fexact[5]=...

#fh for N=2, 4, 8, 16, 32, 62

fh=numpy.zeros((6,1))

fh[0]=...

fh[1]=...

fh[2]=...

fh[3]=...

fh[4]=...

fh[5]=...

#Calculate absolute error

absE=numpy.zeros((6,1))

absE=numpy.abs(fh-fexact)

#Calculate the log of h and absolute E

logh=numpy.log(h)

logabsE=...

#Plot the mean velocity versus z

plt.plot(logh, logabsE)

plt.xlabel(’log(h)’)

plt.ylabel(’log(abs(E))’)

plt.title(’Absolute Error versus Grid Discretization’)

plt.show()

#GCI Safety factor based on at least 3 levels of mesh

Fs=1.25

#Set mesh refinement ratio and order of convergence

r=2

p=0.5

#Assume N=2, 4, 8, 16, 32, 62 correspond to mesh levels 6, 5, 4, 3, 2, 1

#GCI for levels 65, 54, 43, 32, 21

GCI=numpy.zeros((5,1))

17

for i in range(0,5):

GCI[i]=Fs*(fh[i+1]-fh[i])/fh[i]/(r**p-1)

#Plot the mean velocity versus z

plt.plot([5, 4, 3, 2, 1], GCI, ’bs’)

plt.xlabel(’GCI Level n [mn]: 5 [65], 4 [54], 3 [43], 2 [32], 1 [21]’)

plt.ylabel(’GCI Level n [mn]’)

plt.title(’Grid Convergence Index (GCI) versus Grid Levels mn’)

plt.show()

Figure 3: Order of convergence (left) and GCI (right) plots

Try to answer the following questions.

• How can the order of convergence be determined from the plots above?

• Comment on why the order of convergence is approximately 0.5 for maximum velocity in
the domain, i.e. on top of the domain?

• How do you compare the results of this simulation to the results obtained by the mixing
length model?

18

ENGG*6790: Theory and Applications of Turbulence

1D Momentum and Turbulent Kinetic Energy Equations over Flat Surface
Formulated as a Transient Model

Amir A. Aliabadi

March 14, 2019

1 Introduction

In the lectures the turbulent kinetic energy model was introduced as one transport equation to
predict the turbulent kinetic energy. This turbulent kinetic energy was then used to formulate
turbulent viscosity so that the momentum equation can be solved. The turbulent kinetic energy
equation is given as

Dk

Dt︸︷︷︸
Material Derivative

≡ ∂k

∂t︸︷︷︸
Storage

+ 〈U〉.∇k︸ ︷︷ ︸
Advection

= ∇.
(
νT
σk
∇k
)

︸ ︷︷ ︸
Energy Flux Divergence

+ P︸︷︷︸
Production

− ε︸︷︷︸
Dissipation

, (1)

νT = ck1/2`m,

ε = CD
k3/2

`m
,

`m(x, t) known.

This model can be employed to develop a one-dimensional transport model for momentum and
turbulent kinetic energy. Suppose we use the Cartesian coordinate system with coordinate axes
of x, y, and z, and velocities corresponding to these axes being U = 〈U〉 + u, V = 〈V 〉 + v,
W = 〈W 〉 + w, respectively, as shown in the schematic. We can assume that mean flow is only
in the x direction parallel to the surface and that the direction z is normal to the surface so that
〈V 〉 = 〈W 〉 = 0. However, the mean velocity 〈U〉 will change as a function of time. Assume that
the modified pressure has a constant gradient in the x direction, the 1D momentum equation then
simplifies to

∂〈U〉
∂t︸ ︷︷ ︸

Storage

=
∂

∂z

(
νT
∂〈U〉
∂z

)
︸ ︷︷ ︸

Surface Forces and Reynolds Stress

− τ︸︷︷︸
Modified Pressure Forces

(2)

1

The one-dimensional turbulent kinetic energy equation can be developed as follows

∂k

∂t︸︷︷︸
Storage

=
∂

∂z

(
νT
σk

∂k

∂z

)
︸ ︷︷ ︸

Energy Flux Divergence

+ νT

(
∂〈U〉
∂z

)2

︸ ︷︷ ︸
Shear Production

− ε︸︷︷︸
Dissipation

(3)

where the energy flux divergence was discussed in the lectures. This term ensures that the resulting
model transport equation for k yields smooth solutions, and that a boundary condition can be
imposed on k everywhere in the boundary of the domain. Otherwise the model may diverge if other
transport mechanisms for k are much smaller than this term. The shear production term, is an
example of a production term P , that contributes to the generation of the turbulent kinetic energy.
Here, when there is non-zero mean velocity gradient, turbulent kinetic energy is generated. The
dissipation term is responsible for consuming turbulent kinetic energy down the energy cascade.

To close the turbulence model we can assume that the turbulent Prandtl number is unity, i.e.
σk = 1. We can model turbulent viscosity, dissipation rate, and the appropriate mixing length as
follows.

νT = Ck`mk

1/2,

ε = Cε`
−1
m k3/2,

`m = κz/(1 + κz
`0

).

where κ = 0.41 is the von Kármán constant, and `0 is the maximum mixing length. This for-
mulation for mixing length has the nice property that it is bounded between zero and `0, which
is physically sound since mixing length increases linearly in the log-law sublayer near a wall but
cannot increase indefinitely in the interior of the domain. This formulation results in

{
z → 0 `m → κz

z →∞ `m → `0

So we have two equations: momentum and turbulent kinetic energy. We can eliminate νT and ε
from the momentum and turbulent kinetic energy equations by direct substitutions and simplifi-
cations using the chain rule. So the two equations can be re-expressed as

∂〈U〉
∂t

=
∂

∂z

(
Ck`mk

1/2∂〈U〉
∂z

)
− τ

= 0.5Ck`mk
−1/2∂k

∂z

∂〈U〉
∂z

+ Ck`mk
1/2∂

2〈U〉
∂z2

− τ (4)

2

∂k

∂t
=

∂

∂z

(
Ck`mk

1/2∂k

∂z

)
+ Ck`mk

1/2

(
∂〈U〉
∂z

)2

− Cε`−1
m k3/2

= 0.5Ck`mk
−1/2

(
∂k

∂z

)2

+ Ck`mk
1/2∂

2k

∂z2
+ Ck`mk

1/2

(
∂〈U〉
∂z

)2

− Cε`−1
m k3/2. (5)

As can be seen the two equations are extremely non-linear. They involve non-integer powers of
the unknowns and their derivatives. They also involve the multiplication of the unknowns and
derivative. These equations can be linearized and solved using a finite difference scheme. Figure
below shows the finite difference representation of the solution spaces for momentum and turbulent
kinetic energy.

Figure 1: Schematic of 1D flow over flat surface using Cartesian coordinate system; finite difference
representation of the 1D flow.

For notational convenience we can represent derivatives by superscripts and subsequently re-
express the momentum and turbulent kinetic energy equations using this notation. Note that
we keep the time derivatives with their original notation since this derivative involves having
solutions at different timesteps, which later have to be considered for the implicit Euler method
for the transient model.

{
〈U〉(0) = 〈U〉, 〈U〉(1) = ∂〈U〉

∂z
, 〈U〉(2) = ∂2〈U〉

∂z2

k(0) = k, k(1) = ∂k
∂z
, k(2) = ∂2k

∂z2

∂〈U〉
∂t

= 0.5Ck`m(k(0))−1/2k(1)〈U〉(1)︸ ︷︷ ︸
f1,mom.

+Ck`m(k(0))1/2〈U〉(2)︸ ︷︷ ︸
f2,mom.

−τ (6)

∂k

∂t
= 0.5Ck`m(k(0))−1/2(k(1))2︸ ︷︷ ︸

f1,tke.

+Ck`m(k(0))1/2k(2)︸ ︷︷ ︸
f2,tke.

+Ck`m(k(0))1/2(〈U〉(1))2︸ ︷︷ ︸
f3,tke.

−Cε`−1
m (k(0))3/2︸ ︷︷ ︸
f4,tke.

. (7)

3

where each non-linear term in the equations have been renamed by a function f , Next, each f func-
tion can be replaced by its approximate using the Newton method expressing the function around
an arbitrary point zi. Beginning with the momentum equation the f function approximations are

f1,mom. ≈ f1,mom.(zi)

+
∂f1,mom.

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f1,mom.

∂k(1)
|zi
[
k(1)(z)− k(1)(zi)

]
+
∂f1,mom.

∂〈U〉(1)
|zi
[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= 0.5Ck`m(k(0))−1/2(zi)k

(1)(zi)〈U〉(1)(zi)

− 0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi)[k

(0)(z)− k(0)(zi)]

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)[k
(1)(z)− k(1)(zi)]

+ 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)

[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= −0.25Ck`m(k(0))−1/2(zi)k

(1)(zi)〈U〉(1)(zi)

− 0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi)k

(0)(z)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)k
(1)(z)

+ 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)〈U〉(1)(z) (8)

f2,mom. ≈ f2,mom.(zi)

+
∂f2,mom.

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f2,mom.

∂〈U〉(2)
|zi
[
〈U〉(2)(z)− 〈U〉(2)(zi)

]
= Ck`m(k(0))1/2(zi)〈U〉(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)
[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))1/2(zi)

[
〈U〉(2)(z)− 〈U〉(2)(zi)

]
= −0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k

(0)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k
(0)(z)

+ Ck`m(k(0))1/2(zi)〈U〉(2)(z) (9)

4

f1,tke. ≈ f1,tke(zi)

+
∂f1,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f1,tke

∂k(1)
|zi
[
k(1)(z)− k(1)(zi)

]
= 0.5Ck`m(k(0))−1/2(zi)(k

(1))2(zi)

− 0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi)

[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))−1/2(zi)k

(1)(zi)
[
k(1)(z)− k(1)(zi)

]
= −0.25Ck`m(k(0))−1/2(zi)(k

(1))2(zi)

− 0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi)k

(0)(z)

+ Ck`m(k(0))−1/2(zi)k
(1)(zi)k

(1)(z) (10)

f2,tke. ≈ f2,tke(zi)

+
∂f2,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f2,tke

∂k(2)
|zi
[
k(2)(z)− k(2)(zi)

]
= Ck`m(k(0))1/2(zi)k

(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)k
(2)(zi)

[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))1/2(zi)

[
k(2)(z)− k(2)(zi)

]
= −0.5Ck`m(k(0))1/2(zi)k

(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)k
(2)(zi)k

(0)(z)

+ Ck`m(k(0))1/2(zi)k
(2)(z) (11)

f3,tke. ≈ f3,tke(zi)

+
∂f3,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+

∂f3,tke

∂〈U〉(1)
|zi
[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi)

+ 0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)
[
k(0)(z)− k(0)(zi)

]
+ 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)

[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= −1.5Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi)

+ 0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)k
(0)(z)

+ 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)〈U〉(1)(z) (12)

5

f4,tke. ≈ f4,tke(zi)

+
∂f4,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
= −Cε`−1

m (k(0))3/2(zi)

− 1.5Cε`
−1
m (k(0))1/2(zi)

[
k(0)(z)− k(0)(zi)

]
= 0.5Cε`

−1
m (k(0))3/2(zi)

− 1.5Cε`
−1
m (k(0))1/2(zi)k

(0)(z) (13)

Now we can write the linearized forms of the momentum and turbulent kinetic energy equations.
We will still keep the storage term, i.e. the time derivative, in differential form.

∂〈U〉
∂t

= c1 + c2〈U〉(1) + c3〈U〉(2) + c4k
(0) + c5k

(1) (14)

c1 = −0.25Ck`m(k(0))−1/2(zi)k
(1)(zi)〈U〉(1)(zi)− 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k

(0)(zi)− τ
c2 = 0.5Ck`m(k(0))−1/2(zi)k

(1)(zi)

c3 = Ck`m(k(0))1/2(zi)

c4 = −0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi) + 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)

c5 = 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)

∂k

∂t
= d1 + d2k

(0) + d3k
(1) + d4k

(2) + d5〈U〉(1) (15)

d1 = −0.25Ck`m(k(0))−1/2(zi)(k
(1))2(zi)− 0.5Ck`m(k(0))1/2(zi)k

(2)(zi)

−1.5Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi) + 0.5Cε`
−1
m (k(0))3/2(zi)

d2 = −0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi) + 0.5Ck`m(k(0))−1/2(zi)k

(2)(zi)

+0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)− 1.5Cε`
−1
m (k(0))1/2(zi)

d3 = Ck`m(k(0))−1/2(zi)k
(1)(zi)

d4 = Ck`m(k(0))1/2(zi)

d5 = 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)

Now consider that we want to represent the linearized momentum and turbulent kinetic energy
equations using finite differences. Consider a vertical discretization ∆z as shown in the figure and
temporal discretization ∆t. Using central differencing the spatial derivatives can be replaced by
values at indices i− 1, i, and i+ 1. In addition, the time derivatives can be replaced by values at
time levels n and n+ 1. If we use the implicit Euler method, i.e. computing spatial derivatives at

6

time level n + 1, we can replace the momentum and turbulent kinetic energy equations by their
discretized versions as follows

〈U〉n+1
i − 〈U〉ni

∆t
= c1+c2

〈U〉n+1
i+1 − 〈U〉n+1

i−1

2∆z
+c3

〈U〉n+1
i+1 − 2〈U〉n+1

i + 〈U〉n+1
i−1

(∆z)2
+c4k

n+1
i +c5

kn+1
i+1 − kn+1

i−1

2∆z
(16)

kn+1
i − kni

∆t
= d1 + d2k

n+1
i + d3

kn+1
i+1 − kn+1

i−1

2∆z
+ d4

kn+1
i+1 − 2kn+1

i + kn+1
i−1

(∆z)2
+ d5

〈U〉n+1
i+1 − 〈U〉n+1

i−1

2∆z
(17)

Note that in the implicit Euler method we assume that the values of 〈U〉i and ki are known at
time level n, and one must solve for values at time level n + 1. As a result, the above equations
must be rearranged as follows

(
c2∆t

2∆z
− c3∆t

(∆z)2

)
〈U〉n+1

i−1 +

(
1 +

2c3∆t

(∆z)2

)
〈U〉n+1

i +

(
−c2∆t

2∆z
− c3∆t

(∆z)2

)
〈U〉n+1

i+1

+

(
c5∆t

2∆z

)
kn+1
i−1 − c4k

n+1
i +

(
−c5∆t

2∆z

)
kn+1
i+1 = ∆t(c1 + 〈U〉ni) (18)

(
d3∆t

2∆z
− d4∆t

(∆z)2

)
kn+1
i−1 +

(
1 +

2d4∆t

(∆z)2

)
kn+1
i +

(
−d3∆t

2∆z
− d4∆t

(∆z)2

)
kn+1
i+1

+

(
d5∆t

2∆z

)
〈U〉n+1

i−1 +

(
−d5∆t

2∆z

)
〈U〉n+1

i+1 = ∆t(d1 + kni) (19)

As can be seen the unknowns 〈U〉n+1
i and kn+1

i appear in both discretized momentum and turbulent
kinetic energy equations. Therefore, these equations should be combined to arrive at a linear
system of equations and subsequently solved using a linear algebra solver. Let us define the
unknowns vector X such that

X =

x0

x1
...

xN−1

xN
xN+1

xN+2
...

x2N

x2N+1

=

〈U〉n+1
0

〈U〉n+1
1
...

〈U〉n+1
N−1

〈U〉n+1
N

kn+1
0

kn+1
1
...

kn+1
N−1

kn+1
N

7

As can be seen the first half of vector X contains the 〈U〉n+1
i solutions and the second half of

vector X contains the kn+1
i solutions. Note that kn+1

i maps to xN+1+i. Now we need 2N + 2 linear
equations to solve for X, i.e.

Equation 0: a0,0x0 + a0,1x1 + ...+ a0,2Nx2N + a0,2N+1x2N+1 = b0

Equation 1: a1,0x0 + a1,1x1 + ...+ a1,2Nx2N + a1,2N+1x2N+1 = b1

...

Equation i: ai,0x0 + ai,1x1 + ...+ ai,2Nx2N + ai,2N+1x2N+1 = bi

...

Equation 2N : a2N,0x0 + a2N,1x1 + ...+ a2N,2Nx2N + a2N,2N+1x2N+1 = b2N

Equation 2N + 1: a2N+1,0x0 + a2N+1,1x1 + ...+ a2N+1,2Nx2N + a2N+1,2N+1x2N+1 = b2N+1

Our next task is to identify ai,j and bi. These can be inferred from the discretized momentum
and turbulent kinetic energy equations. ai,j are mostly zero except for where there is a non-
zero coefficient in the corresponding equations. The first N equations (equation 0, equation 1
... equation N) are the momentum equations. The boundary condition for 〈U〉 at the surface
provides the zeroth equation, i.e.

x0 = 0

a0,0 = 1

b0 = 0

The next i : 1 → N − 1 equations correspond to the momentum equation in the interior of the
domain, so the coefficients can be obtained as follows

(
c2∆t
2∆z
− c3∆t

(∆z)2

)
xi−1 +

(
1 + 2c3∆t

(∆z)2

)
xi +

(
− c2∆t

2∆z
− c3∆t

(∆z)2

)
xi+1

+
(
− c5∆t

2∆z

)
xi−1+N+1 − c4xi+N+1 +

(
c5∆t
2∆z

)
xi+1+N+1 = ∆t(c1 + 〈U〉ni)

ai,i−1 = c2∆t
2∆z
− c3∆t

(∆z)2

ai,i = 1 + 2c3∆t
(∆z)2

ai,i+1 = − c2∆t
2∆z
− c3∆t

(∆z)2

ai,i−1+N+1 = c5∆t
2∆z

ai,i+N+1 = −c4

ai,i+1+N+1 = − c5∆t
2∆z

bi = ∆t(c1 + 〈U〉ni)

Note that where the turbulent kinetic energy term appears the index is shifted by N + 1. The
boundary condition for 〈U〉 at the top of the domain provides the N th equation, i.e.

8

xN−1 − xN = 0

aN,N−1 = 1

aN,N = −1

bN = 0

The boundary condition for k at the surface provides the N + 1th equation, i.e.

xN+1 = 0

aN+1,N+1 = 1

bN+1 = 0

The next i : N + 2 → 2N equations correspond to the turbulent kinetic energy equation in the
interior of the domain, so the coefficients can be obtained as follows

(
d3∆t
2∆z
− d4∆t

(∆z)2

)
xi−1 +

(
1 + 2d4∆t

(∆z)2

)
xi +

(
−d3∆t

2∆z
− d4∆t

(∆z)2

)
xi+1

+
(
−d5∆t

2∆z

)
xn+1
i−1−(N+1) +

(
d5∆t
2∆z

)
xn+1
i+1−(N+1) = ∆t(d1 + kni−(N+1))

ai,i−1−(N+1) = d5∆t
2∆z

ai,i+1−(N+1) = −d5∆t
2∆z

ai,i−1 = d3∆t
2∆z
− d4∆t

(∆z)2

ai,i = 1 + 2d4∆t
(∆z)2

ai,i+1 = −d3∆t
2∆z
− d4∆t

(∆z)2

bi = ∆t(d1 + kni−(N+1))

Note that where the momentum term appears the index is shifted by −(N + 1).The boundary
condition for k at the top of the domain provides the 2N + 1th equation. The vertical gradient of
the turbulent kinetic energy must be zero, i.e.

x2N − x2N+1 = 0

a2N+1,2N = 1

a2N+1,2N+1 = −1

b2N+1 = 0

Finally, we have arrived at linear system of equations that can be solved to provide the unknowns.
This system is given as follows

AX = B (20)

9

a0,0 a0,1 . . . a0,2N a0,2N+1

a1,0 a1,1 . . . a1,2N a1,2N+1
...

...
...

...
...

a2N,0 a2N,1 . . . a2N,2N a2N,2N+1

a2N+1,0 a2N+1,1 . . . a2N+1,2N a2N+1,2N+1

x0

x1
...

x2N

x2N+1

 =

b0

b1
...
b2N

b2N+1

Note that this system of equations must be solved at every time level. Once the solutions at every
time level is obtained, it can then be used as initial condition and the system must be solved again
for the next time level.

At each time level, note that the coefficients identified, themselves, depend on the solution. As a
result the solution to the system of equations above must be found iteratively. That is, an initial
guess for the solution vector X must be assumed. Then the system of equations must be solved
iteratively. The best initial guess is the value of the solution in the previous time level. After
each iteration the solutions must be updated. Subsequently, the system of equations must be
solved again, until the difference between successive solutions is less than a specified error. For
this purpose, the maximum norm can be considered. Suppose that a relative error of Err = 0.01
is specified for either the momentum or turbulent kinetic energy solution. Also suppose the xi and
x

(new)
i represent two successive solutions for a specific point. The iteration can be stopped if the

following conditions are met

L∞,mom. = max

(
|x

(new)
0 −x0
x0

|, |x
(new)
1 −x1
x1

|, ..., |x
(new)
N −xN
xN

|
)
< Err

L∞,tke = max

(
|x

(new)
N+1 −xN+1

xN+1
|, |x

(new)
N+2 −xN+2

xN+2
|, ..., |x

(new)
2N+1−x2N+1

x2N+1
|
)
< Err

When solving a system of equations iteratively, it is sometimes more stable to only partially
update a solution after each iteration. This is known as under relaxation. Consider that φn−1 is
the solution space found in the previous iteration and φnew is the newly found solution. With the
under relaxation factor 0 < α < 1, the solution can be updated for the next iteration such that

φn = φn−1 + α(φnew − φn−1). (21)

Particularly, whenever solving non-linear system of equations, this method improves stability of
obtaining a numerical solution.

The transient simulation is desired for 4 combinations of τ and `0 shown in table below. Case
1 represents a low pressure gradient and small mixing length. Case 2 represents a high pressure
gradient and small mixing length. Case 3 represents a low pressure gradient and large mixing
length. Case 4 represents a high pressure gradient and large mixing length.

10

Table 1: Simulation cases with varying amount of horizontal pressure gradient and mixing length.
Case τ [m s−2] `0 [m]
1 −0.005 10
2 −0.01 10
3 −0.005 20
4 −0.01 20

2 Python Script

Complete the following code.

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

#Define under-relaxation factor

alpha=0.7

#Define horizontal pressure gradient divided by density [m s^-2]

tau=-0.005

#Define von Karman constant

kappa=0.41

#Define maximum mixing length [m]

l0=10

#Define turbulence model constants, Martilli et al. (2002)

Ck=0.4

Ce=0.71

#Define maximum iteration number

MaxIter=10

#Define relative error

Err=0.01

#Define z axis from 0 to Z with dz increments

Z=100 #[m]

N=20

dz=Z/N #[m]

z=numpy.linspace(0, Z, N+1)

11

#Define t vector from 0 to T with dt increments

T=100 #[s]

Nt=100

dt=T/Nt #[s]

t=numpy.linspace(0, T, Nt+1)

#Define and initialize a mean velocity vector [m s^-1]

Uinitial=0.01

Umean=numpy.zeros((N+1,Nt+1))

for i in range(0, N+1):

Umean[i][0]=Uinitial

#Define and initialize turbulent kinetic energy [m^2 s^-s]

kinitial=0.01

k=numpy.zeros((N+1,Nt+1))

for i in range(0, N+1):

k[i][0]=kinitial

#Define unknown vector X, coefficient matrix A, and vector B, in AX=B

x=numpy.zeros((2*N+2,1))

xnew=numpy.zeros((2*N+2,1))

b=numpy.zeros((2*N+2,1))

a=numpy.zeros((2*N+2,2*N+2))

#Initialize solution vector X

for i in range(0, N+1):

x[i]=Umean[i][0]

x[i+N+1]=k[i][0]

#Iterate for time levels

for n in range(1, Nt+1):

for iter in range(1, MaxIter):

#Momentum equations

#i = 0

a[0][0] = 1

b[0] = 0

#i = 1 to N-1

for i in range(1, N):

#Calculate derivatives by finite differences for the current i index

#Remember to shift indices by N+1 if needed

lm=kappa*z[i]/(1+(kappa*z[i])/l0)

k0=x[i+N+1]

k1=(x[i+1+N+1]-x[i-1+N+1])/(2*dz)

k2=(x[i+1+N+1]-2*x[i+N+1]+x[i-1+N+1])/(dz**2)

12

Umean0=x[i]

Umean1=(x[i+1]-x[i-1])/(2*dz)

Umean2=(x[i+1]-2*x[i]+x[i-1])/(dz**2)

Set constants necessary to build the coefficient matrix

c1=-0.25*Ck*lm*k0**(-1/2)*k1*Umean1-0.5*Ck*lm*k0**(-1/2)*Umean2*k0-tau

c2=0.5*Ck*lm*k0**(-1/2)*k1

c3=Ck*lm*k0**(1/2)

c4=-0.25*Ck*lm*k0**(-3/2)*k1*Umean1+0.5*Ck*lm*k0**(-1/2)*Umean2

c5=0.5*Ck*lm*k0**(-1/2)*Umean1

Set the coefficient matrix and the B vector

a[i][i-1]=c2*dt/(2*dz)-c3*dt/(dz**2)

a[i][i]=1+2*c3*dt/(dz**2)

a[i][i+1]=-c2*dt/(2*dz)-c3*dt/(dz**2)

a[i][i-1+N+1]=c5*dt/(2*dz)

a[i][i+N+1]=-c4

a[i][i+1+N+1]=-c5*dt/(2*dz)

b[i]=dt*(c1+Umean[i][n-1])

#i=N

a[N][N-1]=1

a[N][N]=-1

b[N]=0

#Turbulent kinetic energy equations

#i=N+1

a[N+1][N+1]=...

b[N+1]=...

#i=N+2 to 2N

for i in range(N+2,2*N+1):

#Calculate derivatives by finite differences for the current i index

Shift indices by -(N+1) if needed

lm=kappa*z[i-(N+1)]/(1+(kappa*z[i-(N+1)])/l0)

k0=x[i]

k1=(x[i+1]-x[i-1])/(2*dz)

k2=(x[i+1]-2*x[i]+x[i-1])/(dz**2)

Umean0=x[i-(N+1)]

Umean1=(x[i+1-(N+1)]-x[i-1-(N+1)])/(2*dz)

Umean2=(x[i+1-(N+1)]-2*x[i-(N+1)]+x[i-1-(N+1)])/(dz**2)

#Set constants necessary to build the coefficient matrix

d1=-0.25*Ck*lm*k0**(-1/2)*k1**2-0.5*Ck*lm*k0**(1/2)*k2\

-1.5*Ck*lm*k0**(1/2)*Umean1**2+0.5*Ce*lm**(-1)*k0**(3/2)

d2=-0.25*Ck*lm*k0**(-3/2)*k1**2+0.5*Ck*lm*k0**(-1/2)*k2\

+0.5*Ck*lm*k0**(-1/2)*Umean1**2-1.5*Ce*lm**(-1)*k0**(1/2)

d3=Ck*lm*k0**(-1/2)*k1

d4=Ck*lm*k0**(1/2)

d5=2*Ck*lm*k0**(1/2)*Umean1

13

Set the coefficient matrix and the B vector

a[i][i-1-(N+1)]=d5*dt/(2*dz)

a[i][i+1-(N+1)]=-d5*dt/(2*dz)

a[i][i-1]=d3*dt/(2*dz)-d4*dt/(dz**2)

a[i][i]=1+2*d4*dt/(dz**2)

a[i][i+1]=-d3*dt/(2*dz)-d4*dt/(dz**2)

b[i]=dt*(d1+k[i-(N+1)][n-1])

#i=2N+1

a[2*N+1][2*N]=...

a[2*N+1][2*N+1]=...

b[2*N+1]=...

xnew=numpy.linalg.solve(a,b)

#Calculate maximum norm errors for both momentum and turbulent kinetic energy

ErrUmean=numpy.max(numpy.abs(numpy.divide(xnew[1:N+1]-x[1:N+1],x[1:N+1])))

Errk=...

print(’t=’,t[n],’ Iteration=’,iter,’ ErrUmean=’,ErrUmean,’ Errk=’,Errk)

if ErrUmean < Err and Errk < Err:

print(’\n’)

Exit the loop

break

Update solution

x[:] = x[:]+alpha*(xnew[:]-x[:])

#Before next time level,

#assign the X vector to the original Umean and k vectors

for i in range(0, N+1):

Umean[i][n]=x[i]

k[i][n]=x[i+N+1]

#Plot the mean velocity versus z

plt.plot(Umean[:,1],z,label=’t=’+str(t[1])+’ s’)

plt.plot(Umean[:,25],z,label=’t=’+str(t[25])+’ s’)

plt.plot(Umean[:,50],z,label=’t=’+str(t[50])+’ s’)

plt.plot(Umean[:,75],z,label=’t=’+str(t[75])+’ s’)

plt.plot(Umean[:,100],z,label=’t=’+str(t[100])+’ s’)

plt.xlabel(’<U> [m s^-1]’)

plt.ylabel(’z [m]’)

plt.title(’Mean Velocity as Function of z’)

plt.legend()

plt.show()

14

#Plot the turbulent kinetic energy versus z

plt.plot(...

plt.plot(...

plt.plot(...

plt.plot(...

plt.plot(...

plt.xlabel(’k [m^2 s^-2]’)

plt.ylabel(’z [m]’)

plt.title(’Turbulent Kinetic Energy as Function of z’)

plt.legend()

plt.show()

Upon completing the code. You should get the following output from the console as well as the
following figures. For each timestep the convergence criteria is printed to the screen to monitor the
solution behaviour. Note that with only a few iterations using the Newton method, it is possible
to converge to a solution with a relative error less than 1%.

...

t= 99.0 Iteration= 1 ErrUmean= 0.0126885840809 Errk= 0.0337588457361

t= 99.0 Iteration= 2 ErrUmean= 0.00377306284665 Errk= 0.0114400382904

t= 99.0 Iteration= 3 ErrUmean= 0.00112893716837 Errk= 0.00395004802126

t= 100.0 Iteration= 1 ErrUmean= 0.0125437463153 Errk= 0.0344018672795

t= 100.0 Iteration= 2 ErrUmean= 0.00373036893349 Errk= 0.0116863554115

t= 100.0 Iteration= 3 ErrUmean= 0.00111619600402 Errk= 0.0040461622013

Try to answer the following questions.

• What are the effects of horizontal modified pressure gradient and maximum mixing length
on the solutions?

• At what height is the turbulent kinetic energy at its maximum?

• How do you compare the results of this simulation to the results obtained by the mixing
length model?

• Try to change other simulation variables such as Z, N, T, and Nt until the code diverges. Can
you explain why you are not getting a converged solution in these cases?

15

Figure 2: Momentum for Case1 (top left), Case 2 (top right), Case 3 (bottom left), Case 4 (bottom
right)

16

Figure 3: Turbulent viscosity for Case1 (top left), Case 2 (top right), Case 3 (bottom left), Case
4 (bottom right)

17

ENGG*6790: Theory and Applications of Turbulence

1D Momentum, Turbulent Kinetic Energy, and Heat Equations
over Flat Surface with Steady Formulation

Amir A. Aliabadi

March 14, 2019

1 Introduction

In the lectures the transport equation for heat (temperature) was obtained using the gradient
diffusion hypothesis. This hypothesis gives the transport equation and the effective diffusivity as

D〈T 〉
Dt︸ ︷︷ ︸

Material Derivative of Mean

= ∇.(Γeff∇〈T 〉)︸ ︷︷ ︸
Diffusion of Mean

, (1)

Γeff (x, t)︸ ︷︷ ︸
Effective Diffusivity

= Γ︸︷︷︸
Molecular Diffusivity

+ ΓT (x, t)︸ ︷︷ ︸
Turbulent Diffusivity

≈ ΓT (x, t), (2)

where the molecular diffusivity has been ignored in a highly turbulent field in comparison to the
turbulent diffusivity. Assuming that the turbulent Prandtl number is approximately equal to one
the effective diffusivity for the heat equation can be given as

ΓT =
νT
PrT

≈ νT
1

= νT . (3)

This model can be employed to develop a one-dimensional transport model for heat transport
under steady state conditions. Suppose we use the Cartesian coordinate system with coordinate
axes of x, y, and z, and velocities corresponding to these axes being U = 〈U〉 + u, V = 〈V 〉 + v,
W = 〈W 〉 + w, respectively, as shown in the schematic. We can assume that mean flow is only
in the x direction parallel to the surface and that the direction z is normal to the surface so that
〈V 〉 = 〈W 〉 = 0. The transport equation for heat can be given by

1

0 =
∂

∂z

(
νT
∂〈T 〉
∂z

)
︸ ︷︷ ︸
Diffusion of Mean

− γ︸︷︷︸
Heat Sink or Source

, (4)

where the term γ is a sink or source for temperature by uniform cooling or heating in the domain.
The turbulent viscosity can be obtained solving the transport equations for momentum and the
turbulent kinetic energy.

Figure 1: Schematic of 1D flow and heat transport over flat surface using Cartesian coordinate
system; finite difference representation of the 1D flow and heat transport.

In the lectures the turbulent kinetic energy model was introduced as one transport equation to
predict the turbulent kinetic energy. This turbulent kinetic energy was then used to formulate
turbulent viscosity so that the momentum equation can be solved. The turbulent kinetic energy
equation is given as

Dk

Dt︸︷︷︸
Material Derivative

≡ ∂k

∂t︸︷︷︸
Storage

+ 〈U〉.∇k︸ ︷︷ ︸
Advection

= ∇.
(
νT
σk
∇k
)

︸ ︷︷ ︸
Energy Flux Divergence

+ P︸︷︷︸
Production

− ε︸︷︷︸
Dissipation

, (5)

νT = ck1/2`m,

ε = CD
k3/2

`m
,

`m(x, t) known.

Assume that the modified pressure has a constant gradient in the x direction, the 1D momentum
equation then simplifies to

0 =
∂

∂z

(
νT
∂〈U〉
∂z

)
︸ ︷︷ ︸

Surface Forces and Reynolds Stress

− τ︸︷︷︸
Modified Pressure Forces

(6)

2

The one-dimensional turbulent kinetic energy equation can be developed as follows

0 =
∂

∂z

(
νT
σk

∂k

∂z

)
︸ ︷︷ ︸

Energy Flux Divergence

+ νT

(
∂〈U〉
∂z

)2

︸ ︷︷ ︸
Shear Production

− g

T0

νT
PrT

∂〈T 〉
∂z︸ ︷︷ ︸

Buoyant Production or Sink

− ε︸︷︷︸
Dissipation

(7)

where the energy flux divergence was discussed in the lectures. This term ensures that the resulting
model transport equation for k yields smooth solutions, and that a boundary condition can be
imposed on k everywhere in the boundary of the domain. Otherwise the model may diverge if other
transport mechanisms for k are much smaller than this term. The shear production term, is an
example of a production term P , that contributes to the generation of the turbulent kinetic energy.
Here, when there is non-zero mean velocity gradient, turbulent kinetic energy is generated. The
buoyant production or sink term, is an example of a production term P , that contributes to the
generation or sink of the turbulent kinetic energy. Here, when there is non-zero mean temperature
gradient, turbulent kinetic energy is generated, when there is negative vertical gradient for mean
temperature, or sunk, when there is positive vertical gradient for mean temperature. T0 is an
average temperature in the domain that can be assumed as a constant. The dissipation term is
responsible for consuming turbulent kinetic energy down the energy cascade.

To close the turbulence model we can assume that the turbulent Prandtl number is unity, i.e.
PrT = σk = 1. We can model turbulent viscosity, dissipation rate, and the appropriate mixing
length as follows.

νT = Ck`mk

1/2,

ε = Cε`
−1
m k3/2,

`m = κz/(1 + κz
`0

).

where κ = 0.41 is the von Kármán constant, and `0 is the maximum mixing length. This for-
mulation for mixing length has the nice property that it is bounded between zero and `0, which
is physically sound since mixing length increases linearly in the log-law sublayer near a wall but
cannot increase indefinitely in the interior of the domain. This formulation results in

{
z → 0 `m → κz

z →∞ `m → `0

So we have three equations: momentum, turbulent kinetic energy, and heat. We can eliminate νT
and ε from these equations by direct substitutions and simplifications using the chain rule. So the
equations can be re-expressed as

0 =
∂

∂z

(
Ck`mk

1/2∂〈U〉
∂z

)
− τ

= 0.5Ck`mk
−1/2∂k

∂z

∂〈U〉
∂z

+ Ck`mk
1/2∂

2〈U〉
∂z2

− τ, (8)

3

0 =
∂

∂z

(
Ck`mk

1/2∂k

∂z

)
+ Ck`mk

1/2

(
∂〈U〉
∂z

)2

− Cε`−1
m k3/2

= 0.5Ck`mk
−1/2

(
∂k

∂z

)2

+ Ck`mk
1/2∂

2k

∂z2
+ Ck`mk

1/2

(
∂〈U〉
∂z

)2

− gT−1
0 Ck`mk

1/2∂〈T 〉
∂z
− Cε`−1

m k3/2,

(9)

0 =
∂

∂z

(
Ck`mk

1/2∂〈T 〉
∂z

)
− γ

= 0.5Ck`mk
−1/2∂k

∂z

∂〈T 〉
∂z

+ Ck`mk
1/2∂

2〈T 〉
∂z2

− γ. (10)

As can be seen these equations are extremely non-linear. They involve non-integer powers of
the unknowns and their derivatives. They also involve the multiplication of the unknowns and
derivatives. These equations can be linearized and solved using a finite difference scheme. Figure
above shows the finite difference representation of the solution spaces for momentum, turbulent
kinetic energy, and temperature.

For notational convenience we can represent derivatives by superscripts and subsequently re-
express the equations using this notation.

〈U〉(0) = 〈U〉, 〈U〉(1) = ∂〈U〉

∂z
, 〈U〉(2) = ∂2〈U〉

∂z2

k(0) = k, k(1) = ∂k
∂z
, k(2) = ∂2k

∂z2

〈T 〉(0) = 〈T 〉, 〈T 〉(1) = ∂〈T 〉
∂z
, 〈T 〉(2) = ∂2〈T 〉

∂z2

0 = 0.5Ck`m(k(0))−1/2k(1)〈U〉(1)︸ ︷︷ ︸
f1,mom.

+Ck`m(k(0))1/2〈U〉(2)︸ ︷︷ ︸
f2,mom.

−τ, (11)

0 = 0.5Ck`m(k(0))−1/2(k(1))2︸ ︷︷ ︸
f1,tke.

+Ck`m(k(0))1/2k(2)︸ ︷︷ ︸
f2,tke.

+ Ck`m(k(0))1/2(〈U〉(1))2︸ ︷︷ ︸
f3,tke.

−gT−1
0 Ck`m(k(0))1/2〈T 〉(1)︸ ︷︷ ︸

f4,tke.

−Cε`−1
m (k(0))3/2︸ ︷︷ ︸
f5,tke.

, (12)

0 = 0.5Ck`m(k(0))−1/2k(1)〈T 〉(1)︸ ︷︷ ︸
f1,hea.

+Ck`m(k(0))1/2〈T 〉(2)︸ ︷︷ ︸
f2,hea.

−γ. (13)

where each non-linear term in the equations have been renamed by a function f , Next, each f func-
tion can be replaced by its approximate using the Newton method expressing the function around
an arbitrary point zi. Beginning with the momentum equation the f function approximations are

4

f1,mom. ≈ f1,mom.(zi)

+
∂f1,mom.

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f1,mom.

∂k(1)
|zi
[
k(1)(z)− k(1)(zi)

]
+
∂f1,mom.

∂〈U〉(1)
|zi
[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= 0.5Ck`m(k(0))−1/2(zi)k

(1)(zi)〈U〉(1)(zi)

− 0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi)[k

(0)(z)− k(0)(zi)]

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)[k
(1)(z)− k(1)(zi)]

+ 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)

[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= −0.25Ck`m(k(0))−1/2(zi)k

(1)(zi)〈U〉(1)(zi)

− 0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi)k

(0)(z)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)k
(1)(z)

+ 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)〈U〉(1)(z) (14)

f2,mom. ≈ f2,mom.(zi)

+
∂f2,mom.

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f2,mom.

∂〈U〉(2)
|zi
[
〈U〉(2)(z)− 〈U〉(2)(zi)

]
= Ck`m(k(0))1/2(zi)〈U〉(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)
[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))1/2(zi)

[
〈U〉(2)(z)− 〈U〉(2)(zi)

]
= −0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k

(0)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k
(0)(z)

+ Ck`m(k(0))1/2(zi)〈U〉(2)(z) (15)

5

f1,tke. ≈ f1,tke(zi)

+
∂f1,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f1,tke

∂k(1)
|zi
[
k(1)(z)− k(1)(zi)

]
= 0.5Ck`m(k(0))−1/2(zi)(k

(1))2(zi)

− 0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi)

[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))−1/2(zi)k

(1)(zi)
[
k(1)(z)− k(1)(zi)

]
= −0.25Ck`m(k(0))−1/2(zi)(k

(1))2(zi)

− 0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi)k

(0)(z)

+ Ck`m(k(0))−1/2(zi)k
(1)(zi)k

(1)(z) (16)

f2,tke. ≈ f2,tke(zi)

+
∂f2,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f2,tke

∂k(2)
|zi
[
k(2)(z)− k(2)(zi)

]
= Ck`m(k(0))1/2(zi)k

(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)k
(2)(zi)

[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))1/2(zi)

[
k(2)(z)− k(2)(zi)

]
= −0.5Ck`m(k(0))1/2(zi)k

(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)k
(2)(zi)k

(0)(z)

+ Ck`m(k(0))1/2(zi)k
(2)(z) (17)

f3,tke. ≈ f3,tke(zi)

+
∂f3,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+

∂f3,tke

∂〈U〉(1)
|zi
[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi)

+ 0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)
[
k(0)(z)− k(0)(zi)

]
+ 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)

[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= −1.5Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi)

+ 0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)k
(0)(z)

+ 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)〈U〉(1)(z) (18)

6

f4,tke. ≈ f4,tke(zi)

+
∂f4,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+

∂f4,tke

∂〈T 〉(1)
|zi
[
〈T 〉(1)(z)− 〈T 〉(1)(zi)

]
= −gT−1

0 Ck`m(k(0))1/2(zi)〈T 〉(1)(zi)

− 0.5gT−1
0 Ck`m(k(0))−1/2(zi)〈T 〉(1)(zi)

[
k(0)(z)− k(0)(zi)

]
− gT−1

0 Ck`m(k(0))1/2(zi)
[
〈T 〉(1)(z)− 〈T 〉(1)(zi)

]
= 0.5gT−1

0 Ck`m(k(0))1/2(zi)〈T 〉(1)(zi)

− 0.5gT−1
0 Ck`m(k(0))−1/2(zi)〈T 〉(1)(zi)k

(0)(z)

− gT−1
0 Ck`m(k(0))1/2(zi)〈T 〉(1)(z) (19)

f5,tke. ≈ f4,tke(zi)

+
∂f4,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
= −Cε`−1

m (k(0))3/2(zi)

− 1.5Cε`
−1
m (k(0))1/2(zi)

[
k(0)(z)− k(0)(zi)

]
= 0.5Cε`

−1
m (k(0))3/2(zi)

− 1.5Cε`
−1
m (k(0))1/2(zi)k

(0)(z) (20)

f1,hea. ≈ f1,hea.(zi)

+
∂f1,hea.

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f1,hea.

∂k(1)
|zi
[
k(1)(z)− k(1)(zi)

]
+
∂f1,hea.

∂〈T 〉(1)
|zi
[
〈T 〉(1)(z)− 〈T 〉(1)(zi)

]
= 0.5Ck`m(k(0))−1/2(zi)k

(1)(zi)〈T 〉(1)(zi)

− 0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈T 〉(1)(zi)[k

(0)(z)− k(0)(zi)]

+ 0.5Ck`m(k(0))−1/2(zi)〈T 〉(1)(zi)[k
(1)(z)− k(1)(zi)]

+ 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)

[
〈T 〉(1)(z)− 〈T 〉(1)(zi)

]
= −0.25Ck`m(k(0))−1/2(zi)k

(1)(zi)〈T 〉(1)(zi)

− 0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈T 〉(1)(zi)k

(0)(z)

+ 0.5Ck`m(k(0))−1/2(zi)〈T 〉(1)(zi)k
(1)(z)

+ 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)〈T 〉(1)(z) (21)

7

f2,hea. ≈ f2,hea.(zi)

+
∂f2,hea.

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f2,hea.

∂〈T 〉(2)
|zi
[
〈T 〉(2)(z)− 〈T 〉(2)(zi)

]
= Ck`m(k(0))1/2(zi)〈T 〉(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)〈T 〉(2)(zi)
[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))1/2(zi)

[
〈T 〉(2)(z)− 〈T 〉(2)(zi)

]
= −0.5Ck`m(k(0))−1/2(zi)〈T 〉(2)(zi)k

(0)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)〈T 〉(2)(zi)k
(0)(z)

+ Ck`m(k(0))1/2(zi)〈T 〉(2)(z) (22)

Now we can write the linearized forms of the equations.

c1〈U〉(1) + c2〈U〉(2) + c3k
(0) + c4k

(1) = cb (23)

c1 = 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)

c2 = Ck`m(k(0))1/2(zi)

c3 = −0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi) + 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)

c4 = 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)

cb = −
[
−0.25Ck`m(k(0))−1/2(zi)k

(1)(zi)〈U〉(1)(zi)− 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k
(0)(zi)− τ

]
d1k

(0) + d2k
(1) + d3k

(2) + d4〈U〉(1) + d5〈T 〉(1) = db (24)

d1 = −0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi) + 0.5Ck`m(k(0))−1/2(zi)k

(2)(zi)

+0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)− 0.5gT−1
0 Ck`m(k(0))−1/2(zi)〈T 〉(1)(zi)

−1.5Cε`
−1
m (k(0))1/2(zi)

d2 = Ck`m(k(0))−1/2(zi)k
(1)(zi)

d3 = Ck`m(k(0))1/2(zi)

d4 = 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)

d5 = −gT−1
0 Ck`m(k(0))1/2(zi)

db = −
[
−0.25Ck`m(k(0))−1/2(zi)(k

(1))2(zi)− 0.5Ck`m(k(0))1/2(zi)k
(2)(zi)

]
−
[
−1.5Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi) + 0.5Cε`

−1
m (k(0))3/2(zi)

]
−
[
0.5gT−1

0 Ck`m(k(0))1/2(zi)〈T 〉(1)(zi)
]

8

e1〈T 〉(1) + e2〈T 〉(2) + e3k
(0) + e4k

(1) = eb (25)

e1 = 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)

e2 = Ck`m(k(0))1/2(zi)

e3 = −0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈T 〉(1)(zi) + 0.5Ck`m(k(0))−1/2(zi)〈T 〉(2)(zi)

e4 = 0.5Ck`m(k(0))−1/2(zi)〈T 〉(1)(zi)

eb = −
[
−0.25Ck`m(k(0))−1/2(zi)k

(1)(zi)〈T 〉(1)(zi)− 0.5Ck`m(k(0))−1/2(zi)〈T 〉(2)(zi)k
(0)(zi)− γ

]
Now consider that we want to represent the linearized momentum and turbulent kinetic energy
equations using finite differences. Consider a vertical discretization ∆z as shown in the figure.
Using central differencing the spatial derivatives can be replaced by values at indices i− 1, i, and
i+ 1. We can replace the equations by their discretized versions as follows

c1
〈U〉i+1 − 〈U〉i−1

2∆z
+ c2
〈U〉i+1 − 2〈U〉i + 〈U〉i−1

(∆z)2
+ c3ki + c4

ki+1 − ki−1

2∆z
= cb, (26)

d1ki + d2
ki+1 − ki−1

2∆z
+ d3

ki+1 − 2ki + ki−1

(∆z)2
+ d4
〈U〉i+1 − 〈U〉i−1

2∆z
+ d5
〈T 〉i+1 − 〈T 〉i−1

2∆z
= db, (27)

e1
〈T 〉i+1 − 〈T 〉i−1

2∆z
+ e2
〈T 〉i+1 − 2〈T 〉i + 〈T 〉i−1

(∆z)2
+ e3ki + e4

ki+1 − ki−1

2∆z
= eb. (28)

The above equations must be rearranged as follows.

(
− c1

2∆z
+

c2

(∆z)2

)
〈U〉i−1 +

(
− 2c2

(∆z)2

)
〈U〉i +

(
c1

2∆z
+

c2

(∆z)2

)
〈U〉i+1

+
(
− c4

2∆z

)
ki−1 + c3ki +

(c4

2∆z

)
ki+1 = cb, (29)

(
− d2

2∆z
+

d3

(∆z)2

)
ki−1 +

(
d1 −

2d3

(∆z)2

)
ki +

(
d2

2∆z
+

d3

(∆z)2

)
ki+1

+

(
− d4

2∆z

)
〈U〉i−1 +

(
d4

2∆z

)
〈U〉i+1

+

(
− d5

2∆z

)
〈T 〉i−1 +

(
d5

2∆z

)
〈T 〉i+1 = db, (30)

9

(
− e1

2∆z
+

e2

(∆z)2

)
〈T 〉i−1 +

(
− 2e2

(∆z)2

)
〈T 〉i +

(
e1

2∆z
+

e2

(∆z)2

)
〈T 〉i+1

+
(
− e4

2∆z

)
ki−1 + e3ki +

(e4

2∆z

)
ki+1 = eb. (31)

As can bee seen the unknowns 〈U〉i, ki, and 〈T 〉i appear in the discretized equations simultaneously.
Therefore, these equations should be combined to arrive at a linear system of equations and
subsequently solved using a linear algebra solver. Let us define the unknowns vector X such that

X =

x0

x1
...

xN−1

xN
xN+1

xN+2
...

x2N

x2N+1

x2N+2

x2N+3
...

x3N+1

x3N+2

=

〈U〉0
〈U〉1

...
〈U〉N−1

〈U〉N
k0

k1
...

kN−1

kN
〈T 〉0
〈T 〉1

...
〈T 〉N−1

〈T 〉N

As can be seen the first third of vector X contains the 〈U〉i solutions, the second third of vector
X contains the ki solutions, and the last third of vector X contains the 〈T 〉i solutions. Note that
ki maps to xi+N+1 and 〈T 〉i maps to xi+2N+2. Now we need 3N + 3 linear equations to solve for
X, i.e.

Equation 0: a0,0x0 + a0,1x1 + ...+ a0,3N+1x3N+1 + a0,3N+2x3N+2 = b0

Equation 1: a1,0x0 + a1,1x1 + ...+ a1,3N+1x3N+1 + a1,3N+2x3N+2 = b1

...

Equation i: ai,0x0 + ai,1x1 + ...+ ai,3N+1x3N+1 + ai,3N+2x3N+2 = bi

...

Equation 3N + 1: a3N+1,0x0 + a3N+1,1x1 + ...+ a3N+1,3N+1x3N+1 + a3N+1,3N+2x3N+2 = b3N+1

Equation 3N + 2: a3N+2,0x0 + a3N+2,1x1 + ...+ a3N+2,3N+1x3N+1 + a3N+2,3N+2x3N+2 = b3N+2

Our next task is to identify ai,j and bi. These can be inferred from the discretized equations. ai,j
are mostly zero except for where there is a non-zero coefficient in the corresponding equations.

10

The first N equations (equation 0, equation 1, ... equation N) are the momentum equations. The
boundary condition for 〈U〉 at the surface provides the zeroth equation, i.e.

x0 = 0

a0,0 = 1

b0 = 0

The next i : 1 → N − 1 equations correspond to the momentum equation in the interior of the
domain, so the coefficients can be obtained as follows

(
− c1

2∆z
+ c2

(∆z)2

)
xi−1 +

(
− 2c2

(∆z)2

)
xi +

(
c1

2∆z
+ c2

(∆z)2

)
xi+1

+
(
− c4

2∆z

)
xi−1+N+1 + c3xi+N+1 +

(
c4

2∆z

)
xi+1+N+1 = cb

ai,i−1 = − c1
2∆z

+ c2
(∆z)2

ai,i = − 2c2
(∆z)2

ai,i+1 = c1
2∆z

+ c2
(∆z)2

ai,i−1+N+1 = − c4
2∆z

ai,i+N+1 = c3

ai,i+1+N+1 = c4
2∆z

bi = cb

Note that where the turbulent kinetic energy term appears the index is shifted by N + 1. The
zero-gradient boundary condition for 〈U〉 at the top of the domain provides the N th equation, i.e.

xN−1 − xN = 0

aN,N−1 = 1

aN,N = −1

bN = 0

The boundary condition for k at the surface provides the N + 1th equation, i.e.

xN+1 = 0

aN+1,N+1 = 1

bN+1 = 0

The next i : N + 2 → 2N equations correspond to the turbulent kinetic energy equation in the
interior of the domain, so the coefficients can be obtained as follows

11

(
− d2

2∆z
+ d3

(∆z)2

)
xi−1 +

(
d1 − 2d3

(∆z)2

)
xi +

(
d2

2∆z
+ d3

(∆z)2

)
xi+1

+
(
− d4

2∆z

)
xi−1−(N+1) +

(
d4

2∆z

)
xi+1−(N+1) +

(
− d5

2∆z

)
xi−1+(N+1) +

(
d5

2∆z

)
xi+1+(N+1) = db

ai,i−1−(N+1) = − d4
2∆z

ai,i+1−(N+1) = d4
2∆z

ai,i−1 = − d2
2∆z

+ d3
(∆z)2

ai,i = d1 − 2d3
(∆z)2

ai,i+1 = d2
2∆z

+ d3
(∆z)2

ai,i−1+(N+1) = − d5
2∆z

ai,i+1+(N+1) = d5
2∆z

bi = db

Note that where the momentum term appears the index is shifted by −(N + 1) and where the
temperature term appears the index is shifted by (N + 1). The boundary condition for k at the
top of the domain provides the 2N + 1th equation. The vertical gradient of the turbulent kinetic
energy must be zero, i.e.

x2N − x2N+1 = 0

a2N+1,2N = 1

a2N+1,2N+1 = −1

b2N+1 = 0

The boundary condition for 〈T 〉 at the surface provides the 2N + 2th equation, i.e.

x2N+2 = Ts

a2N+2,2N+2 = 1

b2N+2 = Ts

The next i : 2N + 3 → 3N + 1 equations correspond to the heat equation in the interior of the
domain, so the coefficients can be obtained as follows

12

(
− e1

2∆z
+ e2

(∆z)2

)
xi−1 +

(
− 2e2

(∆z)2

)
xi +

(
e1

2∆z
+ e2

(∆z)2

)
xi+1

+
(
− e4

2∆z

)
xi−1−(N+1) + e3xi−(N+1) +

(
e4

2∆z

)
xi+1−(N+1) = eb

ai,i−1−(N+1) = − e4
2∆z

ai,i−(N+1) = e3

ai,i+1−(N+1) = e4
2∆z

ai,i−1 = − e1
2∆z

+ e2
(∆z)2

ai,i = − 2e2
(∆z)2

ai,i+1 = e1
2∆z

+ e2
(∆z)2

bi = eb

The boundary condition for 〈T 〉 at the top of the domain provides the 3N + 2th equation. The
vertical gradient of mean temperature must be zero, i.e.

x3N+1 − x3N+2 = 0

a3N+2,3N+1 = 1

a3N+2,3N+2 = −1

b3N+2 = 0

Finally, we have arrived at linear system of equations that can be solved to provide the unknowns.
This system is given as follows

AX = B (32)

a0,0 a0,1 . . . a0,2N a0,2N+1

a1,0 a1,1 . . . a1,2N a1,2N+1
...

...
...

...
...

a3N+1,0 a3N+1,1 . . . a3N+1,3N+1 a3N+1,3N+2

a3N+2,0 a3N+2,1 . . . a3N+2,3N+1 a3N+2,3N+2

x0

x1
...

x3N+1

x3N+2

 =

b0

b1
...

b3N+1

b3N+2

Note that the coefficients identified, themselves, depend on the solution. As a result the solution to
the system of equations above must be found iteratively. That is, an initial guess for the solution
vector X must be assumed. Then the system of equations must be solved iteratively. After each
iteration the solutions must be updated. The system of equations must be solved iteratively until
the difference between successive solutions is less than a specified error. For this purpose, the
maximum norm can be considered. Suppose that a relative error of Err = 0.01 is specified for
any solution. Also suppose the xi and x

(new)
i represent two successive solutions for a specific point.

The iteration can be stopped if the following conditions are met

13

L∞,mom. = max

(
|x

(new)
0 −x0
x0

|, |x
(new)
1 −x1
x1

|, ..., |x
(new)
N −xN
xN

|
)
< Err

L∞,tke. = max

(
|x

(new)
N+1 −xN+1

xN+1
|, |x

(new)
N+2 −xN+2

xN+2
|, ..., |x

(new)
2N+1−x2N+1

x2N+1
|
)
< Err

L∞,hea. = max

(
|x

(new)
2N+2−x2N+2

x2N+2
|, |x

(new)
2N+3−x2N+3

x2N+3
|, ..., |x

(new)
3N+2−x3N+2

x3N+2
|
)
< Err

When solving a system of equations iteratively, it is sometimes more stable to only partially
update a solution after each iteration. This is known as under relaxation. Consider that φn−1 is
the solution space found in the previous iteration and φnew is the newly found solution. With the
under relaxation factor 0 < α < 1, the solution can be updated for the next iteration such that

φn = φn−1 + α(φnew − φn−1). (33)

Particularly, whenever solving non-linear system of equations, this method improves stability of
obtaining a numerical solution.

The simulation is desired for 4 combinations of τ and γ shown in table below. Case 1 represents
a low pressure gradient and heat sink. Case 2 represents a high pressure gradient and heat sink.
Case 3 represents a low pressure gradient and heat gain. Case 4 represents a high pressure gradient
and heat gain.

Table 1: Simulation cases with varying amount of horizontal pressure gradient and heat
sink/source.

Case τ [m s−2] γ [K s−1]
1 −0.005 0.005
2 −0.015 0.005
3 −0.005 −0.005
4 −0.015 −0.005

2 Python Script

Complete the following code to calculate the steady-state solutions for momentum, turbulent
kinetic energy, and temperature.

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

14

#Define gravitational acceleration [m s^-2]

g=9.81

#Define under-relaxation factor

alpha=0.1

#Define horizontal pressure gradient divided by density [m s^-2]

tau=-0.005

#Average temperature in the entire domain [K]

T0=300

#Surface temperature [K]

Ts=290

#Define heat sink or source [K s^-1]

gamma=0.005

#Define von Karman constant

kappa=0.41

#Define maximum mixing length [m]

l0=10

#Define turbulence model constants, Martilli et al. (2002)

Ck=0.4

Ce=0.71

#Define maximum iteration number

MaxIter=100

#Define relative error

Err=0.01

#Define z axis from 0 to Z with dz increments

Z=100 #[m]

N=100

dz=Z/N #[m]

z=numpy.linspace(0,Z,N+1)

#Define and initialize a mean velocity vector [m s^-1]

Uinitial=1

Umean=numpy.zeros((N+1,1))

Umean[:]=Uinitial

#Define and initialize turbulent viscosity [m^2 s^-1]

15

kinitial=0.1

k=numpy.zeros((N+1,1))

k[:]=kinitial

#Define and initialize temperature [K]

Tinitial=300

Tmean=numpy.zeros((N+1,1))

Tmean[:]=Tinitial

#Define unknown vector X, coefficient matrix A, and vector B, in AX=B

x=numpy.zeros((3*N+3,1))

xnew=numpy.zeros((3*N+3,1))

b=numpy.zeros((3*N+3,1))

a=numpy.zeros((3*N+3,3*N+3))

#Initialize solution vector X

#This is a short syntax for for loop

x[0:N+1]=Umean[0:N+1]

x[N+1:2*N+2]=k[0:N+1]

x[2*N+2:3*N+3]=Tmean[0:N+1]

for iter in range(1, MaxIter):

#Momentum equations

#i=0

a[0][0]=1

b[0]=0

#i=1 to N-1

for i in range(1, N):

#Calculate derivatives by finite differences for the current i index

#Remember to shift indices by N+1 if needed

lm=kappa*z[i]/(1+(kappa*z[i])/l0)

k0=x[i+N+1]

k1=(x[i+1+N+1]-x[i-1+N+1])/(2*dz)

k2=(x[i+1+N+1]-2*x[i+N+1]+x[i-1+N+1])/(dz**2)

Umean0=x[i]

Umean1=(x[i+1]-x[i-1])/(2*dz)

Umean2=(x[i+1]-2*x[i]+x[i-1])/(dz**2)

Set constants necessary to build the coefficient matrix

c1=0.5*Ck*lm*k0**(-1/2)*k1

c2=Ck*lm*k0**(1/2)

c3=-0.25*Ck*lm*k0**(-3/2)*k1*Umean1+0.5*Ck*lm*k0**(-1/2)*Umean2

c4=0.5*Ck*lm*k0**(-1/2)*Umean1

cb=-(-0.25*Ck*lm*k0**(-1/2)*k1*Umean1-0.5*Ck*lm*k0**(-1/2)*Umean2*k0-tau)

Set the coefficient matrix and the B vector

a[i][i-1]=-c1/(2*dz)+c2/(dz**2)

a[i][i]=-2*c2/(dz**2)

16

a[i][i+1]=c1/(2*dz)+c2/(dz**2)

a[i][i-1+N+1]=-c4/(2*dz)

a[i][i+N+1]=c3

a[i][i+1+N+1]=c4/(2*dz)

b[i]=cb

#i=N

a[N][N-1]=1

a[N][N]=-1

b[N]=0

#Kinetic energy equations

#i=N+1

a[N+1][N+1]=1

b[N+1]=0

#i=N+2 to 2N

for i in range(N+2, 2*N+1):

#Calculate derivatives by finite differences for the current i index

#Shift indices by -(N+1) or (N+1) if needed

lm=kappa*z[i-(N+1)]/(1+(kappa*z[i-(N+1)])/l0)

k0=x[i]

k1=(x[i+1]-x[i-1])/(2*dz)

k2=(x[i+1]-2*x[i]+x[i-1])/(dz ** 2)

Umean0=x[i-(N+1)]

Umean1=(x[i+1-(N+1)]-x[i-1-(N+1)])/(2*dz)

Umean2=(x[i+1-(N+1)]-2*x[i-(N+1)]+x[i-1-(N+1)])/(dz**2)

Tmean0=x[i+(N+1)]

Tmean1=(x[i+1+(N+1)]-x[i-1+(N+1)])/(2*dz)

Tmean2=(x[i+1+(N+1)]-2*x[i+(N+1)]+x[i-1+(N+1)])/(dz**2)

#Set constants necessary to build the coefficient matrix

d1=...

d2=...

d3=...

d4=...

d5=.

db=...

Set the coefficient matrix and the B vector

a[i][i-1-(N+1)]=...

a[i][i+1-(N+1)]=...

a[i][i-1]=...

a[i][i]=...

a[i][i+1]=...

a[i][i-1+(N+1)]=...

a[i][i+1+(N+1)]=...

b[i]=db

i=2N+1

a[2*N+1][2*N]=1

17

a[2*N+1][2*N+1]=-1

b[2*N+1]=0

#heat equations

#i=2N+2

a[2*N+2][2*N+2]=...

b[2*N+2]=...

#i=2N+3 to 3N+1

for i in range(2*N+3, 3*N+2):

#Calculate derivatives by finite differences for the current i index

#Remember to shift indices by -(N+1) or -(2N+2) if needed

lm=...

k0=...

k1=...

k2=...

Tmean0=...

Tmean1=...

Tmean2=...

Set constants necessary to build the coefficient matrix

e1=0.5*Ck*lm*k0**(-1/2)*k1

e2=Ck*lm*k0**(1/2)

e3=-0.25*Ck*lm*k0**(-3/2)*k1*Tmean1+0.5*Ck*lm*k0**(-1/2)*Tmean2

e4=0.5*Ck*lm*k0**(-1/2)*Tmean1

eb=-(-0.25*Ck*lm*k0**(-1/2)*k1*Tmean1-0.5*Ck*lm*k0**(-1/2)*Tmean2*k0-gamma)

Set the coefficient matrix and the B vector

a[i][i-1-(N+1)]=-e4/(2*dz)

a[i][i-(N+1)]=e3

a[i][i+1-(N+1)]=e4/(2*dz)

a[i][i-1]=-e1/(2*dz)+e2/(dz**2)

a[i][i]=-2*e2/(dz**2)

a[i][i+1]=e1/(2*dz)+e2/(dz**2)

b[i]=eb

#i=3N+2

a[3*N+2][3*N+1]=1

a[3*N+2][3*N+2]=-1

b[3*N+2]=0

xnew = numpy.linalg.solve(a, b)

Calculate maximum norm errors for all solutions

ErrUmean=numpy.max(numpy.abs(numpy.divide(xnew[1:N+1]-x[1:N+1],x[1:N+1])))

Errk=...

ErrT=...

print(’Iteration=’,iter,’ErrUmean=’,ErrUmean,’Errk=’,Errk,’ErrT=’,ErrT)

18

if ErrUmean < Err and Errk < Err and ErrT < Err:

print(’Solutions converged at iteration: ’, iter)

Exit the loop

break

Update solution

x[:]=x[:]+alpha*(xnew[:]-x[:])

#Assign the X vector to the original Umean, k, and T vectors

Umean[0:N+1]=x[0:N+1]

k[0:N+1]=x[N+1:2*N+2]

Tmean[0:N+1]=x[2*N+2:3*N+3]

#Plot the mean velocity versus z

plt.plot(Umean, z)

plt.xlabel(’<U> [m s ^ -1]’)

plt.ylabel(’z[m]’)

plt.title(’Mean Velocity as Function of z’)

plt.show()

Plot the turbulent viscosity versus z

plt.plot(k, z)

plt.xlabel(’k [m^2 s^-2]’)

plt.ylabel(’z [m]’)

plt.title(’Turbulent Kinetic Energy as Function of z’)

plt.show()

Plot the turbulent viscosity versus z

plt.plot(Tmean, z)

plt.xlabel(’<T> [K]’)

plt.ylabel(’z [m]’)

plt.title(’Mean Temperature as Function of z’)

plt.show()

Upon completing the code. You should get the following output from the console. For each
iteration the convergence criteria is printed to the screen to monitor the solution behaviour. Note
that with only a few tens of iterations using the Newton method, it is possible to converge to a
solution with a relative error less than 1%.

...

Iteration= 43 ErrUmean= 0.0061785224409 Errk= 0.0111982631439 ErrT= 0.000830386432384

Iteration= 44 ErrUmean= 0.00555284890133 Errk= 0.0100670331501 ErrT= 0.000747160626933

Iteration= 45 ErrUmean= 0.00499124350421 Errk= 0.00905111247775 ErrT= 0.00067229321339

Solutions converged at iteration: 45

Try to answer the following questions.

• What is the effect of changing the τ on the momentum, turbulent kinetic energy, and tem-

19

Figure 2: Momentum solution for case 1 (top left), case 2 (top right), case 3 (bottom left), and
case 4 (bottom right)

perature solutions? Which solutions are affected the most.

• What is the effect of changing the γ on the momentum, turbulent kinetic energy, and tem-
perature solutions? Which solutions are affected the most.

• Set γ = 0, i.e. eliminate heat sink or source in the heat equation. Can you explain the
temperature profile that results?

• Increase the under-relaxation factor α to 0.9 when solving for the momentum and turbulent
kinetic energy equations? Can you obtain a converged solution? Reason why.

20

Figure 3: Turbulent kinetic energy solution for case 1 (top left), case 2 (top right), case 3 (bottom
left), and case 4 (bottom right)

21

Figure 4: Temperature solution for case 1 (top left), case 2 (top right), case 3 (bottom left), and
case 4 (bottom right)

22

ENGG*6790: Theory and Applications of Turbulence

1D Momentum, Turbulent Kinetic Energy, and Passive Scalar Equations
over Flat Surface with Steady and Transient Formulations

Amir A. Aliabadi

March 14, 2019

1 Introduction

In the lectures the transport equation for a passive scalar was obtained using the gradient diffusion
hypothesis. This hypothesis gives the transport equation and the effective diffusivity as

D〈φ〉
Dt︸ ︷︷ ︸

Material Derivative of Mean

= ∇.(Γeff∇〈φ〉)︸ ︷︷ ︸
Diffusion of Mean

. (1)

Γeff (x, t)︸ ︷︷ ︸
Effective Diffusivity

= Γ︸︷︷︸
Molecular Diffusivity

+ ΓT (x, t)︸ ︷︷ ︸
Turbulent Diffusivity

≈ ΓT (x, t), (2)

where the molecular diffusivity has been ignored in a highly turbulent field in comparison to the
turbulent diffusivity. Assuming that the turbulent Schmidt number is approximately equal to one
the effective diffusivity for the passive scalar equation can be given as

ΓT =
νT
ScT

≈ νT
1

= νT . (3)

This model can be employed to develop a one-dimensional transport model for the passive scalar
transport under transient conditions. Suppose we use the Cartesian coordinate system with co-
ordinate axes of x, y, and z, and velocities corresponding to these axes being U = 〈U〉 + u,
V = 〈V 〉+ v, W = 〈W 〉+ w, respectively, as shown in the schematic. We can assume that mean
flow is only in the x direction parallel to the surface and that the direction z is normal to the
surface so that 〈V 〉 = 〈W 〉 = 0. The transport equation for the passive scalar can be given by

1

∂〈φ〉
∂t︸ ︷︷ ︸

Storage

=
∂

∂z

(
νT
∂〈φ〉
∂z

)
︸ ︷︷ ︸
Diffusion of Mean

, (4)

where the turbulent viscosity can be obtained solving the transport equations for momentum and
the turbulent kinetic energy. One convenient approach is to solve the momentum and turbulent
kinetic energy equations under steady-state condition first, Subsequently, once the turbulent vis-
cosity or alternatively the kinetic energy is obtained, one can solve the transport equation for
the passive scalar under transient conditions. This is perfectly reasonable because the passive
scalar equation, whether solved under transient or steady state conditions, does not influence the
momentum and turbulent kinetic energy equations.

Figure 1: Schematic of 1D flow and passive scalar transport over flat surface using Cartesian
coordinate system; finite difference representation of the 1D flow and passive scalar transport.

1.1 Steady-state Solution of the Momentum and Turbulent Kinetic
Energy Equations

We first direct our attention to solve the momentum and turbulent kinetic energy equations under
steady-state conditions. In the lectures the turbulent kinetic energy model was introduced as
one transport equation to predict the turbulent kinetic energy. This turbulent kinetic energy was
then used to formulate turbulent viscosity so that the momentum equation can be solved. The
turbulent kinetic energy equation is given as

Dk

Dt︸︷︷︸
Material Derivative

≡ ∂k

∂t︸︷︷︸
Storage

+ 〈U〉.∇k︸ ︷︷ ︸
Advection

= ∇.
(
νT
σk
∇k
)

︸ ︷︷ ︸
Energy Flux Divergence

+ P︸︷︷︸
Production

− ε︸︷︷︸
Dissipation

, (5)

2

νT = ck1/2`m,

ε = CD
k3/2

`m
,

`m(x, t) known.

Assume that the modified pressure has a constant gradient in the x direction, the 1D momentum
equation then simplifies to

0 =
∂

∂z

(
νT
∂〈U〉
∂z

)
︸ ︷︷ ︸

Surface Forces and Reynolds Stress

− τ︸︷︷︸
Modified Pressure Forces

(6)

The one-dimensional turbulent kinetic energy equation can be developed as follows

0 =
∂

∂z

(
νT
σk

∂k

∂z

)
︸ ︷︷ ︸

Energy Flux Divergence

+ νT

(
∂〈U〉
∂z

)2

︸ ︷︷ ︸
Shear Production

− ε︸︷︷︸
Dissipation

(7)

where the energy flux divergence was discussed in the lectures. This term ensures that the resulting
model transport equation for k yields smooth solutions, and that a boundary condition can be
imposed on k everywhere in the boundary of the domain. Otherwise the model may diverge if other
transport mechanisms for k are much smaller than this term. The shear production term, is an
example of a production term P , that contributes to the generation of the turbulent kinetic energy.
Here, when there is non-zero mean velocity gradient, turbulent kinetic energy is generated. The
dissipation term is responsible for consuming turbulent kinetic energy down the energy cascade.

To close the turbulence model we can assume that the turbulent Prandtl number is unity, i.e.
σk = 1. We can model turbulent viscosity, dissipation rate, and the appropriate mixing length as
follows.

νT = Ck`mk

1/2,

ε = Cε`
−1
m k3/2,

`m = κz/(1 + κz
`0

).

where κ = 0.41 is the von Kármán constant, and `0 is the maximum mixing length. This for-
mulation for mixing length has the nice property that it is bounded between zero and `0, which
is physically sound since mixing length increases linearly in the log-law sublayer near a wall but
cannot increase indefinitely in the interior of the domain. This formulation results in

{
z → 0 `m → κz

z →∞ `m → `0

3

So we have two equations: momentum and turbulent kinetic energy. We can eliminate νT and ε
from the momentum and turbulent kinetic energy equations by direct substitutions and simplifi-
cations using the chain rule. So the two equations can be re-expressed as

0 =
∂

∂z

(
Ck`mk

1/2∂〈U〉
∂z

)
− τ

= 0.5Ck`mk
−1/2∂k

∂z

∂〈U〉
∂z

+ Ck`mk
1/2∂

2〈U〉
∂z2

− τ (8)

0 =
∂

∂z

(
Ck`mk

1/2∂k

∂z

)
+ Ck`mk

1/2

(
∂〈U〉
∂z

)2

− Cε`−1
m k3/2

= 0.5Ck`mk
−1/2

(
∂k

∂z

)2

+ Ck`mk
1/2∂

2k

∂z2
+ Ck`mk

1/2

(
∂〈U〉
∂z

)2

− Cε`−1
m k3/2. (9)

As can be seen the two equations are extremely non-linear. They involve non-integer powers of
the unknowns and their derivatives. They also involve the multiplication of the unknowns and
derivatives. These equations can be linearized and solved using a finite difference scheme. Figure
below shows the finite difference representation of the solution spaces for momentum and turbulent
kinetic energy.

For notational convenience we can represent derivatives by superscripts and subsequently re-
express the momentum and turbulent kinetic energy equations using this notation.

{
〈U〉(0) = 〈U〉, 〈U〉(1) = ∂〈U〉

∂z
, 〈U〉(2) = ∂2〈U〉

∂z2

k(0) = k, k(1) = ∂k
∂z
, k(2) = ∂2k

∂z2

0 = 0.5Ck`m(k(0))−1/2k(1)〈U〉(1)︸ ︷︷ ︸
f1,mom.

+Ck`m(k(0))1/2〈U〉(2)︸ ︷︷ ︸
f2,mom.

−τ (10)

0 = 0.5Ck`m(k(0))−1/2(k(1))2︸ ︷︷ ︸
f1,tke.

+Ck`m(k(0))1/2k(2)︸ ︷︷ ︸
f2,tke.

+Ck`m(k(0))1/2(〈U〉(1))2︸ ︷︷ ︸
f3,tke.

−Cε`−1
m (k(0))3/2︸ ︷︷ ︸
f4,tke.

. (11)

where each non-linear term in the equations have been renamed by a function f , Next, each f func-
tion can be replaced by its approximate using the Newton method expressing the function around
an arbitrary point zi. Beginning with the momentum equation the f function approximations are

4

f1,mom. ≈ f1,mom.(zi)

+
∂f1,mom.

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f1,mom.

∂k(1)
|zi
[
k(1)(z)− k(1)(zi)

]
+
∂f1,mom.

∂〈U〉(1)
|zi
[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= 0.5Ck`m(k(0))−1/2(zi)k

(1)(zi)〈U〉(1)(zi)

− 0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi)[k

(0)(z)− k(0)(zi)]

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)[k
(1)(z)− k(1)(zi)]

+ 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)

[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= −0.25Ck`m(k(0))−1/2(zi)k

(1)(zi)〈U〉(1)(zi)

− 0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi)k

(0)(z)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)k
(1)(z)

+ 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)〈U〉(1)(z) (12)

f2,mom. ≈ f2,mom.(zi)

+
∂f2,mom.

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f2,mom.

∂〈U〉(2)
|zi
[
〈U〉(2)(z)− 〈U〉(2)(zi)

]
= Ck`m(k(0))1/2(zi)〈U〉(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)
[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))1/2(zi)

[
〈U〉(2)(z)− 〈U〉(2)(zi)

]
= −0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k

(0)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k
(0)(z)

+ Ck`m(k(0))1/2(zi)〈U〉(2)(z) (13)

5

f1,tke. ≈ f1,tke(zi)

+
∂f1,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f1,tke

∂k(1)
|zi
[
k(1)(z)− k(1)(zi)

]
= 0.5Ck`m(k(0))−1/2(zi)(k

(1))2(zi)

− 0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi)

[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))−1/2(zi)k

(1)(zi)
[
k(1)(z)− k(1)(zi)

]
= −0.25Ck`m(k(0))−1/2(zi)(k

(1))2(zi)

− 0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi)k

(0)(z)

+ Ck`m(k(0))−1/2(zi)k
(1)(zi)k

(1)(z) (14)

f2,tke. ≈ f2,tke(zi)

+
∂f2,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+
∂f2,tke

∂k(2)
|zi
[
k(2)(z)− k(2)(zi)

]
= Ck`m(k(0))1/2(zi)k

(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)k
(2)(zi)

[
k(0)(z)− k(0)(zi)

]
+ Ck`m(k(0))1/2(zi)

[
k(2)(z)− k(2)(zi)

]
= −0.5Ck`m(k(0))1/2(zi)k

(2)(zi)

+ 0.5Ck`m(k(0))−1/2(zi)k
(2)(zi)k

(0)(z)

+ Ck`m(k(0))1/2(zi)k
(2)(z) (15)

f3,tke. ≈ f3,tke(zi)

+
∂f3,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
+

∂f3,tke

∂〈U〉(1)
|zi
[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi)

+ 0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)
[
k(0)(z)− k(0)(zi)

]
+ 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)

[
〈U〉(1)(z)− 〈U〉(1)(zi)

]
= −1.5Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi)

+ 0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)k
(0)(z)

+ 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)〈U〉(1)(z) (16)

6

f4,tke. ≈ f4,tke(zi)

+
∂f4,tke

∂k(0)
|zi
[
k(0)(z)− k(0)(zi)

]
= −Cε`−1

m (k(0))3/2(zi)

− 1.5Cε`
−1
m (k(0))1/2(zi)

[
k(0)(z)− k(0)(zi)

]
= 0.5Cε`

−1
m (k(0))3/2(zi)

− 1.5Cε`
−1
m (k(0))1/2(zi)k

(0)(z) (17)

Now we can write the linearized forms of the momentum and turbulent kinetic energy equations.

c1〈U〉(1) + c2〈U〉(2) + c3k
(0) + c4k

(1) = cb (18)

c1 = 0.5Ck`m(k(0))−1/2(zi)k
(1)(zi)

c2 = Ck`m(k(0))1/2(zi)

c3 = −0.25Ck`m(k(0))−3/2(zi)k
(1)(zi)〈U〉(1)(zi) + 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)

c4 = 0.5Ck`m(k(0))−1/2(zi)〈U〉(1)(zi)

cb = −
[
−0.25Ck`m(k(0))−1/2(zi)k

(1)(zi)〈U〉(1)(zi)− 0.5Ck`m(k(0))−1/2(zi)〈U〉(2)(zi)k
(0)(zi)− τ

]
d1k

(0) + d2k
(1) + d3k

(2) + d4〈U〉(1) = db (19)

d1 = −0.25Ck`m(k(0))−3/2(zi)(k
(1))2(zi) + 0.5Ck`m(k(0))−1/2(zi)k

(2)(zi)

+0.5Ck`m(k(0))−1/2(zi)(〈U〉(1))2(zi)− 1.5Cε`
−1
m (k(0))1/2(zi)

d2 = Ck`m(k(0))−1/2(zi)k
(1)(zi)

d3 = Ck`m(k(0))1/2(zi)

d4 = 2Ck`m(k(0))1/2(zi)〈U〉(1)(zi)

d1 = −
[
−0.25Ck`m(k(0))−1/2(zi)(k

(1))2(zi)− 0.5Ck`m(k(0))1/2(zi)k
(2)(zi)

]
−
[
−1.5Ck`m(k(0))1/2(zi)(〈U〉(1))2(zi) + 0.5Cε`

−1
m (k(0))3/2(zi)

]
Now consider that we want to represent the linearized momentum and turbulent kinetic energy
equations using finite differences. Consider a vertical discretization ∆z as shown in the figure.
Using central differencing the spatial derivatives can be replaced by values at indices i− 1, i, and
i+ 1. We can replace the momentum and turbulent kinetic energy equations by their discretized
versions as follows

c1
〈U〉i+1 − 〈U〉i−1

2∆z
+ c2
〈U〉i+1 − 2〈U〉i + 〈U〉i−1

(∆z)2
+ c3ki + c4

ki+1 − ki−1

2∆z
= cb (20)

7

d1ki + d2
ki+1 − ki−1

2∆z
+ d3

ki+1 − 2ki + ki−1

(∆z)2
+ d4
〈U〉i+1 − 〈U〉i−1

2∆z
= db (21)

The above equations must be rearranged as follows.

(
− c1

2∆z
+

c2

(∆z)2

)
〈U〉i−1 +

(
− 2c2

(∆z)2

)
〈U〉i +

(
c1

2∆z
+

c2

(∆z)2

)
〈U〉i+1

+
(
− c4

2∆z

)
ki−1 + c3ki +

(c4

2∆z

)
ki+1 = cb (22)

(
− d2

2∆z
+

d3

(∆z)2

)
ki−1 +

(
d1 −

2d3

(∆z)2

)
ki +

(
d2

2∆z
+

d3

(∆z)2

)
ki+1

+

(
− d4

2∆z

)
〈U〉i−1 +

(
d4

2∆z

)
〈U〉i+1 = db (23)

As can bee seen the unknowns 〈U〉i and ki appear in both discretized momentum and turbulent
kinetic energy equations. Therefore, these equations should be combined to arrive at a linear
system of equations and subsequently solved using a linear algebra solver. Let us define the
unknowns vector X such that

X =

x0

x1
...

xN−1

xN
xN+1

xN+2
...

x2N

x2N+1

=

〈U〉0
〈U〉1

...
〈U〉N−1

〈U〉N
k0

k1
...

kN−1

kN

As can be seen the first half of vector X contains the 〈U〉i solutions and the second half of vector
X contains the ki solutions. Note that ki maps to xi+N+1. Now we need 2N + 2 linear equations
to solve for X, i.e.

8

Equation 0: a0,0x0 + a0,1x1 + ...+ a0,2Nx2N + a0,2N+1x2N+1 = b0

Equation 1: a1,0x0 + a1,1x1 + ...+ a1,2Nx2N + a1,2N+1x2N+1 = b1

...

Equation i: ai,0x0 + ai,1x1 + ...+ ai,2Nx2N + ai,2N+1x2N+1 = bi

...

Equation 2N : a2N,0x0 + a2N,1x1 + ...+ a2N,2Nx2N + a2N,2N+1x2N+1 = b2N

Equation 2N + 1: a2N+1,0x0 + a2N+1,1x1 + ...+ a2N+1,2Nx2N + a2N+1,2N+1x2N+1 = b2N+1

Our next task is to identify ai,j and bi. These can be inferred from the discretized momentum
and turbulent kinetic energy equations. ai,j are mostly zero except for where there is a non-
zero coefficient in the corresponding equations. The first N equations (equation 0, equation 1,
... equation N) are the momentum equations. The boundary condition for 〈U〉 at the surface
provides the zeroth equation, i.e.

x0 = 0

a0,0 = 1

b0 = 0

The next i : 1 → N − 1 equations correspond to the momentum equation in the interior of the
domain, so the coefficients can be obtained as follows

(
− c1

2∆z
+ c2

(∆z)2

)
xi−1 +

(
− 2c2

(∆z)2

)
xi +

(
c1

2∆z
+ c2

(∆z)2

)
xi+1

+
(
− c4

2∆z

)
xi−1+N+1 + c3xi+N+1 +

(
c4

2∆z

)
xi+1+N+1 = cb

ai,i−1 = − c1
2∆z

+ c2
(∆z)2

ai,i = − 2c2
(∆z)2

ai,i+1 = c1
2∆z

+ c2
(∆z)2

ai,i−1+N+1 = − c4
2∆z

ai,i+N+1 = c3

ai,i+1+N+1 = c4
2∆z

bi = cb

Note that where the turbulent kinetic energy term appears the index is shifted by N + 1. The
boundary condition for 〈U〉 at the top of the domain provides the N th equation, i.e.

9

xN−1 − xN = 0

aN,N−1 = 1

aN,N = −1

bN = 0

The boundary condition for k at the surface provides the N + 1th equation, i.e.

xN+1 = 0

aN+1,N+1 = 1

bN+1 = 0

The next i : N + 2 → 2N equations correspond to the turbulent kinetic energy equation in the
interior of the domain, so the coefficients can be obtained as follows

(
− d2

2∆z
+ d3

(∆z)2

)
xi−1 +

(
d1 − 2d3

(∆z)2

)
xi +

(
d2

2∆z
+ d3

(∆z)2

)
xi+1

+
(
− d4

2∆z

)
xn+1
i−1−(N+1) +

(
d4

2∆z

)
xn+1
i+1−(N+1) = db

ai,i−1−(N+1) = − d4
2∆z

ai,i+1−(N+1) = d4
2∆z

ai,i−1 = − d2
2∆z

+ d3
(∆z)2

ai,i = d1 − 2d3
(∆z)2

ai,i+1 = d2
2∆z

+ d3
(∆z)2

bi = db

Note that where the momentum term appears the index is shifted by −(N + 1). The boundary
condition for k at the top of the domain provides the 2N + 1th equation. The vertical gradient of
the turbulent kinetic energy must be zero, i.e.

x2N − x2N+1 = 0

a2N+1,2N = 1

a2N+1,2N+1 = −1

b2N+1 = 0

Finally, we have arrived at linear system of equations that can be solved to provide the unknowns.
This system is given as follows

AX = B (24)

10

a0,0 a0,1 . . . a0,2N a0,2N+1

a1,0 a1,1 . . . a1,2N a1,2N+1
...

...
...

...
...

a2N,0 a2N,1 . . . a2N,2N a2N,2N+1

a2N+1,0 a2N+1,1 . . . a2N+1,2N a2N+1,2N+1

x0

x1
...

x2N

x2N+1

 =

b0

b1
...
b2N

b2N+1

Note that the coefficients identified, themselves, depend on the solution. As a result the solution
to the system of equations above must be found iteratively. That is, an initial guess for the
solution vector X must be assumed. Then the system of equations must be solved iteratively.
After each iteration the solutions must be updated. The system of equations must be solved
iteratively until the difference between successive solutions is less than a specified error. For this
purpose, the maximum norm can be considered. Suppose that a relative error of Err = 0.01 is
specified for either the momentum or turbulent kinetic energy solution. Also suppose the xi and
x

(new)
i represent two successive solutions for a specific point. The iteration can be stopped if the

following conditions are met

L∞,mom. = max

(
|x

(new)
0 −x0
x0

|, |x
(new)
1 −x1
x1

|, ..., |x
(new)
N −xN
xN

|
)
< Err

L∞,tke = max

(
|x

(new)
N+1 −xN+1

xN+1
|, |x

(new)
N+2 −xN+2

xN+2
|, ..., |x

(new)
2N+1−x2N+1

x2N+1
|
)
< Err

When solving a system of equations iteratively, it is sometimes more stable to only partially
update a solution after each iteration. This is known as under relaxation. Consider that φn−1 is
the solution space found in the previous iteration and φnew is the newly found solution. With the
under relaxation factor 0 < α < 1, the solution can be updated for the next iteration such that

φn = φn−1 + α(φnew − φn−1). (25)

Particularly, whenever solving non-linear system of equations, this method improves stability of
obtaining a numerical solution.

1.2 Transient Solution of the Passive Scalar Transport Equation

Next we focus our attention to solve the transient passive scalar transport equation. For notational
convenience we can represent derivatives by superscripts and subsequently re-express the passive
scalar transport equation using this notation. Note that we keep the time derivative with its
original notation since this derivative involves having solutions at different timesteps, which later
have to be considered for the implicit Euler method for the transient model.

11

{
〈φ〉(0) = 〈φ〉, 〈φ〉(1) = ∂〈φ〉

∂z
, 〈φ〉(2) = ∂2〈φ〉

∂z2

k(0) = k, k(1) = ∂k
∂z

∂〈φ〉
∂t

= 0.5Ck`m(k(0))−1/2k(1)〈φ〉(1) + Ck`m(k(0))1/2〈φ〉(2). (26)

Note that having values for k(0) and k(1) already, this equation is already in the linear form and
one does not need to use the Newton method to linearize it. This equation can be expressed as

∂〈φ〉
∂t

= c1〈φ〉(1) + c2〈φ〉(2) (27)

{
c1 = 0.5Ck`m(k(0))−1/2k(1)

c2 = Ck`m(k(0))1/2

Now consider that we want to represent the passive scalar transport equation using finite differ-
ences. Consider a vertical discretization ∆z as shown in the figure and temporal discretization
∆t. Using central differencing the spatial derivatives can be replaced by values at indices i− 1, i,
and i + 1. In addition, the time derivative can be replaced by values at time levels n and n + 1.
If we use the implicit Euler method, i.e. computing spatial derivatives at time level n+ 1, we can
replace the equation by its discretized versions as follows

〈φ〉n+1
i − 〈φ〉ni

∆t
= c1

〈φ〉n+1
i+1 − 〈φ〉n+1

i−1

2∆z
+ c2

〈φ〉n+1
i+1 − 2〈φ〉n+1

i + 〈φ〉n+1
i−1

(∆z)2
(28)

Note that in the implicit Euler method we assume that the values of 〈φ〉i are known at time level
n, and one must solve for values at time level n + 1. As a result, the above equation must be
rearranged as follows

(
c1∆t

2∆z
− c2∆t

(∆z)2

)
〈φ〉n+1

i−1 +

(
1 +

2c2∆t

(∆z)2

)
〈φ〉n+1

i +

(
−c1∆t

2∆z
− c2∆t

(∆z)2

)
〈φ〉n+1

i+1 = 〈φ〉ni . (29)

Now let us define the unknowns vector X such that

X =

x0

x1
...

xN−1

xN

 =

〈φ〉n+1

0

〈φ〉n+1
1
...

〈φ〉n+1
N−1

〈φ〉n+1
N

12

Now we need N + 1 linear equations to solve for X, i.e.

Equation 0: a0,0x0 + a0,1x1 + ...+ a0,NxN = b0

Equation 1: a1,0x0 + a1,1x1 + ...+ a1,NxN = b1

...

Equation i: ai,0x0 + ai,1x1 + ...+ ai,NxN = bi

...

Equation N − 1: aN−1,0x0 + aN−1,1x1 + ...+ aN−1,NxN = bN−1

Equation N : aN,0x0 + aN,1x1 + ...+ aN,NxN = bN

Our next task is to identify ai,j and bi. These can be inferred from the discretized passive scalar
equation. ai,j are mostly zero except for where there is a non-zero coefficient in the corresponding
equations. The boundary condition for 〈φ〉 at the surface provides the zeroth equation, assuming
a fixed concentration, at the surface, i.e.

x0 = 0

a0,0 = 1

b0 = φs

The next i : 1→ N − 1 equations correspond to the interior of the domain, so the coefficients can
be obtained as follows

(
c1∆t
2∆z
− c2∆t

(∆z)2

)
xi−1 +

(
1 + 2c2∆t

(∆z)2

)
xi +

(
− c1∆t

2∆z
− c2∆t

(∆z)2

)
xi+1 = 〈φ〉ni

ai,i−1 =
(
c1∆t
2∆z
− c2∆t

(∆z)2

)
ai,i =

(
1 + 2c2∆t

(∆z)2

)
ai,i+1 =

(
− c1∆t

2∆z
− c2∆t

(∆z)2

)
bi = 〈φ〉ni

The boundary condition for 〈φ〉 at the top of the domain provides the N th equation, assuming
zero gradient, i.e.

xN−1 − xN = 0

aN,N−1 = 1

aN,N = −1

bN = 0

Finally, we have arrived at linear system of equations that can be solved to provide the unknowns.
This system is given as follows

13

AX = B (30)

a0,0 a0,1 . . . a0,N

a1,0 a1,1 . . . a1,N
...

...
...

...
...

aN,0 aN,1 . . . aN,N

x0

x1
...
xN

 =

b0

b1
...
bN

Note that this system of equations must be solved at every time level. Once the solutions at every
time level is obtained, it can then be used as initial condition and the system must be solved again
for the next time level. At each time level, note that the coefficients identified, themselves, do not
depend on the solution. As a result the solution to the system of equations above does not have
to be found iteratively.

The transient simulation is desired for 4 combinations of τ and `0 shown in table below, while the
value of φs = 1 fixed. Case 1 represents a low pressure gradient and small mixing length. Case
2 represents a high pressure gradient and small mixing length. Case 3 represents a low pressure
gradient and large mixing length. Case 4 represents a high pressure gradient and large mixing
length.

Table 1: Simulation cases with varying amount of horizontal pressure gradient and mixing length
Case τ [m s−2] `0 [m]
1 −0.005 10
2 −0.01 10
3 −0.005 20
4 −0.01 20

2 Python Script

Complete the following code to calculate the steady-state solutions for momentum and the turbu-
lent kinetic energy.

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

#Define under-relaxation factor

alpha=0.1

#Define horizontal pressure gradient divided by density [m s^-2]

14

tau=-0.005

#Define von Karman constant

kappa=0.41

#Define maximum mixing length [m]

l0=10

#Define turbulence model constants, Martilli et al. (2002)

Ck=0.4

Ce=0.71

#Define maximum iteration number

MaxIter=100

#Define relative error

Err=0.01

#Define z axis from 0 to Z with dz increments

Z=100 #[m]

N=100

dz=Z/N #[m]

z=numpy.linspace(0,Z,N+1)

#Define and initialize a mean velocity vector [m s^-1]

Uinitial=1

Umean=numpy.zeros((N+1,1))

Umean[:]=Uinitial

#Define and initialize turbulent viscosity [m^2 s^-1]

kinitial=0.1

k=numpy.zeros((N+1,1))

k[:]=kinitial

#Define unknown vector X, coefficient matrix A, and vector B, in AX=B

x=numpy.zeros((2*N+2,1))

xnew=numpy.zeros((2*N+2,1))

b=numpy.zeros((2*N+2,1))

a=numpy.zeros((2*N+2,2*N+2))

#Initialize solution vector X

#This is a short syntax for for loop

x[0:N+1]=Umean[0:N+1]

x[N+1:2*N+2]=k[0:N+1]

for iter in range(1, MaxIter):

15

#Momentum equations

#i=0

a[0][0]=1

b[0]=0

#i=1 to N-1

for i in range(1, N):

#Calculate derivatives by finite differences for the current i index

#Remember to shift indices by N+1 if needed

lm=kappa*z[i]/(1+(kappa*z[i])/l0)

k0=x[i+N+1]

k1=(x[i+1+N+1]-x[i-1+N+1])/(2*dz)

k2=(x[i+1+N+1]-2*x[i+N+1]+x[i-1+N+1])/(dz**2)

Umean0=x[i]

Umean1=(x[i+1]-x[i-1])/(2*dz)

Umean2=(x[i+1]-2*x[i]+x[i-1])/(dz**2)

Set constants necessary to build the coefficient matrix

c1=0.5*Ck*lm*k0**(-1/2)*k1

c2=Ck*lm*k0**(1/2)

c3=-0.25*Ck*lm*k0**(-3/2)*k1*Umean1+0.5*Ck*lm*k0**(-1/2)*Umean2

c4=0.5*Ck*lm*k0**(-1/2)*Umean1

cb=-(-0.25*Ck*lm*k0**(-1/2)*k1*Umean1-0.5*Ck*lm*k0**(-1/2)*Umean2*k0-tau)

Set the coefficient matrix and the B vector

a[i][i-1]=...

a[i][i]=...

a[i][i+1]=...

a[i][i-1+N+1]=...

a[i][i+N+1]=...

a[i][i+1+N+1]=...

b[i]=...

#i=N

a[N][N-1]=...

a[N][N]=...

b[N]=...

#Kinetic energy equations

#i=N+1

a[N+1][N+1]=1

b[N+1]=0

#i=N+2 to 2N

for i in range(N+2, 2*N+1):

#Calculate derivatives by finite differences for the current i index

#Shift indices by -(N+1) if needed

lm=kappa*z[i-(N+1)]/(1+(kappa*z[i-(N+1)])/l0)

k0=x[i]

k1=(x[i+1]-x[i-1])/(2*dz)

k2=(x[i+1]-2*x[i]+x[i-1])/(dz ** 2)

16

Umean0=x[i-(N+1)]

Umean1=(x[i+1-(N+1)]-x[i-1-(N+1)])/(2*dz)

Umean2=(x[i+1-(N+1)]-2*x[i-(N+1)]+x[i-1-(N+1)])/(dz**2)

#Set constants necessary to build the coefficient matrix

d1=-0.25*Ck*lm*k0**(-3/2)*k1**2+0.5*Ck*lm*k0**(-1/2)*k2\

+0.5*Ck*lm*k0**(-1/2)*Umean1**2-1.5*Ce*lm**(-1)*k0**(1/2)

d2=Ck*lm*k0**(-1/2)*k1

d3=Ck*lm*k0**(1/2)

d4=2*Ck*lm*k0**(1/2)*Umean1

db=-(-0.25*Ck*lm*k0**(-1/2)*k1**2-0.5*Ck*lm*k0**(1/2)*k2)\

-(-1.5*Ck*lm*k0**(1/2)*Umean1**2+0.5*Ce*lm**(-1)*k0**(3/2))

Set the coefficient matrix and the B vector

a[i][i-1-(N+1)]=...

a[i][i+1-(N+1)]=...

a[i][i-1]=...

a[i][i]=...

a[i][i+1]=...

b[i]=...

i=2N+1

a[2*N+1][2*N]=...

a[2*N+1][2*N+1]=...

b[2*N+1]=...

xnew = numpy.linalg.solve(a, b)

Calculate maximum norm errors for both momentum and turbulent kinetic energy

ErrUmean=numpy.max(numpy.abs(numpy.divide(xnew[1:N+1]-x[1:N+1],x[1:N+1])))

Errk=...

print(’Iteration=’,iter,’ErrUmean=’,ErrUmean,’Errk=’,Errk)

if ErrUmean < Err and Errk < Err:

print(’Solutions converged at iteration: ’, iter)

Exit the loop

break

Update solution

x[:]=x[:]+alpha*(xnew[:]-x[:])

#Assign the X vector to the original Umean and k vectors

Umean[0:N+1]=...

k[0:N+1]=...

#Plot the mean velocity versus z

plt.plot(Umean, z)

plt.xlabel(’<U> [m s^-1]’)

17

plt.ylabel(’z[m]’)

plt.title(’Mean Velocity as Function of z’)

plt.show()

Plot the turbulent viscosity versus z

plt.plot(k, z)

plt.xlabel(’k [m^2 s^-2]’)

plt.ylabel(’z [m]’)

plt.title(’Turbulent Kinetic Energy as Function of z’)

plt.show()

Upon completing the code. You should get the following output from the console. For each
iteration the convergence criteria is printed to the screen to monitor the solution behaviour. Note
that with only a few tens of iterations using the Newton method, it is possible to converge to a
solution with a relative error less than 1%.

...

Iteration= 43 ErrUmean= 0.00536326893688 Errk= 0.0123014708332

Iteration= 44 ErrUmean= 0.00482027210921 Errk= 0.0110574058777

Iteration= 45 ErrUmean= 0.00433285589024 Errk= 0.00994041815673

Solutions converged at iteration: 45

Now complete the following code to find a transient solution for the passive scalar transport
equation.

#Now simulate the transient passive scalar transport equation

#Define t vector from 0 to T with dt increments

T=1000 #[s]

Nt=100

dt=T/Nt #[s]

t=numpy.linspace(0, T, Nt+1)

#Define and initialize a mean passive scalar concentration

phis=1

phimean=numpy.zeros((N+1,Nt+1))

phimean[0][0]=phis

#Define unknown vector X, coefficient matrix A, and vector B, in AX=B

x=numpy.zeros((N+1,1))

xnew=numpy.zeros((N+1,1))

b=numpy.zeros((N+1,1))

a=numpy.zeros((N+1,N+1))

#Initialize solution vector X

for i in range(0, N+1):

x[i]=phimean[i][0]

18

#Iterate for time levels

for n in range(1, Nt+1):

#passive scalar equations

#i=0

a[0][0]=1

b[0]=phis

#i=1 to N-1

for i in range(1, N):

#Calculate derivatives by finite differences for the current i index

lm=kappa*z[i]/(1+(kappa*z[i])/l0)

k0=k[i]

k1=(k[i+1]-k[i-1])/(2*dz)

Set constants necessary to build the coefficient matrix

c1=...

c2=...

Set the coefficient matrix and the B vector

a[i][i-1]=...

a[i][i]=...

a[i][i+1]=...

b[i]=phimean[i][n-1]

#i=N

a[N][N-1]=...

a[N][N]=...

b[N]=...

xnew=numpy.linalg.solve(a,b)

#Update solution

x[:]=xnew[:]

#Before next time level,

#assign the X vector to the original phimean matrix

for i in range(0, N+1):

phimean[i][n]=x[i]

#Plot the mean passive scalar versus z

plt.plot(phimean[:,1],z,label=’t=’+str(t[1])+’ s’)

plt.plot(phimean[:,25],z,label=’t=’+str(t[25])+’ s’)

plt.plot(phimean[:,50],z,label=’t=’+str(t[50])+’ s’)

plt.plot(phimean[:,75],z,label=’t=’+str(t[75])+’ s’)

plt.plot(phimean[:,100],z,label=’t=’+str(t[100])+’ s’)

plt.xlabel(’<phi>’)

plt.ylabel(’z [m]’)

plt.title(’Mean Passive Scalar as Function of z’)

plt.legend()

19

plt.show()

Figure 2: Momentum solution for case 1 (top left), case 2 (top right), case 3 (bottom left), and
case 4 (bottom right)

Try to answer the following questions.

• Discuss the effects of horizontal pressure gradient and maximum mixing length on the solu-
tions.

• Why did we not iterate at every time level when solving the passive scalar transport equation?

• What is the effect of changing the timestep ∆t on the passive scalar solution?

• What is the effect of changing the spatial discretization ∆z on the passive scalar solution?

• Increase the under-relaxation factor α to 0.9 when solving for the momentum and turbulent
kinetic energy equations? Can you obtain a converged solution? Reason why.

20

Figure 3: Turbulent kinetic energy solution for case 1 (top left), case 2 (top right), case 3 (bottom
left), and case 4 (bottom right)

21

Figure 4: Passive scalar solution for case 1 (top left), case 2 (top right), case 3 (bottom left), and
case 4 (bottom right)

22

ENGG*6790: Theory and Applications of Turbulence

A Simple Wall Model (1) for
1D Momentum and Turbulent Kinetic Energy Equations over Flat Surface

Amir A. Aliabadi

March 22, 2019

1 Introduction

Various wall functions were introduced in lectures. The purpose of this lab is to implement a
simple wall function in the 1D momentum and turbulent kinetic energy equations. In addition, it
is desired to investigate the sensitivity of the solutions as a function of the length of the first grid
near the wall.

In previous labs, the equation for momentum and the effective viscosity, the sum of the molecular
viscosity and the turbulent viscosity, were introduced as

D

Dt
〈Uj〉︸ ︷︷ ︸

Material Derivative of Mean

=
∂

∂xi

[
νeff

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)]
︸ ︷︷ ︸

Surface Forces and Reynolds Stress

− 1

ρ

∂

∂xj
(〈p〉+

2

3
ρk)︸ ︷︷ ︸

Modified Pressure

, (1)

νeff (x, t)︸ ︷︷ ︸
Effective Viscosity

= ν︸︷︷︸
Molecular Viscosity

+ νT (x, t)︸ ︷︷ ︸
Turbulent Viscosity

. (2)

In addition, in the lectures the turbulent kinetic energy model was introduced as one transport
equation to predict the turbulent kinetic energy. This turbulent kinetic energy was then used
to formulate turbulent viscosity so that the momentum equation can be solved. The turbulent
kinetic energy equation is given as

Dk

Dt︸︷︷︸
Material Derivative

≡ ∂k

∂t︸︷︷︸
Storage

+ 〈U〉.∇k︸ ︷︷ ︸
Advection

= ∇.
(
νT
σk
∇k
)

︸ ︷︷ ︸
Energy Flux Divergence

+ P︸︷︷︸
Production

− ε︸︷︷︸
Dissipation

, (3)

1

νT = ck1/2`m,

ε = CD
k3/2

`m
,

`m(x, t) known.

This model can be employed to develop a one-dimensional transport model for momentum and
turbulent kinetic energy under steady-state conditions. Suppose we use the Cartesian coordinate
system with coordinate axes of x, y, and z, and velocities corresponding to these axes being
U = 〈U〉+u, V = 〈V 〉+v, W = 〈W 〉+w, respectively, as shown in the schematic. We can assume
that mean flow is only in the x direction parallel to the surface and that the direction z is normal
to the surface so that 〈V 〉 = 〈W 〉 = 0.

Figure 1: Schematic of 1D flow over flat surface using Cartesian coordinate system; finite difference
representation of the 1D flow.

Assume that the modified pressure has a constant gradient in the x direction, the 1D momentum
equation then simplifies to

0 =
∂

∂z

(
νT
∂〈U〉
∂z

)
︸ ︷︷ ︸

Surface Forces and Reynolds Stress

− τ︸︷︷︸
Modified Pressure Forces

(4)

The one-dimensional turbulent kinetic energy equation can be developed as follows

0 =
∂

∂z

(
νT
σk

∂k

∂z

)
︸ ︷︷ ︸

Energy Flux Divergence

+ νT

(
∂〈U〉
∂z

)2

︸ ︷︷ ︸
Shear Production

− ε︸︷︷︸
Dissipation

(5)

where the energy flux divergence was discussed in the lectures. This term ensures that the resulting
model transport equation for k yields smooth solutions, and that a boundary condition can be

2

imposed on k everywhere in the boundary of the domain. Otherwise the model may diverge if other
transport mechanisms for k are much smaller than this term. The shear production term, is an
example of a production term P , that contributes to the generation of the turbulent kinetic energy.
Here, when there is non-zero mean velocity gradient, turbulent kinetic energy is generated. The
dissipation term is responsible for consuming turbulent kinetic energy down the energy cascade.

To close the turbulence model we can assume that the turbulent Prandtl number is unity, i.e.
σk = 1. We can model turbulent viscosity, dissipation rate, and the appropriate mixing length as
follows.

νT = Ck`mk

1/2,

ε = Cε`
−1
m k3/2,

`m = κz/(1 + κz
`0

).

where κ = 0.41 is the von Kármán constant, and `0 is the maximum mixing length. This for-
mulation for mixing length has the nice property that it is bounded between zero and `0, which
is physically sound since mixing length increases linearly in the log-law sublayer near a wall but
cannot increase indefinitely in the interior of the domain. This formulation results in

{
z → 0 `m → κz

z →∞ `m → `0

So we have two equations: momentum and turbulent kinetic energy. We can eliminate νT and ε
from the momentum and turbulent kinetic energy equations by direct substitutions and simplifi-
cations using the chain rule. So the two equations can be re-expressed as

0 =
∂

∂z

(
Ck`mk

1/2∂〈U〉
∂z

)
− τ

= 0.5Ck`mk
−1/2∂k

∂z

∂〈U〉
∂z

+ Ck`mk
1/2∂

2〈U〉
∂z2

− τ (6)

0 =
∂

∂z

(
Ck`mk

1/2∂k

∂z

)
+ Ck`mk

1/2

(
∂〈U〉
∂z

)2

− Cε`−1
m k3/2

= 0.5Ck`mk
−1/2

(
∂k

∂z

)2

+ Ck`mk
1/2∂

2k

∂z2
+ Ck`mk

1/2

(
∂〈U〉
∂z

)2

− Cε`−1
m k3/2. (7)

These equations would apply to the interior of the domain. However, in the first node within the
domain, i.e. the node adjacent to the wall (p), we should apply a wall function. This requires
solving another transport equation for momentum. The concept of the wall function is to apply
a value for the Reynolds stresses, or shear stresses, at the first computational node, instead of

3

applying a value for the mean momentum. As a result we should first look at the mean momentum
equation without the turbulent viscosity hypothesis:

D〈Uj〉
Dt︸ ︷︷ ︸

Material Derivative of Mean

= ν∇2〈Uj〉︸ ︷︷ ︸
Surface Forces

− ∂〈uiuj〉
∂xi︸ ︷︷ ︸

Reynolds Stresses

− 1

ρ

∂〈p〉
∂xj︸ ︷︷ ︸

Normal and Body Forces

. (8)

Since a wall function is being used, node p is in the turbulent boundary layer and we can neglect
the surface forces due to molecular viscosity ν. In fact we can assume νT is 100 or 1000 times ν.
We would also re-express the normal and body forces in terms of a modified pressure. Applying
these changes to the steady 1D momentum equation we will obtain

0 = −∂〈uw〉
∂z︸ ︷︷ ︸

Reynolds Stress

− τ︸︷︷︸
Modified Pressure Forces

+
2

3
k (9)

The term 2
3
k must appear because the modified pressure requires −2

3
k to be added to the pressure

gradient term. When we write the discretized version of this equation, we need the Reynolds stress
at the wall as well as the Reynolds stress on the upper node. The Reynolds stress on the upper
node can be approximated by the turbulent viscosity hypothesis, while the Reynolds stress on the
wall comes from the wall function. Let us discuss the wall function first.

It must be recalled that Reynolds stress near the wall, friction velocity, and shear stress at the
wall are related by

−〈uw〉 = u2
τ =

τw
ρ
. (10)

It should also be remembered that it is possible to relate shear stress near the wall to the turbulent
kinetic energy by

−〈uw〉 = u2
τ = Ckk. (11)

We first calculate a nominal friction velocity to approximate the friction velocity using the value
of turbulent kinetic energy at node p

u∗τ = C
1/2
k k1/2

p . (12)

Next we calculate z∗p using the location of the first node away from the wall, i.e. zp, as follows

z∗p =
zpu

∗
τ

ν
. (13)

4

This allows us to find a nominal mean velocity using the log-law of the wall

〈U〉∗p = u∗τ

(
1

κ
ln z∗p +B

)
. (14)

Finally we can express the Reynolds stress at node p using

−〈uw〉p = u∗2
τ

〈U〉p
〈U〉∗p

(15)

We can make multiple substitutions to express the Reynolds stress at node p only as a function
of unknown momentum and turbulent kinetic energy solution variables

−〈uw〉p =
C

1/2
k k

1/2
p 〈U〉p

1
κ

ln

(
C

1/2
k k

1/2
p zp
ν

)
+B

. (16)

This equation can be solved iteratively along with other equations. However, in practice, because
the calculation of Reynolds stress at node p is within an overall iterative procedure for the entire
flow field, at each overall iteration, the equation for Reynolds stress at node p is solved only once,
with the right-hand-side values taken to be those of the previous overall iteration.

It may be noticed that solving the new momentum equation is not very convenient as it requires
a separate discretization scheme, involving the discretization of the derivative of the Reynolds
stress. An alternative approach is to modify the turbulent viscosity for the first node, i.e. with an
effective viscosity, νeff , that ensures the correct friction velocity or Reynolds stress, even though
the velocity gradient is erroneous. In other words, for the first computational node, we can use

νeff =
−〈uw〉p

∂U
∂z

' −〈uw〉p
2∆z

〈U〉2 − 〈U〉0
(17)

We can calculate this effective viscosity once per iteration and use it in the simpler momentum
equation

0 = νeff
d2〈U〉
dz2

− τ. (18)

Using a finite difference scheme we can assume a uniform vertical discretization of ∆z and ap-
proximate the second derivative of 〈U〉 with

(
d2〈U〉
dz2

)
1

≈ 〈U〉2 − 2〈U〉1 + 〈U〉0
(∆z)2

. (19)

5

Therefore, the finite difference representation of the 1D momentum equation can be provided using
the following equation, which can be rearranged to the following form for simplicity

0 = νeff
〈U〉2 − 2〈U〉1 + 〈U〉0

(∆z)2
− τ. (20)

〈U〉0 − 2〈U〉1 + 〈U〉2 =
τ(∆z)2

νeff
. (21)

So the momentum equation for the first computational node is discretized. We wish to simulate
flow over flat surface on 9 mesh levels from very fine to very coarse with and without using the
simple wall function. We desire to know how much the momentum solution on the top of the
domain will change as a result of using coarser and coarser meshes, and if the use of the simple
wall function will help to reduce solution change as a result of coarsening the mesh.

Table 1: Simulation cases with various mesh resolutions
Mesh Level N
1 1000
2 500
3 250
4 100
5 50
6 25
7 10
8 5
9 2

2 Python Script

We first implement the script without using a wall function. Complete the following script and
then run it for the 9 levels of mesh. Please record the value of the momentum solution on top of the
domain for each simulation. You can see that the portion of the code responsible for implementing
the simple wall function is commented out.

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

#Define under-relaxation factor

alpha=0.1

6

#Define horizontal pressure gradient divided by density [m s^-2]

tau=-0.005

#Define von Karman constant

kappa=0.41

#Define constant for the log-law of the wall

B=5.2

#Define air kinematic viscosity [m^2 s^-1]

nu=1.5e-5

#Define maximum mixing length [m]

l0=10

#Define turbulence model constants, Martilli et al. (2002)

Ck=0.4

Ce=0.71

#Define maximum iteration number

MaxIter=1000

#Define relative error

Err=0.01

#Define z axis from 0 to Z with dz increments

Z=100 #[m]

N=2

dz=Z/N #[m]

z=numpy.linspace(0,Z,N+1)

#Define and initialize a mean velocity vector [m s^-1]

Uinitial=1

Umean=numpy.zeros((N+1,1))

Umean[:]=Uinitial

#Define and initialize turbulent kinetic energy [m^2 s^-s]

kinitial=0.1

k=numpy.zeros((N+1,1))

k[:]=kinitial

#Define unknown vector X, coefficient matrix A, and vector B, in AX=B

x=numpy.zeros((2*N+2,1))

xnew=numpy.zeros((2*N+2,1))

b=numpy.zeros((2*N+2,1))

7

a=numpy.zeros((2*N+2,2*N+2))

#Initialize solution vector X

#This is a short syntax for for loop

x[0]=0

x[1:N+1]=Umean[1:N+1]

x[N+1:2*N+2]=k[0:N+1]

for iter in range(1, MaxIter):

#Momentum equations

#i=0

a[0][0]=1

b[0]=0

’’’

#i=1

#Calculate the effective viscosity in the first node using wall function

uTauStar=(Ck**0.5)*(x[1+N+1]**0.5)

zpStar=dz*uTauStar/nu

UmeanpStar=uTauStar*((1/kappa)*numpy.log(zpStar)+B)

ReynoldsStressp=(uTauStar**2)*x[1]/UmeanpStar

nuEff=ReynoldsStressp*(2*dz)/(x[2]-x[0])

a[1][0]=...

a[1][1]=...

a[1][2]=...

b[1]=...

’’’

#i=1 to N-1

for i in range(1, N):

#Calculate derivatives by finite differences for the current i index

#Remember to shift indices by N+1 if needed

lm=kappa*z[i]/(1+(kappa*z[i])/l0)

k0=x[i+N+1]

k1=(x[i+1+N+1]-x[i-1+N+1])/(2*dz)

k2=(x[i+1+N+1]-2*x[i+N+1]+x[i-1+N+1])/(dz**2)

Umean0=x[i]

Umean1=(x[i+1]-x[i-1])/(2*dz)

Umean2=(x[i+1]-2*x[i]+x[i-1])/(dz**2)

Set constants necessary to build the coefficient matrix

c1=0.5*Ck*lm*k0**(-1/2)*k1

c2=Ck*lm*k0**(1/2)

c3=-0.25*Ck*lm*k0**(-3/2)*k1*Umean1+0.5*Ck*lm*k0**(-1/2)*Umean2

c4=0.5*Ck*lm*k0**(-1/2)*Umean1

cb=-(-0.25*Ck*lm*k0**(-1/2)*k1*Umean1-0.5*Ck*lm*k0**(-1/2)*Umean2*k0-tau)

Set the coefficient matrix and the B vector

8

a[i][i-1]=-c1/(2*dz)+c2/(dz**2)

a[i][i]=-2*c2/(dz**2)

a[i][i+1]=c1/(2*dz)+c2/(dz**2)

a[i][i-1+N+1]=-c4/(2*dz)

a[i][i+N+1]=c3

a[i][i+1+N+1]=c4/(2*dz)

b[i]=cb

#i=N

a[N][N-1]=1

a[N][N]=-1

b[N]=0

#Kinetic energy equations

#i=N+1

a[N+1][N+1]=1

b[N+1]=0

#i=N+2 to 2N

for i in range(N+2, 2*N+1):

#Calculate derivatives by finite differences for the current i index

#Shift indices by -(N+1) if needed

lm=kappa*z[i-(N+1)]/(1+(kappa*z[i-(N+1)])/l0)

k0=x[i]

k1=(x[i+1]-x[i-1])/(2*dz)

k2=(x[i+1]-2*x[i]+x[i-1])/(dz ** 2)

Umean0=x[i-(N+1)]

Umean1=(x[i+1-(N+1)]-x[i-1-(N+1)])/(2*dz)

Umean2=(x[i+1-(N+1)]-2*x[i-(N+1)]+x[i-1-(N+1)])/(dz**2)

#Set constants necessary to build the coefficient matrix

d1=-0.25*Ck*lm*k0**(-3/2)*k1**2+0.5*Ck*lm*k0**(-1/2)*k2\

+0.5*Ck*lm*k0**(-1/2)*Umean1**2-1.5*Ce*lm**(-1)*k0**(1/2)

d2=Ck*lm*k0**(-1/2)*k1

d3=Ck*lm*k0**(1/2)

d4=2*Ck*lm*k0**(1/2)*Umean1

db=-(-0.25*Ck*lm*k0**(-1/2)*k1**2-0.5*Ck*lm*k0**(1/2)*k2)\

-(-1.5*Ck*lm*k0**(1/2)*Umean1**2+0.5*Ce*lm**(-1)*k0**(3/2))

Set the coefficient matrix and the B vector

a[i][i-1-(N+1)]=-d4/(2*dz)

a[i][i+1-(N+1)]=d4/(2*dz)

a[i][i-1]=-d2/(2*dz)+d3/(dz**2)

a[i][i]=d1-2*d3/(dz**2)

a[i][i+1]=d2/(2*dz)+d3/(dz**2)

b[i]=db

i=2N+1

a[2*N+1][2*N]=1

a[2*N+1][2*N+1]=-1

b[2*N+1]=0

9

xnew = numpy.linalg.solve(a, b)

Calculate maximum norm errors for both momentum and turbulent kinetic energy

ErrUmean=numpy.max(numpy.abs(numpy.divide(xnew[1:N+1]-x[1:N+1],x[1:N+1])))

Errk=numpy.max(numpy.abs(numpy.divide(xnew[N+2:2*N+1]-x[N+2:2*N+1],x[N+2:2*N+1])))

print(’Iteration=’,iter,’ErrUmean=’,ErrUmean,’Errk=’,Errk)

if ErrUmean < Err and Errk < Err:

print(’Solutions converged at iteration: ’, iter)

Exit the loop

break

Update solution

x[:]=x[:]+alpha*(xnew[:]-x[:])

#Assign the X vector to the original Umean and k vectors

Umean[0:N+1]=x[0:N+1]

k[0:N+1]=x[N+1:2*N+2]

#Print the solution monitor as the velocity on top of the model domain

print(’Highest Level Umean=’,Umean[N])

Now change the script so the simple wall function can be used. You need to remove the comments.
Note that the variable of iteration for the loop following the wall function must now start from 2.
The fragment of the code to be changed is given below.

...

#Momentum equations

#i=0

a[0][0]=1

b[0]=0

#i=1

#Calculate the effective viscosity in the first node using wall function

uTauStar=(Ck**0.5)*(x[1+N+1]**0.5)

zpStar=dz*uTauStar/nu

UmeanpStar=uTauStar*((1/kappa)*numpy.log(zpStar)+B)

ReynoldsStressp=(uTauStar**2)*x[1]/UmeanpStar

nuEff=ReynoldsStressp*(2*dz)/(x[2]-x[0])

a[1][0]=...

a[1][1]=...

a[1][2]=...

b[1]=...

10

#i=2 to N-1

for i in range(2, N):

...

After running the code with the implemented wall function for the 9 levels of mesh, we can obtain
the following values for momentum solution on top of the domain. Table below summarizes the
solutions for both without and with using wall functions.

Table 2: Simulation cases with various mesh resolutions
Mesh Level N 〈U〉N [m s−1] 〈U〉N [m s−1]

Without Wall Function With Wall Function 1
1 1000 17.0 17.0
2 500 16.9 16.8
3 250 16.7 16.6
4 100 16.3 16.4
5 50 15.9 16.1
6 25 15.3 15.7
7 10 14.2 15.2
8 5 12.9 14.7
9 2 10.2 12.4

Try to answer the following questions.

• Suppose that level 1 (N = 1000) provides the most accurate solution. Which series of
simulations shows less variation in the solution by coarsening the mesh?

• Is the effect of using wall functions more noticeable on the fine mesh or coarse mesh?

• Calculate the relative error for the momentum solution between each mesh level and the
first level (finest) for each series of simulations. Which series exhibits smaller errors at each
mesh level? the series with or without using wall functions?

• If you are limited by computational resources and must use a relatively coarse mesh for a
simulation job, would you use wall functions?

11

ENGG*6790: Theory and Applications of Turbulence

A Simple Wall Model (2) for
1D Momentum and Turbulent Kinetic Energy Equations over Flat Surface

Amir A. Aliabadi

March 22, 2019

1 Introduction

A simple wall function (1) was used in a previous lab. In this lab we implement another simple
wall function (2) for comparison. Again, we develop a one-dimensional transport model for mo-
mentum and turbulent kinetic energy under steady-state conditions. Suppose we use the Cartesian
coordinate system with coordinate axes of x, y, and z, and velocities corresponding to these axes
being U = 〈U〉+ u, V = 〈V 〉+ v, W = 〈W 〉+w, respectively, as shown in the schematic. We can
assume that mean flow is only in the x direction parallel to the surface and that the direction z is
normal to the surface so that 〈V 〉 = 〈W 〉 = 0.

Figure 1: Schematic of 1D flow over flat surface using Cartesian coordinate system; finite difference
representation of the 1D flow.

Before introducing wall function (2), it must be recalled that Reynolds stress near the wall, friction
velocity, and shear stress at the wall are related by

1

−〈uw〉 = u2τ =
τw
ρ
. (1)

It should also be remembered that it is possible to relate shear stress near the wall to the turbulent
kinetic energy by

−〈uw〉 = u2τ = Ckk. (2)

The new wall function evaluates a nominal friction velocity iteratively by successively solving the
following equation as part of the overall solver iteration

u∗τ =
〈U〉∗p(

1
κ

ln z∗p +B
) (3)

where 〈U〉∗p is the most recent solution at node p for momentum. Of course z∗p itself is a function
of the nominal friction velocity such that

z∗p =
zpu

∗
τ

ν
(4)

which requires that nominal friction velocity be initialized before the iterations. A convenient way
for this initialization is to use the relationship between friction velocity and the turbulent kinetic
energy, i.e. u2τ = Ckk, at the beginning of the simulation.

Again, at each iteration, we modify the turbulent viscosity for the first node, i.e. with an effective
viscosity, νeff , that ensures the correct friction velocity or Reynolds stress, even though the velocity
gradient is erroneous. In other words, for the first computational node, we can use

νeff =
−〈uw〉p

∂U
∂z

=
u∗2τ
∂U
∂z

' −〈uw〉p
2∆z

〈U〉2 − 〈U〉0
= u∗2τ

2∆z

〈U〉2 − 〈U〉0
(5)

We can calculate this effective viscosity once per iteration and use it in the simpler momentum
equation

0 = νeff
d2〈U〉
dz2

− τ. (6)

Next, instead of evaluating the nominal friction velocity from the turbulent kinetic energy at node
p, we evaluate the turbulent kinetic energy at node p from the most recent update of the nominal
friction velocity

kp =
u∗2τ
Ck

. (7)

2

Using a finite difference scheme we can assume a uniform vertical discretization of ∆z and ap-
proximate the second derivative of 〈U〉 with

(
d2〈U〉
dz2

)
1

≈ 〈U〉2 − 2〈U〉1 + 〈U〉0
(∆z)2

. (8)

Therefore, the finite difference representation of the 1D momentum equation can be provided using
the following equation, which can be rearranged to the following form for simplicity

0 = νeff
〈U〉2 − 2〈U〉1 + 〈U〉0

(∆z)2
− τ. (9)

〈U〉0 − 2〈U〉1 + 〈U〉2 =
τ(∆z)2

νeff
. (10)

So the momentum equation for the first computational node is discretized. Likewise, the turbulent
kinetic energy equation for the first computational node is discretized as

k1 =
−〈uw〉p
Ck

=
u∗2τ
Ck

(11)

We wish to simulate flow over flat surface on 9 mesh levels from very fine to very coarse with this
new simple wall function. We desire to know how much the momentum solution on the top of the
domain will change as a result of using coarser and coarser meshes, and if the use of this simple
wall function will help to reduce solution change as a result of coarsening the mesh.

Table 1: Simulation cases with various mesh resolutions
Mesh Level N
1 1000
2 500
3 250
4 100
5 50
6 25
7 10
8 5
9 2

3

2 Python Script

Complete the following script and then run it for the 9 levels of mesh. Please record the value of
the momentum solution on top of the domain for each simulation.

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

#Define under-relaxation factor

alpha=0.1

#Define horizontal pressure gradient divided by density [m s^-2]

tau=-0.005

#Define von Karman constant

kappa=0.41

#Define constant for the log-law of the wall

B=5.2

#Define air kinematic viscosity [m^2 s^-1]

nu=1.5e-5

#Define maximum mixing length [m]

l0=10

#Define turbulence model constants, Martilli et al. (2002)

Ck=0.4

Ce=0.71

#Define maximum iteration number

MaxIter=1000

#Define relative error

Err=0.01

#Define z axis from 0 to Z with dz increments

Z=100 #[m]

N=100

dz=Z/N #[m]

z=numpy.linspace(0,Z,N+1)

4

#Define and initialize a mean velocity vector [m s^-1]

Uinitial=1

Umean=numpy.zeros((N+1,1))

Umean[:]=Uinitial

#Define and initialize turbulent kinetic energy [m^2 s^-s]

kinitial=0.1

k=numpy.zeros((N+1,1))

k[:]=kinitial

#Define and initialize friction velocity

uTauStar=(Ck**0.5)*(k[1]**0.5)

#Define unknown vector X, coefficient matrix A, and vector B, in AX=B

x=numpy.zeros((2*N+2,1))

xnew=numpy.zeros((2*N+2,1))

b=numpy.zeros((2*N+2,1))

a=numpy.zeros((2*N+2,2*N+2))

#Initialize solution vector X

#This is a short syntax for for loop

x[0]=0

x[1:N+1]=Umean[1:N+1]

x[N+1:2*N+2]=k[0:N+1]

for iter in range(1, MaxIter):

#Momentum equations

#i=0

a[0][0]=1

b[0]=0

#i=1

#Calculate the effective viscosity in the first node using wall function

zpStar=dz*uTauStar/nu

UmeanpStar=x[1]

#Update nominal friction velocity based on the latest solutions

uTauStar=UmeanpStar/((1/kappa)*numpy.log(zpStar)+B)

nuEff=(uTauStar**2)*(2*dz)/(x[2]-x[0])

a[1][0]=...

a[1][1]=...

a[1][2]=...

b[1]=...

#i=2 to N-1

for i in range(2, N):

#Calculate derivatives by finite differences for the current i index

5

#Remember to shift indices by N+1 if needed

lm=kappa*z[i]/(1+(kappa*z[i])/l0)

k0=x[i+N+1]

k1=(x[i+1+N+1]-x[i-1+N+1])/(2*dz)

k2=(x[i+1+N+1]-2*x[i+N+1]+x[i-1+N+1])/(dz**2)

Umean0=x[i]

Umean1=(x[i+1]-x[i-1])/(2*dz)

Umean2=(x[i+1]-2*x[i]+x[i-1])/(dz**2)

Set constants necessary to build the coefficient matrix

c1=0.5*Ck*lm*k0**(-1/2)*k1

c2=Ck*lm*k0**(1/2)

c3=-0.25*Ck*lm*k0**(-3/2)*k1*Umean1+0.5*Ck*lm*k0**(-1/2)*Umean2

c4=0.5*Ck*lm*k0**(-1/2)*Umean1

cb=-(-0.25*Ck*lm*k0**(-1/2)*k1*Umean1-0.5*Ck*lm*k0**(-1/2)*Umean2*k0-tau)

Set the coefficient matrix and the B vector

a[i][i-1]=-c1/(2*dz)+c2/(dz**2)

a[i][i]=-2*c2/(dz**2)

a[i][i+1]=c1/(2*dz)+c2/(dz**2)

a[i][i-1+N+1]=-c4/(2*dz)

a[i][i+N+1]=c3

a[i][i+1+N+1]=c4/(2*dz)

b[i]=cb

#i=N

a[N][N-1]=1

a[N][N]=-1

b[N]=0

#Kinetic energy equations

#i=N+1

a[N+1][N+1]=1

b[N+1]=0

#i=N+2

a[N+2][N+2]=...

b[N+2]=...

#i=N+3 to 2N

for i in range(N+3, 2*N+1):

#Calculate derivatives by finite differences for the current i index

#Shift indices by -(N+1) if needed

lm=kappa*z[i-(N+1)]/(1+(kappa*z[i-(N+1)])/l0)

k0=x[i]

k1=(x[i+1]-x[i-1])/(2*dz)

k2=(x[i+1]-2*x[i]+x[i-1])/(dz ** 2)

Umean0=x[i-(N+1)]

Umean1=(x[i+1-(N+1)]-x[i-1-(N+1)])/(2*dz)

6

Umean2=(x[i+1-(N+1)]-2*x[i-(N+1)]+x[i-1-(N+1)])/(dz**2)

#Set constants necessary to build the coefficient matrix

d1=-0.25*Ck*lm*k0**(-3/2)*k1**2+0.5*Ck*lm*k0**(-1/2)*k2\

+0.5*Ck*lm*k0**(-1/2)*Umean1**2-1.5*Ce*lm**(-1)*k0**(1/2)

d2=Ck*lm*k0**(-1/2)*k1

d3=Ck*lm*k0**(1/2)

d4=2*Ck*lm*k0**(1/2)*Umean1

db=-(-0.25*Ck*lm*k0**(-1/2)*k1**2-0.5*Ck*lm*k0**(1/2)*k2)\

-(-1.5*Ck*lm*k0**(1/2)*Umean1**2+0.5*Ce*lm**(-1)*k0**(3/2))

Set the coefficient matrix and the B vector

a[i][i-1-(N+1)]=-d4/(2*dz)

a[i][i+1-(N+1)]=d4/(2*dz)

a[i][i-1]=-d2/(2*dz)+d3/(dz**2)

a[i][i]=d1-2*d3/(dz**2)

a[i][i+1]=d2/(2*dz)+d3/(dz**2)

b[i]=db

i=2N+1

a[2*N+1][2*N]=1

a[2*N+1][2*N+1]=-1

b[2*N+1]=0

xnew = numpy.linalg.solve(a, b)

Calculate maximum norm errors for both momentum and turbulent kinetic energy

ErrUmean=numpy.max(numpy.abs(numpy.divide(xnew[1:N+1]-x[1:N+1],x[1:N+1])))

Errk=numpy.max(numpy.abs(numpy.divide(xnew[N+2:2*N+1]-x[N+2:2*N+1],x[N+2:2*N+1])))

print(’Iteration=’,iter,’ErrUmean=’,ErrUmean,’Errk=’,Errk)

if ErrUmean < Err and Errk < Err:

print(’Solutions converged at iteration: ’, iter)

Exit the loop

break

Update solution

x[:]=x[:]+alpha*(xnew[:]-x[:])

#Assign the X vector to the original Umean and k vectors

Umean[0:N+1]=x[0:N+1]

k[0:N+1]=x[N+1:2*N+2]

#Print the solution monitor as the velocity on top of the model domain

print(’Highest Level Umean=’,Umean[N])

After running the code with the implemented wall function for the 9 levels of mesh, we can obtain
the following values for momentum solution on top of the domain. Table below also summarizes

7

the solutions for simulations from a previous lab where no wall function and wall function (1) were
used.

Table 2: Simulation cases with various mesh resolutions
Mesh Level N 〈U〉N [m s−1] 〈U〉N [m s−1] 〈U〉N [m s−1]

Without Wall Function With Wall Function 1 With Wall Function 2
1 1000 17.0 17.0 17.1
2 500 16.9 16.8 17.1
3 250 16.7 16.6 17.1
4 100 16.3 16.4 17.2
5 50 15.9 16.1 17.3
6 25 15.3 15.7 17.6
7 10 14.2 15.2 18.4
8 5 12.9 14.7 19.1
9 2 10.2 12.4 14.0

Try to answer the following questions.

• Suppose that level 1 (N = 1000) provides the most accurate solution. Which series of
simulations shows less variation in the solution by coarsening the mesh?

• Is the effect of using wall function (2) more noticeable on the fine mesh or coarse mesh?

• Calculate the relative error for the momentum solution between each mesh level and the
first level (finest) for each series of simulations. Which series exhibits smaller errors at each
mesh level? the series with or without using wall functions?

• If you are limited by computational resources and must use a relatively coarse mesh for a
simulation job, would you use wall function (1) or wall function (2)?

8

ENGG*6790: Theory and Applications of Turbulence

Box Filtering a 1D Velocity Field
Amir A. Aliabadi

November 11, 2017

1 Introduction

In the lectures on Large-eddy Simulation (LES) the idea of filtering a velocity field was introduced.
In this lab a box filter with width ∆ will be used to filter an instantaneous 1D velocity field U(x)
at a given time. The box filter G(r) is given as

{
1
∆

if |x− r| < 1
2
∆

0 otherwise

where the filter simply gives the average of U(x′) at x′ in the interval x − 1
2
∆ < x′ < x + 1

2
∆.

We will generate a noisy velocity field using superimposed sine waves at different frequencies and
amplitudes consisting of 100 data points. The filtering will be performed by averaging 3, 9, and
27 velocities around each velocity point.

2 Python Script

Complete the following script to generate the instantaneous velocity field. The command numpy.sin()

gives the sine of an argument in radians. Note that number π can be generated using the command
numpy.pi. After executing this code you can obtain the velocity field as shown in the figure below.

import random

import sys

import os

import numpy

import matplotlib.pyplot as plt

#Define x axis from 0 to X

X=100 #[m]

1

N=100

x=numpy.linspace(0, X, N+1)

#Define box filter width as an odd number of indices greater than or equal to 3

nFilter=3

#Define a 1D velocity field by superimposing sine functions [m s^-1]

U=numpy.sin(1*2*numpy.pi*x/X)+\

(1/2)*numpy.sin(4*2*numpy.pi*x/X)+\

(1/4)*numpy.sin(8*2*numpy.pi*x/X)+\

(1/8)*numpy.sin(16*2*numpy.pi*x/X)+\

(1/16)*numpy.sin(32*2*numpy.pi*x/X)+\

(1/32)*numpy.sin(64*2*numpy.pi*x/X)

#Plot the velocity versus x

plt.plot(x,U)

plt.xlabel(’x [m]’)

plt.ylabel(’U [m s^-1]’)

plt.title(’Velocity as Function of x’)

plt.show()

Figure 1: Plot of the instantaneous 1D velocity field versus x.

Next, complete the following script, which calculates a box filtered velocity field. Note that in
this code ∆ is not actually used. Instead, the velocity field is averaged having the number of data
points in the filter, which is the same as the nFilter variable. For the nested for loops, we have
carefully defined the starting index and finishing index for each loop. For the outer loop, we need

2

to start and finish at i indices for which we can access indices before and after, as required for
averaging. For the inner loop we define the starting and finishing j indices in such a way that the
average is centred at the current i index.

#Define and initialize the 1D filtered velocity field

UFilter=numpy.zeros((N+1))

#Box filter the 1D velocity field

#Outer iteration for velocity at each x value

#Inner iteration for averaging the velocity in the box width

#Calculate start and finish indices for the center of the box

#Must have these indices as integers

iStart=int((nFilter-1)/2)

iFinish=int(N-((nFilter-1)/2)+1)

for i in range(iStart, iFinish):

Calculate start and finish indices for each box

Must have these indices as integers

jStart=int(i-(nFilter-1)/2)

jFinish=int(i+(nFilter-1)/2+1)

for j in range (jStart, jFinish):

UFilter[i]=UFilter[i]+...

#Plot the filtered velocity versus x

plt.plot(x,UFilter)

plt.xlabel(’x [m]’)

plt.ylabel(’UFilter [m s^-1]’)

plt.title(’Filtered Velocity as Function of x’)

plt.show()

Upon completing the code. You should get the following figures. Note that you should re-run the
code with different values for nFilter.

Try to answer the following questions.

• Describe the effect of the filter width on the filtered velocity.

• Why are the ends of the x domain for velocity field clipped, i.e. pinched to zero?

3

Figure 2: Plot of the filtered 1D velocity field versus x for nFilter equal to 3.

Figure 3: Plot of the filtered 1D velocity field versus x for nFilter equal to 9.

4

Figure 4: Plot of the filtered 1D velocity field versus x for nFilter equal to 27.

5

