friried applied
e sciences

Article

Deep Neural Network Modeling for CFD Simulations:
Benchmarking the Fourier Neural Operator on the Lid-Driven

Cavity Case

Paulo Alexandre Costa Rocha 1202, Samuel Joseph Johnston 3 Victor Oliveira Santos 1'*©, Amir A. Aliabadi 10,
Jesse Van Griensven Thé 134 and Bahram Gharabaghi !

check for
updates

Citation: Costa Rocha, P.A.; Johnston,
S.J.; Oliveira Santos, V.; Aliabadi,
A.A.; Thé, J.V.G.; Gharabaghi, B.
Deep Neural Network Modeling for
CFD Simulations: Benchmarking the
Fourier Neural Operator on the
Lid-Driven Cavity Case. Appl. Sci.
2023, 13,3165. https://doi.org/
10.3390/app13053165

Academic Editors: Gholamreza

Kefayati and Hasan Sajjadi

Received: 27 January 2023
Revised: 21 February 2023
Accepted: 23 February 2023
Published: 1 March 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada

Mechanical Engineering Department, Technology Center, Federal University of Ceara,

Fortaleza 60020-181, Ceara, Brazil

3 Lakes Environmental Research Inc., 170 Columbia St W, Waterloo, ON N2L 3L3, Canada

Department of Mechanical & Mechatronics Engineering, University of Waterloo, 200 University Avenue West,
Waterloo, ON N2L 3G1, Canada

*  Correspondence: volive04@uoguelph.ca

Abstract: In this work we present the development, testing and comparison of three different physics-
informed deep learning paradigms, namely the ConvLSTM, CNN-LSTM and a novel Fourier Neural
Operator (FNO), for solving the partial differential equations of the RANS turbulence model. The
2D lid-driven cavity flow was chosen as our system of interest, and a dataset was generated using
OpenFOAM. For this task, the models underwent hyperparameter optimization, prior to testing the
effects of embedding physical information on performance. We used the mass conservation of the
model solution, embedded as a term in our loss penalty, as our physical information. This approach
has been shown to give physical coherence to the model results. Based on the performance, the
ConvLSTM and FNO models were assessed in forecasting the flow for various combinations of input
and output timestep sizes. The FNO model trained to forecast one timestep from one input timestep
performed the best, with an RMSE for the overall x and y velocity components of 0.0060743 m-s~ 1.

Keywords: physics-informed neural operator; partial differential equations; turbulence; Reynolds-
averaged Navier-Stokes; deep learning; pytorch library

1. Introduction

Throughout history, numerical modeling has emerged as an important tool for tech-
nological development; it is used for nearly all human innovations. In the ecosystem
of numerical models, Computational Fluid Dynamics (CFD) is a class of tools that have
dominated many scientific and engineering fields, from microfluid flows [1,2] to large scale
flows [3-5], as well as specific device evaluation [6]. Despite this success, modern CFD
approaches have drawbacks that limit their effectiveness. For example, there is no unique
and general-purpose turbulence closure model, and the computational cost, in terms of
time and CPU requirements, is usually very high, even for simple problems [7,8].

In this context, Machine Learning (ML) models appear as a candidate to overcome
some of those issues. Recent works have shown that the ML paradigm can be employed
in different problems, such as microscale transport between fluids [9], fluid flow through
nanochannels [10], enzyme production optimization [11] and solid fuel performance pre-
diction [12], attesting its multidisciplinary applications.

Recently, Deep Neural Networks (DNNs) have been used to solve Partial Differential
Equations (PDEs) of related problems [13-15]. In this context, CFD studies have emerged
as a natural path for implementing and testing those techniques. The examples are many,
and they come because the evaluation of DNN models are applied to directly map the PDE
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solution [16-19], as well as the insertion of ML models in parts of the PDE solution [15,20],
especially for the closure problem [13,21]. The research reports solution acceleration in the
order of 40-80 times [22].

As a recent advance in the use of DNNs to solve PDE-related problems, a new ap-
proach has been developed by researchers in the field. It consists of embedding physical
information into the DNN model, which can be achieved in several ways [23], improving
the model’s computational performance when compared with traditional finite element
methods [24]. One of these new approaches includes the insertion of physical constraints di-
rectly in the DNN models, which is known as a hard constraint. One can also impose a soft
constraint, whereby the loss function used to assess the model performance is augmented
to impose physical restraints [25]. Both practices were reported to improve accuracy and
generalizability, while also reducing training times [26].

In this work, we applied both approaches, where the soft constraints were imposed
by the boundary conditions (BCs), as well as the mass conservation law to assess its
contribution to the model’s predictions. On the other hand, as a hard constraint, we tested
the Fourier Neural Operator (FNO) [27], which is a type of Neural Network (NN) layer
with high physical appeal. It pertains to a new class of NN layers, which maps fields
between different spaces (not necessarily Euclidean) and thus can learn the parametric
dependence of the solution directly to an entire family of PDEs. To our best knowledge,
there are still few results in the literature regarding the implementation and testing of FNO
for turbulent flow simulations [28].

It is common in CFD studies to test and assess the proposed methodology on classical
problems [29,30], whose main characteristics are their ubiquitous validation by the com-
munity, their simplicity to be set, their representation of complex characteristics and their
indication of real-world problems. Considering this, we chose the lid-driven cavity flow
problem to be modeled by the proposed DNNs.

The main objective of this work was to calibrate and test different DNN paradigms
for the simulation of a flow under laminar and turbulent regimes. We tested their behav-
ior by adding soft (boundary conditions and mass conservation law) and hard (Fourier
Neural Operator) constraints. Finally, we discovered and assessed the best model, its
hyperparameters and setup, including the number of timesteps to use when learning the
flow dynamics.

From what was presented, the main contribution of this work is that recent re-
search on turbulence is following a path of improving DNN results toward making
them useful for real flow simulations. In this sense, our results give hints of which ap-
proaches/architectures may perform better, taking into consideration the accuracy as well
as the computational load.

After this introduction, this paper presents the methodology (Section 2) regarding
the data generation, as well as the DNNs'’ test configuration. In Section 3, we present the
results, and we discuss them in Section 4. The conclusion and final remarks are provided
in Section 5.

2. Materials and Methods
2.1. Data Generation

We used the lid-driven cavity problem [31-34] to generate data for the models. Lid-
driven cavity flow is well known in the CFD research field because it provides complex
flow structures and interactions and can be run in both laminar and turbulent flow regimes.
For our cases, Reynolds numbers of 1000, 2000, 4000, 6000, 10,000 (test dataset), 14,000,
16,000, 18,000 and 20,000 were considered by the transient incompressible RANS solver
(pisoFoam), which is part of the OpenFOAM CFD package [35,36]. The Re = 8000 and
12,000 cases were not used, aiming to leave a reasonable gap between the training and
testing datasets. The spatial domain was divided into a 128 x 128 mesh, in a 0.1 x 0.1 m?
cavity. This research work adopted the present resolution for the sake of computational
load, which also impacts the tested ML models. Specific cavity lid velocity, in the range of
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0.1t0 2.0 m-s~!, established predefined Reynolds numbers. For calculation convenience,
the kinematic viscosity was taken as 10> m?-s~!, which is near the value for air.

Although the simulation time step was 5 x 107* s, the flow variables were recorded at
every 0.1 s interval. The solution started with a fully static fluid and proceeded to simulate
the flow up to 20 s, which was sufficient to reach a steady state for all the cases, before
using the solution for the models.

A complete Direct Numerical Simulation (DNS) flow solution was generated em-
ploying OpenFOAM. This approach required large time and computer resources, when
compared with the simpler RANS k-¢ turbulence model for a minimal gain on the proof of
concept for our case. Therefore, we proceeded with the analysis, employing the classical
RANS k-e model for validation, which was carried out using the data from [37], whose
authors implemented a numerical method for 2D Steady Incompressible Navier-Stokes
equations in streamfunction and vorticity formulations. For this task, the authors solved
the lid-driven cavity flow to Reynolds numbers in the range of 1000-21,000. The authors
provided the normal velocity components along a vertical and a horizontal line in the
middle of the domain, i.e., the x component on the vertical line and the y component on
the horizontal line. They used a high-order simulation to generate highly accurate data for
the investigated Reynolds numbers. This approach permits taking values at critical points,
which present highly variable shear stresses and vorticity.

2.2. Models” Architecture Setup

To compare the capacity of the ML models to precisely predict the flow character-
istics, three DL models were built and tested using the PyTorch library for the Python
language. These were, namely, Convolutional Long Short-Term Memory (ConvLSTM), 2D
CNN + LSTM and the Fourier Neural Operator (FNO).

For each one, several architecture configurations were tested, with the aim to identify
the ones that provide the greatest balance between performance and computational load.
The models were implemented in a standard form, already including the boundary con-
ditions data in the input dataset. A set of configurable hyperparameters was proposed,
and because exhaustively testing possible configurations would incur a prohibitive com-
putational time, 10 random configurations were tested for up to 50 epochs instead. We
could perceive that it was enough to achieve the best results for each base model. The
best architectures were chosen to be more deeply trained, using up to 300 epochs. Further
details about the tested architectures for each model are presented in the next subsections.

During all the steps of the work, the training parameters were fixed. We selected the
cases of Re = 1000, 2000, 4000, 6000, 14,000, 16,000, 18,000 and 20,000 for the data for training
and the Re = 10,000 case for testing, to develop the models” architecture and compare their
overall performance under the same conditions. The training and testing data included
only the first 10 s of the simulation, as most flow dynamics were contained in this time
frame. This simulation, with timesteps of 0.1 s, was divided into sequences of 3 inputs and
1 output, so our models were trained to forecast ti,3 given the input sequence {t;, ti;1, ti+2}.

The learning rate was set to 1 x 1073, and a scheduler was used to reduce its value
by a factor of 2, whenever the validation loss stopped improving. The number of epochs
could vary, because we used a “scheduler patience” of 10 epochs and implemented early
stopping with a patience of 50 epochs. We used the overall Root-Mean-Square Error
(RMSE), including the velocity components as well as the pressure, to assess the models’
performance on the training and testing sets, as well as to plot predictions to visualize
the models’ forecasting accuracy. It is important to clarify that, even though the pressure
field was also used to calculate the RMSE along with the x and y velocity fields, its value
is always about 10 times smaller than theirs. In this sense, we opted to present the RMSE
in units of m-s~!, which gives a physical meaning to the error without incurring any
perceptible deviation.
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2.2.1. ConvLSTM

A ConvLSTM is essentially an LSTM where the internal gates are modified to operate
over two-dimensional data, which allows it to be used for spatial-temporal prediction.
This is achieved by using convolution operations in the state-to-state and input-to-state
transitions of the traditional LSTM gates [38].

A multi ConvLSTM layer network was built and tested. The general structure was
built by stacking multiple ConvLSTM cells in sequence, to test how the number of hidden
dimensions, the kernel size and the number of layers affected performance.

2.2.2. Two-dimensional CNN + LSTM

For this DNN paradigm, 2D CNN (convolution + max pooling) layers were used
to create a deep autoencoder network, with an LSTM network added at the end of the
network (Figure 1). An additional linear layer was used to map the flattened output of
our convolutional encoder to the latent dimension selected for use in the LSTM. In the
same way, an additional linear layer was used to map the output of the LSTM back to the
appropriate size such that the data could be reshaped back.

DECODER
CNN

DECODER

ENCODER
CNN MLP LSTM MLP

‘ZI‘H—I—I>I"I1‘

‘rn'u>:|:mm:0|

CNN-LSTM Forecasted flow

Figure 1. General layout of the tested 2D CNN + LSTM architecture.

Like the other models, we randomly tested the optimal quantity of contiguous CNN
layers, as well as the hidden channels and the dimension of the latent space of the DNN,
i.e., how much information is retained and processed between the encoder and decoder
MLPs (Figure 1). Based on previous tests, only one LSTM layer was added. In [39], the
authors applied a similar procedure, successfully testing a similar DNN paradigm for solar
irradiance modeling.

2.2.3. Fourier Neural Operator

The Fourier Neural Operator (FNO) has one important reported advantage over
classical methods (all CFD as well as ML methods). The FNO models the solution operator,
for not only one instance but also multiple instances at a time [27]; this means that its
tuning is not restricted to a specific solution case, being more generalizable than other
ML approaches. In our work, we implemented this capability by training and testing the
Physics-Informed Neural Network (PINN) for different Reynolds numbers.

The structure of the tested models was mounted by stacking contiguous FNO layers
sequentially, up to 3. The current research evaluated the number of Fourier modes to
keep (modes) in each layer (up to 16, in powers of 2), as well as the number of transforms
to apply to these Fourier modes (width, up to 32, in powers of 2). It was expected that
the FNO could capture the intrinsic PDE information, because its mapping occurs in the
Fourier space (based on frequency modes), not Euclidean (based on spatial coordinates), as
usual. This commonly may represent, or be near, the real solution of the PDE.

2.3. Application of Physical Information to the Models

After choosing the best architecture of each NN paradigm, we tested the effects of
imposing physical constraints onto the models. This was performed via soft constraints [23],
namely adding an error formula to drive the solution to mass conservation through the
usual loss function. It was performed by calculating the mass flow imbalance (Equation (1))
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for each grid cell and taking the arithmetic mean of their absolute values for all of the
computational domain. It should be further noted that the values at the boundaries are
already in the datasets, which also gives physics information to the models. The aim of
the mass conservation error evaluation is to insert physical coherence into the models,
improving interpretability and accuracy.

Mass imbalance = Mass flux,, — Mass flux;, €))

where the overall mass flux can be defined as

- =
Mass fluxy,s — Mass flux;, = pV-dA 2)
boundaries

Because Cartesian coordinates are being used, it is straightforward to solve the above

integral only using the velocity components and the side lengths of each cell.
The governing equations, in a non-dimensional form, for the 2D lid-driven problem

are [31,34]
(Vau)=0 (©)]
ou

N + (u-V)u=—-VP+ % (V2u> @)

where u = (u,v) are the velocities for the 2D case, and P and t are pressure and time,
respectively. Re represents the Reynolds number, defined as a ratio between the product
of velocity and lid length over the kinematic viscosity. For the boundary conditions, the
velocities were set to zero over the lateral walls and to finite non-zero over the upper wall.
For the domain walls, both epsilon and P were set as having zero gradient. Last, k was set
to zero over the domain’s walls.

At this stage, several weights were tested for the calculated errors of mass conservation,
trying to optimize the PINNSs results. The tested values were 0.0, 0.1, 1.0, 2.0 and 5.0.

2.4. Number of Timesteps (Moving Time Window)

Aiming to quantify generalizability to assess how performance degrades with the
degree of extrapolation, under unseen initial conditions [23], we tested the influence of the
training time window size on the models’ performance, following a similar approach that
is usually performed in CFD. Once the improved PINNs were developed at this stage, we
took the best two models, namely ConvLSTM and FNO, to assess their performance under
several time window configurations. This was performed first by forecasting 10 timesteps
in advance, each one separately, i.e., we ran the model to forecast the next timestep, and
then we use this forecasted field to predict the next one, and so on. In this stage, we
tested input timestep windows with sizes of 1, 3, 6, 10 and 15, aiming to mimic different
orders of time discretization, a standard approach in CFD. It is worth mentioning that
the implementation of high-order time discretization (e.g., from 3 and above) is usually a
complex task in CFD, whereas in DNN, it is almost straightforward, being just a matter of
training set selection.

After this stage, we tested another approach, where we took the best input time
window size and forecasted different size outputs, this time being the prediction directly
obtained by the models in a single step. The tested output sizes were 1, 3 and 10, and they
were applied to directly predict 10 timesteps in advance. It is worth mentioning that, based
on the time resolution (0.1 s) and the lid velocity for the testing set (1.0 m-s~1), 10 timesteps
correspond to a complete pass of the lid by the solution domain.

3. Results
3.1. Numerical Data Validation
The velocity profiles calculated by the models, as well as the reference ones found

in [37], are presented in Figures 2 and 3. Figure 2 depicts the profiles of the x component of
velocity over a vertical, center line, for the Reynolds numbers of 1000 (a), 10,000 (b) and
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20,000 (c), and Figure 3 shows the equivalent plots of the y component of velocity over a
horizontal, center line. As can be seen, our results replicate the reference model reasonably
well. The distance between our results and the reference model slightly increases with
the Reynolds number, but the flow structure remains the same, as can be noticed by the
curvatures, especially near the cavity walls.

3.2. Models” Architecture Setup

After parameter testing and optimization, two models outperformed similarly, namely
ConvLSTM and FNO. The flow predictions for the best architectures of each model are
presented in Figures 4 and 5. The figures shown are the specific case for the prediction of
t=0.3 s, given an input of t = 0.0-0.2 s, even though all the tests were implemented for the
time ranging from 0 to 10 s, where a steady state was achieved. We chose this timestep
because it represents the worst results of all tested models. The CFD simulated data are on
the top row, where the first three were used as inputs to the model and the fourth was the
ground truth. The predicted output lies directly below, to facilitate the comparisons.

According to the results of Table 1, the model that performed the worst was CNN-
LSTM. It could be noticed that, although it could predict the increase in the main vortex,
the model was not capable of rotating it. This did not happen to the other models in the
same intensity. On the other hand, the remaining models performed better and with the
same error magnitude, with an improved performance of the FNO, which achieved its best
results with only one layer, which had a direct impact on the computational load. This
can be confirmed by the overall RMSE results for the flow velocity, presented in Table 1.
Based on these results, we opted to continue with the tests using only the ConvLSTM and
FNO models.
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Figure 2. Cont.
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Figure 2. Comparison of the horizontal velocity component over a vertical line obtained by the CFD
model (RANS k-¢) and the reference values from [37] for the Reynolds numbers of 1000 (a), 10,000 (b)
and 20,000 (c).
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Figure 3. Comparison of the vertical velocity component over a horizontal line obtained by the
CFD model and the reference values from [37] for the Reynolds numbers of 1000 (a), 10,000 (b) and
20,000 (c).
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Flow at 0.0 s Flow at 0.1s Flow at 0.2 s Flow at 0.3 s

0.6

Predictionat 0.3 s

0.4

0.2

Figure 4. Flow velocities obtained by the ConvLSTM model after tuning, for t = 0.3 s.

Flow at 0.0s Flow at0.1s Flow at0.2s Flow at 0.3 s

Prediction at 0.3 s 0.4

0.8

0.6

0.2

Figure 5. Flow velocities obtained by the FNO model after tuning, for t = 0.3 s.

Table 1. RMSE obtained by all optimized model architectures after 50 epochs.

Model CNN-LSTM ConvLSTM FNO
RMSE (m-s~1) 2.26 x 1072 7.36 x 1073 6.83 x 1073

3.3. Application of Physical Error Metrics to the Models

After the addition of a mass imbalance error term in the model tuning, all models
presented a validation RMSE that was essentially unchanged (Table 2), with the exception
of the CNN-LSTM model, which increased its RMSE. Nevertheless, the addition of mass
conservation was able to stabilize the errors through the epochs (Figure 6), specifically for
the FNO model. For the case without mass conservation information, the mass balance
achieved a minimum testing RMSE and then started to increase monotonically, which does
not happen in the case with mass conservation.
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Loss

Table 2. Impact of mass conservation weights on validation RMSE obtained by all optimized model
architectures after a maximum of 300 epochs.

No MC Error 0.1 x MC 1.0 x MC 2.0 x MC 5.0 x MC
Error Error Error Error
FNO 6.56 x 1073 6.43 x 1073 6.46 x 1073 6.49 x 1073 6.48 x 1073

CNN-LSTM  1.82 x 102 1.91 x 1072 2.57 x 1072 2.58 x 1072 8.09 x 1072
ConvLSTM  7.06 x 1073 7.03 x 1073 721 x 1073 7.31 x 1073 731 x 1073

Train and Validation Loss versus Epochs Average Mass Conservation on Testing Data over Epochs
0.08 4 S Tralr?lng RMSE
—— Testing RMSE 0.0007 -
0.07
0.0006 1
0.06 £
T 0.0005 -
c
0.05 @
w
[
S 0.0004 4
0.04 1 a
s
= 0.0003 1
0.03 @
[
=
0.02 4 0.0002 1
0.01 0.0001 -
0.00 : r r r r : : 0.0000 1— r r r : : : r
10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Epochs Epochs

Figure 6. Loss function and mass imbalance error over the training epochs of the FNO model. Testing
RMSE is also presented (red line, left plot).

The addition of the mass imbalance error also improved the overall mass conservation,
and the impact of the weight on it is shown in Table 3. As can be seen, the presence of the
error term itself already worked to diminish the mass imbalance, and an increase in the
weight did not imply a further improvement, except for the CNN-LSTM model, which was
less sensible to the weight and needed a higher value.

Table 3. Impact of mass conservation weights on mean cell mass imbalance (kg-s~!-m?) obtained by
all optimized model architectures after a maximum of 300 epochs.

No MC Error 0.1 x MC 1.0 x MC 2.0 x MC 5.0 x MC
Error Error Error Error
FNO 124 x107%  590x107° 411x10° 407 x107° 396 x 107>

CNN-LSTM 238 x 10~* 1.12 x 1073 2.67 x 1074 247 x 1074 7.56 x 107
ConvLSTM 7.62 x 107° 549 x 107> 554 x 107> 406 x 107° 3.70 x 10~°

To further illustrate the beneficial effect of the addition of a mass conservation er-
ror term in the model training, Figure 7 depicts the specific case of the mass imbalance
(Equation (1)) field for the prediction of t = 1.3 s. When we refer to the mass imbalance
field, we actually present the absolute calculated mass imbalance for each grid cell, which
should always approximate to zero. This constraint was added to the model training. On
the left plots, one can see the ground truth (CFD results), and on the right, the predicted
fields are shown, without adding the mass conservation error to the models (top), and
with its application to the solution (bottom). The improvement was remarkable, being the
predicted field with the mass conservation constraint essentially equal to the ground truth.
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Figure 7. Mass imbalance (kg-sf1 -m?) fields without (a) and with (b) the mass conservation error.
The plots on the left are the ground truth fields, and the ones on the right were obtained using the
DNN FNO model.

3.4. Accuracy Assessment
3.4.1. Input Time Window Size

After analyzing the results of the previous step, we decided to maintain the weight
of the mass conservation error as 0.1 to keep for the tests with the FNO model, once
it consistently presented the best performance over all the tested models. This likely
happened because the FNO is able to learn the parameters of the equations that underlie
the physics of the problem, because the data are transformed to a representation on the
solution domain, and other DNN models try to obtain the direct link between the data
and the results of the flow. In this sense, the model obtains the ability to learn the physical
conservation law, which is supposed to give the general solution of the flow for each
variable. Therefore, to keep improving the model, we tested five different input time
windows sizes (1, 3, 6, 10 and 15 timesteps) to predict 1 output timestep (Table 4), also
“un-rolling” 10 timesteps (Table 5), using the previously forecasted fields when applicable.
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Even though the RMSE did not change significantly, it is possible to state that the inclusion
of previous timesteps in the training dataset is not able to improve the results, which differs
from usual CFD results, at least for the case under study. Figure 8 presents the prediction
for the specific time t = 2.3 s for the case of three input timesteps (3:1).

Table 4. FNO errors in predicting one timestep in advance, for several input time window sizes, after
a maximum of 300 epochs.

1:1 3:1 6:1 10:1 15:1
RMSE (m-s~1) 6.07 x 1073 6.43 x 1073 7.15 x 1073 6.81 x 1073 6.70 x 1073
Mass imbalance (kg-s~!-m?) 571 x 1072 5.89 x 107> 6.10 x 1072 5.14 x 107> 527 x 107>

Table 5. FNO errors for predicting ten timesteps in advance, for several input time window sizes,
after a maximum of 300 epochs.

1:10 3:10 6:10 10:10 15:10
RMSE (m-s~1) 1.60 x 102 1.07 x 1072 9.28 x 1073 843 x 1073 6.59 x 1073
Mass imbalance (kg-s~!-m?) 1.99 x 1074 1.52 x 1074 112 x 1074 6.68 x 107° 6.71 x 107°
Flow at 2.0 s Flow at 2.1s Flow at 2.2 s Flow at 2.3 s

1.0

0.8

0.6

Prediction at 2.3 s 0.4

0.2

Figure 8. FNO prediction of the resulting speed for the 3 timesteps input. The ground truth plots are
above, and the forecasted field is below.

3.4.2. Output Time Window Size

Because the results of the previous subsection were obtained by “un-rolling” the
solution over the predicted fields, we also tested the model to directly forecast a predefined
amount of timesteps, composing a prediction of 10 timesteps at the end. The input time
window was kept at size three because, even though it was not the best result (see Table 4),
we opted to maintain more temporal information. The results are presented in Table 6. To
give insight into the results, Figure 9 shows the predictions for the specific timesteps with a
range of 1.5-1.7 s, for the case of three input and three output timesteps.
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Flowat12s

Flowat1.3 s

Table 6. FNO testing errors for predicting several timesteps in advance, for three input time window
sizes, after a maximum of 300 epochs.

31 3:3 3:10
RMSE (m-s~1) 1.07 x 1072 8.79 x 1073 1.07 x 1072
Mass imbalance (kg-s~'-m?) 1.52 x 1074 7.24 x 107° 1.41 x 1074

Flow at 1.4 s Flow at 1.5 s Flow at 1.6 s Flowat 1.7 s

Prediction at 1.5 s Prediction at 1.6 s Prediction at 1.7 s

Figure 9. FNO prediction of the resulting speed for the 3 timesteps input and 3 timesteps output. The
ground truth plots are above, and the forecasted fields are below.

4. Discussion

Research efforts have been carried out in order to model turbulent flows. The approach
of using classical problems that, in a simple way, manage to represent complex phenomena
is often used [40]. In this context, cavity flow is commonly applied under various conditions
and for different purposes. In [41], the authors proposed the combined solution of CFD
with Back Propagation for modeling a cavity with a backward-facing step, and as can be
seen in our work, the technique is promising and deserves investigation.

In the present work, we focused on comparing classic DNN architectures with the
recent FNO approach. In general, the DNN approach tends to dissipate flow energy, which
can be evidenced by a reduction in eddy viscosity [42], as well as a reduction in vorticity,
which can be shown, as we present here, in the difficulty of the models to maintain the
rotation of the flow. In this regard, we were able to indicate that the investigated FNO-
based DNN architecture did not show improvements in the flow prediction capability for
timesteps greater than three, as presented in Table 6.

Regarding the performance of the developed architecture, it managed to reach levels
equivalent or even superior to those presented in the literature and required reduced train-
ing time due to its simpler implementation. Our MSE of 4.13 x 10~° is in the same order of
magnitude as that of [43], where the authors obtained their values for Burgers’ equation,
the Sine-Gordon equation, the Allen-Cahn equation and Kovasznay flow. For the cavity,
our results are much better than the best result reported by them, MSE = 8.9456 x 10~2.

It is common in works involving DNNs to use different performance evaluation
metrics, which makes direct comparison between approaches difficult. In [28], the authors
used the L2 relative error to evaluate several DNN architectures, specifically based on
DeepONet and FNO. Despite this, as we also point out here, the approaches based on the
FNO stood out for their superior performance.

Given the above, the feasibility of the technique is strongly indicated, as also found
in the recent literature [14], where there was no quantitative presentation of the error,
but which qualitatively showed the robustness of the Physics-Informed Neural Network
solution. This viability is also already shown with realistic problems, such as the cavity
flow studied here. The authors of [24] presented MAE in the order of 1 x 10~3, which is at
the same level of our reached RMSE. It is noteworthy that the RMSE metric always tends
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to be greater than the MAE for the same problem, which indicates that the FNO is fully
qualified for the development of research of Physics-Informed Neural Networks.

5. Conclusions

This paper presents a novel approach to solve the Navier-Stokes equations using
Physics-Informed Neural Networks. Three DNN paradigms (Fourier Neural Network,
Convolutional LSTM and CNN-LSTM) were implemented and tested against the CFD
solution of the cavity lid-driven flow problem. We used several Reynolds numbers to test
and forecast the Re = 10,000 case, aiming to benchmark the Fourier Neural Network (FNO).
The advantage of this new class of DNN architecture is the mapping of fields between
different spaces (not necessarily Euclidean), which allows the learning of the parametric
dependence of the solutions directly to an entire family of PDEs. From the results, the
following conclusions can be highlighted:

e A RANS k-¢ CFD solution was performed to generate data (training and testing) to
be fed to the models. A comparison with the results found in the literature was able
to attest the data quality. The evaluation of the k-¢ turbulence model against a full
Direct Numerical Simulation indicated that the simpler CFD model, for this simple
case, accurately represented the turbulence phenomena.

e  After the tests for the models’ architectures setup, the FNO and ConvLSTM paradigms
performed better, with a consistent small advantage of FNO.

o  With the selected models’ architectures, a custom error parcel regarding the mass
conservation error was added to the training step, using several weight values. Even
though the RMSE of the test case did not improve, the resultant fields presented a
notable improvement in physical coherence.

e  The FNO paradigm was finally assessed to predict the solutions of the flow under
several input/output situations, giving a testing RMSE of 0.008792 m/s for the best
configuration (three timesteps for the input and three timesteps for the output), which
was at least two orders of magnitude of the reference lid velocity (1.0 m/s).

For the tested case, the FNO was able to consistently perform better than the other
models, which qualifies it as an option to further develop DNN solutions of partial differ-
ential equations. Although presenting good performance, the FNO has some limitations, as
presented by Lu et al. [28], and DeepONet is an option to address such hindrances. For fur-
ther work, implementation of the momentum conservation equation to the model could be
performed to assess its contribution over the model’s results, as well the effect of different
image resolutions in the final model’s prediction. Moreover, a deeper understanding of
FNO limitations can be assessed by testing other problem configurations and the effect of
turbulence levels, not only for RANS models, but also for Large-eddy Simulations or Direct
Numerical Simulation (DNS) results. For instance, other flow geometries can be tested,
which would produce more transient solutions of the PDEs, such as a bluff body or wake
flows. Moreover, greater Reynolds numbers can be considered, which may be indicative of
environmental flows.
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