A Direct Georeferencing Imaging Technique to Identify
Earth Surface Temperatures Using Oblique Angle
Airborne Measurements

by
Ryan Andrew Everett Byerlay

A Thesis
presented to
The University of Guelph

In partial fulfilment of requirements
for the degree of
Master of Applied Science
in
Engineering

Guelph, Ontario, Canada
(© Ryan A. E. Byerlay, December, 2019

ABSTRACT

A DIRECT GEOREFERENCING IMAGING TECHNIQUE TO IDENTIFY EARTH
SURFACE TEMPERATURES USING OBLIQUE ANGLE AIRBORNE
MEASUREMENTS

Ryan A. E. Byerlay Advisors:
University of Guelph, 2019 Dr. Amir A. Aliabadi

Dr. Mohammad Biglarbegian

This thesis describes a novel, open-source image processing method that directly georef-
erences oblique angle thermal images of the Earth’s surface and calculates Earth surface
temperatures at a high spatiotemporal resolution. Images were collected from a thermal
camera mounted on the Tethered And Navigated Air Blimp 2 (TANAB2). Median surface
temperatures are represented spatially in six four-hour time interval plots to display diurnal
surface temperature variation. The technique is applied to two data sets collected during
two separate field campaigns, one from a northern Canadian mining facility and one from
the University of Guelph, Guelph, Ontario, Canada. A comparison between surface tem-
peratures for images recorded from the mining facility and a MODerate resolution Imaging
Spectroradiometer (MODIS) image is completed with a resulting median absolute error of
0.64 K, bias of 0.5K, and Root Mean Square Error (RMSE) of 5.45 K. Based on the find-
ings, the developed direct georeferencing oblique angle thermal image processing method is
capable of calculating surface temperatures with an accuracy of approximately 5 K at a spa-
tiotemporal resolution that is significantly higher than conventional satellite-based sensors.

Further applications of this direct georeferencing workflow are numerous and can be evalu-

ated with other cameras such as Red Green Blue (RGB), multispectral, and hyperspectral

imaging systems.

il

Dedication

I would like to dedicate this work to my family, friends, teachers, and most of all my

parents for their encouragement and support throughout my educational pursuit.

v

Acknowledgements

This work could not have been completed without the exceptional support and guidance
provided by my advisor Dr. Amir A. Aliabadi and my co-advisor Dr. Mohammad Biglarbe-
gian. Their thoughts and provision of new ideas were invaluable throughout the duration of
my graduate studies. I would also like to thank my colleagues Dr. Manoj K. Kizhakkeniyil,
Amir Nazem, Md. Rafsan Nahian, Dr. Mojtaba Ahmadi-Baloutaki, Seyedahmad Kia, and
Mohsen Moradi who assisted with the collection of data used in this work and provided
helpful support throughout the duration of my research.

Completing this work would not be possible without the technical support of Rowan
Williams Davies and Irwin Inc. (RWDI) and financial support from the University of Guelph,
the Ed McBean philanthropic fund, the Discovery Grant program (401231) from the Natural
Sciences and Engineering Research Council (NSERC) of Canada, the Government of Ontario
through the Ontario Centres of Excellence (OCE) under the Alberta-Ontario Innovation
Program (AOIP) (053450), and from Emission Reduction Alberta (ERA) (053498).

The Tethered And Navigated Air Blimp 2 (TANAB2) was partially developed by the assis-
tance of Denis Clement, Jason Dorssers, Katharine McNair, James Stock, Darian Vyriotes,
Amanda Pinto, and Phillip Labarge. The TANAB2 tether reel system was developed by An-
drew F. Byerlay. TANAB2 gondola electrical configuration advice provided by C. Harrison
Brodie is appreciated. Steve Nyman, Chris Duiker, Peter Purvis, Manuela Racki, Jeffrey

Defoe, Joanne Ryks, Ryan Smith, James Bracken, and Samantha French at the University

of Guelph assisted with field campaign logistics. Special credit is directed toward Amanda
Sawlor, Datev Dodkelian, Esra Mohamed, Di Cheng, Randy Regan, Margarent Love, and
Angela Vuk at the University of Guelph for administrative support. The computational
platforms were set up with the assistance of Jeff Madge, Joel Best, and Matthew Kent at
the University of Guelph. Technical discussions with John D. Wilson and Thomas Flesch
at the University of Alberta are highly appreciated. Field support from Alison M. Seguin
(RWDI), Andrew Bellavie (RWDI), and James Ravenhill at Southern Alberta Institute of
Technology (SAIT) is appreciated.

Most of all, I would like to express my sincere gratitude to my parents. Their endless
emotional and financial support towards my education contributed immeasurably to this

work.

vi

Table of Contents

Abstract ii
Dedication iv
Acknowledgements \%
List of Tables ix
List of Figures xi
List of Abbreviations xii
List of Mathematical Symbols xiv
1 Introduction 1
1.1 Literature Review 1
1.1.1 Measurement 1

1.1.2 Direct Georeferencing L 5

1.1.3 Thermal and Oblique Imaging D

1.2 Technology Gaps 6
1.3 Objectives e 7
1.4 Thesis Structure 7

2 Method Development 8
2.1 Experimental Materialso oo 8
2.2 Field Campaigns 9
2.2.1 Mining Site Campaign 9

2.2.2 Guelph Campaign 12

2.3 Image Processing Method Development 13
2.3.1 Georeferencing 15

2.3.2 Thermal Camera Calibration 23

2.4 Principal Component Analysis (PCA) 27

vil

3 Results and Discussion 28

3.1 Mining Site Campaigno 28
3.1.1 Diurnal Surface Temperature 29
3.1.2 Satellite Comparison 32
3.1.3 Principal Component Analysis (PCA). 36
3.2 Guelph Campaign 37
4 Conclusion and Future Work 42
4.1 Conclusion 42
4.1.1 Georeferencingo 42
4.1.2 Thermal Imaging 43
4.2 Future Worko 44
References 45
Appendices 55
A Source Code 56
A.1 Thermal Camera Calibration 56
A.1.1 Thermal Camera Calibration Plots 58
A.2 Mining Site Campaign 64
A.2.1 TriSonica Atmospheric Pressure to Altitude 64
A.2.2 Spatial Coordinate Grid Overlaid on Mine Site 75
A.2.3 Emissivity Data Retrieval 79
A.2.4 Direct Georeferencing and Temperature Calculation 82
A.2.5 Data Separation for Diurnal Temperature Mapping 152

A.2.6 Applying Thermal Camera Calibration Constants to Land Surface
Temperatures 160
A.2.7 Surface Temperature Map and Boxplots 183
A.2.8 Principal Component Analysis (PCA). 221
A.3 Guelph Campaign 229
A.3.1 Identify TANAB2 Ascending and Descending Times 229
A.3.2 TriSonica Atmospheric Pressure to Altitude 235
A.3.3 Spatial Coordinate Grid Overlaid on University of Guelph Campus . 240
A.3.4 Direct Georeferencing and Temperature Calculation 244
A.3.5 Data Separation for Diurnal Temperature Mapping 305
A.3.6 Surface Temperature Maps 313
B Published Work 347
B.1 Peer-Reviewed Journal Papers 347
B.2 Refereed Conferences 347
B.3 Poster Presentations 348

viii

List of Tables

2.1

2.2

2.3
24

TANAB2 mining facility launch details. Times are in Local Daylight Time

TANAB2 launch details for July, 28, 2018 and August 13, 2018 University
of Guelph, Guelph, Ontario, Canada deployments. Times are in Eastern

Daylight Time (EDT). 12
Default and calibrated camera parameters. 26
Default and calibrated camera parameter statistics. 26

X

List of Figures

2.1

2.2

2.3
2.4
2.5
2.6

2.7
2.8

3.1

3.2

3.3

3.4

(a) Diagram of the gondola on the TANAB2; (b) the TANAB2 deployed during
a field environmental monitoring campaign in May 2018.
Diagram of the mining facility, where the black dots represent the edge of
the facility, the red dots represent the outline of the open-pit mine, the teal
dots represent the outline of the tailings pond, and the blue dots represent
where the TANAB2 was deployed during the field environmental monitoring
campaign in May 2018.
Use of three ropes controlled by personnel on the ground during a launch of
the TANAB2 at the mining facility in May 2018..
Diagram of TANAB2 launches in relation to other notable buildings at Reek
Walk, University of Guelph, Guelph, Ontario, Canada.
Process flow diagram of the image processing workflow.
Relationship between pixels and horizontal geographic distances.
Relationship between vertical image pixels and the camera VFOV.
Certified temperature compared to radiometric image pixel signal value for
water, soil, developed land, and grass.

Median temperatures over four-hour time intervals at 1 km x 1km resolution;
times are in Local Daylight Time (LDT).
Box plots representing temperature distribution over four-hour time intervals
for the tailings pond and mine, where the orange line is the median tempera-
ture; times are in Local Daylight Time (LDT).
Comparison between the developed thermal imaging method, the MODIS
MOD11A1 dataset, and absolute error between the two methods; (a) median
ST from May 24, 2018 12:00-14:00 LDT as recorded by the thermal camera
at a 1km x 1km resolution; (b) daytime temperatures captured by MODIS
recorded during the early afternoon on May 24, 2018 and derived from the
MOD11A1 dataset at a 1km x 1km resolution; (c) absolute error between
the two methods at a 1km x 1km resolution; times in Local Daylight Time

Representative horizontal directions encompassing the mining facility which
display the largest surface temperature variation for each time interval; times
are in Local Daylight Time (LDT).

3.5

3.6

Median surface temperatures over four-hour time intervals at 20m x 20m
spatial resolution, where the red dot represents the TANAB2 launch location
(Reek Walk), the black circle represents the Gryphon Centre Arena, the ma-
genta circle represents the University Centre, the blue circle represents the
Athletic Centre, the yellow circle represents Varsity Field, the cyan circle rep-
resents Johnston Green, and the white circle represents the Fieldhouse.

Median surface temperatures over four-hour time intervals at 50m x 50 m
spatial resolution, where the red dot represents the TANAB2 launch location
(Reek Walk), the black circle represents the Gryphon Centre Arena, the ma-
genta circle represents the University Centre, the blue circle represents the
Athletic Centre, the yellow circle represents Varsity Field, the cyan circle rep-
resents Johnston Green, and the white circle represents the Fieldhouse.

x1

40

41

List of Abbreviations

ABI
ALOS
AVHRR
BBE
DEM
DSM
EDT
ETM-+
GIS
GNSS
GOES
GPS
HFOV
HPR
IMU
LDT
LiDAR
LMFIT
LWIR
MODIS
NASA
NOAA

Advanced Baseline Imager

Advanced Land Observing Satellite

Advanced Very High Resolution Radiometer
BroadBand Emissivity

Digital Elevation Model

Digital Surface Model

Eastern Daylight Time

Enhanced Thematic Mapper Plus

Geographic Information System

Global Navigation Satellite System
Geostationary Operational Environmental Satellite
Global Positioning System

Horizontal Field of View

Horizontal Pixel Range

Inertial Measurement Unit

Local Daylight Time

Light Detection And Ranging

Non-Linear Least-Squares Minimization and Curve-Fitting
Long Wave Infrared Radiation

MODerate resolution Imaging Spectroradiometer
National Aeronautics and Space Administration

National Oceanic and Atmospheric Administration

xil

PCA
POES
PPK
PPP
PRISM
RTK
RMSE
ST
sUAS
TANAB2
TIR
TIRS
UAV
USGS
VFOV
VPR

Principal Component Analysis

Polar-orbiting Operational Environmental Satellite
Post-Processing Kinematic

Precise Point Positioning

Panchromatic Remote-sensing for Stereo Mapping
Real-Time Kinematic

Root Mean Square Error

Surface or Skin Temperature

small Unmanned Aerial System

Tethered And Navigated Air Blimp 2

Thermal InfRared

Thermal InfRared Sensor

Unmanned Aerial Vehicle

United States Geological Survey

Vertical Field of View

Vertical Pixel Range

xiil

List of Mathematical Symbols

Latin Symbols

a Counstant
B Constant
BBE Emissivity

b Constant
c Constant
dedge Distance
horiz Distance
Ahoriziop Distance
diaunch Distance
F Constant
HFOV Angle
HPR Pixel

{ Pixel

k Distance
Lat, Latitude
Lats Latitude
laty Latitude
lats Latitude
Lon, Longitude
Lon, Longitude
lony Longitude

Xiv

lons

PO
P256
P512

Ypixel

Longitude
Integer
Constant
Pixel

Pixel

Pixel
Pressure
Pressure
Pixel
Constant
Constant
Constant
Altitude
Altitude
Altitude
Slope
Temperature
Temperature
Signal Value
Signal Value
Signal Value
Signal Value
Angle

Pixel

Pixel

Angle

Pixel

Pixel

Pixel

XV

Yt Pixel
Yix Pixel

Greek Symbols

e Angle

I5; Angle

n Angle

v Angle

K Angle

0 Angle

A Implies difference
€ Emissivity

€29 Emissivity

€31 Emissivity

€39 Emissivity

T Transmissivity

XVi

Chapter 1
Introduction

Earth surface temperature, otherwise known as Skin Temperature (ST), is an important
geophysical variable that has been measured with remote sensing technologies since the
1970s [60, 72]. Accurate quantification of ST is important for many Earth system models,
including meteorological, climate, and planetary boundary layer models [58, 77, 89]. Micro-,
meso-, and macro-scale climate models all consider ST as a key variable, as noted by Gémes
et al. [28]. Land surface temperature is a key variable when quantifying the impacts of
urban heat islands. Specifically, the diurnal impact of ST with respect to the surrounding
environment are of importance to many researchers |44, 59|. Furthermore, macro- and meso-
scale models, including those that model the change of climate, consider ST over both land
and waterbodies as a boundary condition [25, 34]. The impact of ST on large freshwater

lakes has also been studied as surface water temperature influences thermal stratification in
lakes [49, 64].

1.1 Literature Review

1.1.1 Measurement

ST can be quantified as a function of Long Wave Infrared Radiation (LWIR) emitted from
the Earth’s surface [100]. The emitted LWIR is an important variable when considering the
Earth energy budget from incoming solar radiation [100]. Before the advent of satellites and
other remote sensing platforms, multiple point sources recording either surface temperature
or air temperature were used in conjunction with weighting algorithms and other Geographic

Information Systems (GIS) techniques to spatially represent ST [75]. These historical meth-

ods can introduce significant inaccuracies during interpolation of the data, as a result, remote

sensing tools have since been utilised to reduce these data analysis errors [75].

Satellite-Based Sensors

Conventionally, ST has been quantified from remote sensing satellites with onboard ST sen-
sors including the MODerate resolution Imaging Spectroradiometer (MODIS), the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Advanced Baseline
Imager (ABI), the Enhanced Thematic Mapper Plus (ETM+), the Thermal InfRared Sensor
(TIRS), and the Advanced Very High Resolution Radiometer (AVHRR) amongst other data
sources [36, 89]. These sensors record data within the Thermal InfRared (TIR) or LWIR
spectra between 8 and 15 pm [94].

MODIS is located on both the Terra and Aqua satellites which are operated by the Na-
tional Aeronautics and Space Administration (NASA) [51]. Both satellites have polar, sun-
synchronous orbits’? and both MODIS sensors record two distinct images daily at different
times, approximately three hours apart [19]. The horizontal resolution of MODIS images is
approximately 1km x 1km [56]. MODIS records data from 36 spectral bands in total which
include wavelengths between 0.41 and 14.4 pm, of specific importance for ST are the bands
20 to 36 which cover the spectral range between 3.66 and 14.4pum [56, 104|. In addition
to MODIS, ASTER is also located onboard the Terra satellite [66]. ASTER images the
Earth’s surface with a high spatial resolution of 90m x 90m and a revisit time of 16 days
for each imaged location [30, 32|. ASTER contains three subsystems, including a system
which records data within the TIR spectrum between 8.13 and 11.7 pm.3

Geostationary Operational Environmental Satellite (GOES) satellites are operated through
a collaboration between NASA and the National Oceanic and Atmospheric Administration
(NOAA).* The GOES-R series of satellites are the most recent geostationary satellites to be
developed and launched by this partnership, specifically GOES-16 and GOES-17 which were
operational as of December 18, 2017 and February 12, 2019 respectively®® [4]. Onboard
both GOES-16 and GOES-17, the ABI records images for 16 spectral bands which range
between 0.45 and 13.6um” [83]. The ABI on GOES-R series satellites records images over

thttps:/ /aqua.nasa.gov/content /about-aqua
Zhttps://terra.nasa.gov/about
3https://asterweb.jpl.nasa.gov/characteristics.asp
4https://www.nasa.gov/content /goes-overview /index.html
Shttps://www.goes-r.gov/users/transition ToOperations16.html
Shttps:/ /www.goes-r.gov /users /transition ToOperations17.html
"https://www.goes-r.gov/spacesegment / ABI-tech-summary.html

2

the continental United States every 5 minutes for all 16 spectral bands and at a spatial
resolution of 2km x 2km [17, 82].

Landsat satellites are developed and operated by NASA in collaboration with the United
States Geological Survey (USGS).® Currently, Landsat 7 ETM+ records images with eight
spectral bands, one of which records within the 10.4 and 12.5 pm spectrum. Landsat 8 TIRS
records images with 11 spectral bands; one band records data within the 10.6 to 11.19 um
range and another records data within the 11.5 to 12.5um range [23|. Landsat 7 ETM+
records TIR data at a spatial resolution of 60 m x 60 m, while Landsat 8 TIRS records TIR
data at a spatial resolution of 120m x 120m [37]. Both Landsat 7 and 8 have a revisit time
period of 16 days [15].

AVHRR is a sensor that is operated by NOAA and is located onboard the Polar orbiting
Operational Environmental Satellites (POES) series [41]. The third generation AVHRR is
located onboard NOAA-15, -16, -17, -18, and -19, of which NOAA-15, -18, and -19 are still
operational [41]. AVHRR has 6 channels in total and two channels which image within
the LWIR spectrum, one channel records data within the 10.3 to 11.3 pm range while the
other channel records data within the 11.5 to 12.5pm range.!® The NOAA-15, -18, and
-19 satellites are sun-synchronous polar orbiting satellites and AVHRR records images at a
spatial resolution of 1.1km x 1.1km. These satellites have a short revisit period that varies
between four and six AVHRR revisits per day as AVHRR is located on multiple satellites
[43, 47, 52].

Although there are many remote sensing instruments which map ST, satellite-based ST
sources have limitations, for example, land surface temperature measurements are impacted
by the atmosphere and surface emissivity [54]. If atmospheric characteristics are known, an
algorithmic model can be used to extract land surface temperature from satellite imagery
[62]. Even with corrections to quantify ST, both high spatial and temporal resolution land
surface temperature data is not available from satellite sources |11]. High spatial resolution
data is associated with low temporal resolution data and high temporal resolution data is
associated with low spatial resolution data [11, 106]. Furthermore, satellites are known to
be impacted by cloud cover, atmospheric dust, and sensor failure [57, 68]. Miniaturisation
of thermal imaging technologies and the development of reliable Unmanned Aerial Vehicles

(UAVs) and Unmanned Aerial Systems (UASs), such as drones, kites, and blimps, provide

8https://landsat.gsfc.nasa.gov/
https://www.ospo.noaa.gov/Operations/POES /status.html
Ohttps:/ /noaasis.noaa.gov/NOAASIS /ml/avhrr.html

another airborne platform to derive ST from images |7, 48|. Furthermore, coupling small
Unmanned Aerial System (sUAS) platforms with oblique thermal imaging technology and

concurrent image processing methods can result in increased ST coverage.

Unmanned Aerial Systems

Recently it has become increasingly common for sUAS platforms to include thermal cameras
[18]. Uncooled thermal cameras are most often used on sUASs as they are physically lighter,
inexpensive, and require less power to operate as compared to cooled thermal cameras |74,
80, 84]. There are many types of SUAS devices used to deploy camera systems, including
but not limited to fixed wing and multi-rotor drones, kites, blimps, and balloons [21].

Tethered balloons are another aerial platform that have several advantages as compared
to conventional sUASs. Tethered balloons can be deployed for hours without changing
batteries, be launched in remote and complex environments where drones are unable to fly
(e.g. airports), are inexpensive relative to other sUAS platforms, and their altitude can be
precisely controlled, amongst other advantages [65, 96]. A few studies have been completed
involving thermal imaging and tethered balloons. Vierling et al. [96] deployed a helium-
filled, tethered aerostat equipped with a thermal infrared sensor, capable of lifting a payload
of 78kg and flying in a maximum wind speed greater than 11 m s'. Rahaghi et al. [74]
launched a tethered-helium-filled balloon equipped with a FLIR Tau 2 thermal camera over
Lake Geneva, Switzerland, “under weak wind conditions.”

Airborne sUAS vectors, including drones and balloons, have been noted to be deployed in
maximum wind speeds up to 10 m s, after which sUAS performance is significantly degraded
[78]. von Burern et al. [97] and Hardin et al. [31]| reported that many manufacturers claim

! However, Hardin et al.

that UAVs are capable of flying in wind speeds up to 8.3 m s
[31] stated that wind speeds greater than 7 m s can impact flight time and performance.
Ren et al. [79] noted that the DJI Phantom 4 quadcopter, a popular drone produced for
the consumer market, has a maximum wind resistance speed of 10 m s!. Puliti et al. [73]
collected earth surface images from a UAV over multiple flights in wind speeds up to 7 m s!,
where each flight lasted approximately 24 minutes. Boon et al. [9] used two types of UAVs
(fixed wing and multi-rotor) for an environmental mapping study. Both UAVs were capable
of flying in a maximum wind speed of 11.1 m s*. Rankin and Wolff |[76] used a tethered
balloon during a field campaign in which the manufacturer recommended use in maximum
wind speeds up to 12 m s, however the blimp was not flown in wind speeds above 8 m s!.

Hot-air-based balloons experience inflation and positioning difficultly in wind speeds greater

than 4.17 m s and helium-filled balloons were found to be destabilised in winds greater
than 1.4 m s as described by Aber [1].

1.1.2 Direct Georeferencing

With advancing sUAS technology, including the integration of Inertial Measurement Units
(IMUs) and Global Navigation Satellite System (GNSS) units, sUAS imaging systems have
been able to directly georeference images without the use of ground control [18, 70, 86].
The angular and positioning data provided by these systems can either be used directly
or processed with Real-Time Kinematic (RTK), Post-Processing Kinematic (PPK), Precise
Point Positioning (PPP), or differential correction techniques prior to being utilised in di-
rect georeferencing methods [6, 61, 86, 109]. Without the use of differential correction for
geographical coordinates calculated from direct georeferencing, positional accuracy in the
range of 2m to 5m is typical [92, 102|. Padro et al. [70] quantified Root Mean Square Error
(RMSE) for GNSS direct georeferencing without correction and PPK methods with respect
to pre-defined ground control point locations. Planimetric RMSE for the uncorrected GNSS
directly georeferenced data was 1.06 m, while vertical error was 4.21 m. The RMSE for the
PPK methods were at least one order of magnitude less than that of the uncorrected direct
georeferencing method. However, Padré et al. 70| noted that the uncorrected GNSS ap-
proach may be appropriate, such as in cases of analysing satellite images with a pixel size

greater than 2m.

1.1.3 Thermal and Oblique Imaging

Thermal cameras use microbolometer focal plane arrays to observe incoming radiant energy
[26, 69]. When an image is captured, the microbolometer array represents the observed
energy as a signal value (commonly referred to as digital numbers or A/D counts) which
includes the radiant energy emitted from the atmosphere, reflected by the surface, and
recorded from the imaged surface of the object [107]. Microbolometer temperature is known
to vary as a function of sensor, camera, and ambient temperatures [12, 26, 55|. Cooled
thermal cameras are significantly more sensitive than uncooled systems and provide more
accurate, absolute temperatures [80]. However, current cooled camera technology requires
an airborne vector capable of lifting more than 4 kg, which is greater than the capacity of
sUAS and smaller tethered-balloon-system payloads [91]. It has been noted in literature

that uncooled thermal cameras can be radiometrically calibrated to reduce uncooled camera

error to +5K |27, 46].

Oblique imaging systems coupled with SUAS or tethered-balloon systems can significantly
increase the recorded land surface area as compared to nadir imaging systems. However,
radiometric thermal imaging systems can be impacted from non-nadir setups, where surface
temperature error is introduced as a function of observation angle [22]. Viewing angles
greater than 30° of nadir over waterbodies have been noted to introduce surface temperature
error of approximately 0.5 K [22, 45, 90]. This error is introduced as the surface emissivity
of water changes as the viewing angle of the thermal camera becomes more oblique and
reflected radiation from the surface increasingly influences the internal sensor of the thermal
camera [22|. Horton et al. [35] noted that sea surface temperature emissivity varied between
0.36 and 0.98 for viewing angles between 90° (nadir) and 5° (below horizontal), respectively.
James et al. [40] recorded ground-based oblique thermal images of lava flows and quantified
a £3 % difference in radiative power from the lava flows where error increases as more distant
objects had high emissivities as compared to closer ones. More distant objects were likely to
be influenced the most by increasingly oblique viewing angles. In the study, they accounted
for atmospheric transmission effects of the radiation [40]. Hopkinson et al. [33] recorded
ground-based oblique thermal images of a glacier at varying diurnal times. It was noted that
the maximum temperature difference was +3 K, where the emissivity was assumed to be
0.98 However, the calculated glacier surface temperatures were not validated. As a result, it
is possible that these temperature variations could be influenced by transmitted and reflected

radiation.

1.2 Technology Gaps

High spatial and temporal resolution data of the Earth’s surface capable of characterising
diurnal ST patterns is difficult to obtain from conventional remote sensing sources [58].
Furthermore, the use of open-source direct georeferencing methods and surface temperature
calculation for thermal images collected from airborne vectors at oblique angles are not widely
reported [95]. The coupling of direct georeferencing thermal images captured from a tethered-
balloon-based vector is novel, and the focus of this thesis is the development of an open-
source image processing workflow to map surface temperatures with a high spatiotemporal

resolution.

1.3 Objectives

In this thesis, the development of an open-source, Python-based thermal image direct geo-
referencing and ST calculation method is described and evaluated with respect to MODIS
satellite imagery. The developed program quantifies ST at a high spatiotemporal resolution
as compared to conventional satellite sources. The images were collected during two different
field campaigns, both of which will be detailed further, the first within a remote northern
Canadian mining facility in May 2018 and the second on campus at the University of Guelph
during July and August 2018. The diurnal ST variation will be represented for both field

campaigns and trends will be discussed and explained.

1.4 Thesis Structure

The structure of this thesis is as follows:

Chapter 1: An overview of current thermal remote sensing techniques is provided in
addition to recent advancements made in UAS remote sensing technology, direct georefer-
encing, thermal imaging, and oblique imaging. Relevant literature supporting each topic is
included and reviewed appropriately. This chapter also highlights the existing technology
gaps in the presented research and details the objectives and motivation for this thesis.

Chapter 2: The specifics of the two field campaigns and instrumentation used to collect
data are detailed. Section 2.3.1 specifies the direct georeferencing method, Section 2.3.2
specifies the ST calculation, and Section 2.3.2 specifies the calibration procedure applied to
the thermal camera used in both field experiments. Section 2.4 briefly describes the workflow
used to develop the Principal Component Analysis (PCA).

Chapter 3: The results from the method discussed in Chapter 2, are displayed. Diurnal
ST variation, ST comparison to MODIS, and PCA figures are presented and discussed in
detail with references to recently published, relevant literature.

Chapter: 4: Conclusions from Chapter 3 are reiterated and potential applications of

the imaging workflow are discussed.

Chapter 2

Method Development

2.1 Experimental Materials

The images processed in the study were obtained from a DJI Zenmuse XT 19-mm lens un-
cooled thermal camera!, which was located onboard a customised airborne platform: the
Tethered And Navigated Air Blimp 2 (TANAB2). In addition to the thermal camera, a

™ anemometer?, measuring wind speed, wind direction, air pressure, and air tem-

TriSonica
perature at 10Hz, a TriSonica™ datalogger, and a DJI N3 flight controller® were included
onboard the TANAB2. The camera, TriSonica™ system, N3, and related equipment, in-
cluding batteries, were all located on the TANAB2 payload, referred to as the gondola. The
layout of the instruments on the gondola, the dimensions of the gondola, and the TANAB2
in flight are detailed in Figure 2.1.

The TriSonica™ anemometer, has a temperature measurement range of —40°C to 80°C
with a resolution of 0.1 K and an accuracy of 2 K. Furthermore, the TriSonica™ anemome-
ter has a pressure measurement range of 50kPa-115kPa with a resolution of 0.01 kPa and
an accuracy of £1kPa.

The DJI Zenmuse XT radiometric thermal camera with a 19-mm lens is sensitive to
radiation within the 7.5 1m-13.5 pm band and has a focal plane array resolution of 640 x
512 (horizontal by vertical pixels). The camera has a radiometric sensitivity of less than
0.05 K and an accuracy of 5 K. The 19-mm lens has a horizontal field of view of 32° and a

vertical field of view of 26°. The radiometric camera is also capable of recording pixel data

thttps:/ /www.dji.com/ca/zenmuse-xt
Zhttps:/ /www.anemoment.com /trisonica-mini-product-comparison /
3https://www.dji.com/ca/n3/info

15cm

TriSonica ™
anemometer ™
Data logger

Batteries \\E- 8.cm

N3 7 cm
controller

12cm

DJI thermal 55 cm
camera

30 cm

(a) (b)

Figure 2.1: (a) Diagram of the gondola on the TANAB2; (b) the TANAB2 deployed during
a field environmental monitoring campaign in May 2018.

at 14-bit resolution.

2.2 Field Campaigns

2.2.1 Mining Site Campaign

During May 2018, the TANAB2 was deployed in a northern Canadian remote open-pit mining
facility. The specifics of the project, including the name of the mine, location, and client,
cannot be disclosed due to the signing of a non-disclosure agreement with the industrial
partner of the project. As a result, figures included in this thesis are void of geographical
identifying features, such as latitude and longitude data. Instead, ST in relation to the site
perimeter, tailings pond, and open-pit mine is quantified.

The TANAB2 and DJI thermal camera have been deployed and surface images have been
recorded in a remote mining site in northern Canada during dawn, day, dusk, and night.
The TANAB2 was deployed a total of twelve times at three different locations as denoted
by Figure 2.2 [65]. Within the boundaries of the remote mining site, the TANAB2 and
DJI camera setup were used in conjunction with a Lightbridge2 controller and either an
Android- or iOS-powered smartphone. With the TANAB2 deployed, using the Lightbridge2,

the thermal camera was tilted parallel to the horizon and was positioned at either the left

or right most Yaw maximum of the camera gimbal. Methodically, the camera was panned
horizontally and an image was captured approximately every 5°. When the maximum Yaw
limitation of the gimbal was reached, the camera was tilted approximately 5° towards the
Earth’s surface and the imaging procedure repeated again until the camera was perpendicular
to the ground. This imaging procedure occurred approximately every hour during each

TANAB2 profile in an effort to record the diurnal variation of surface temperature.

13.71
12 _ d,...——-*x...v--"""\ ¥
/

El
=
N

S D& PXD
H
/

0 5 10 15 20 22.5
X (km)

Figure 2.2: Diagram of the mining facility, where the black dots represent the edge of the
facility, the red dots represent the outline of the open-pit mine, the teal dots represent the
outline of the tailings pond, and the blue dots represent where the TANAB2 was deployed
during the field environmental monitoring campaign in May 2018.

A typical TANAB2 deployment included the controlled release of the TANAB2 and gon-
dola from the Earth’s surface, up to a maximum altitude of 200 m above ground level. Using
a manually controlled reel and rope tether, the TANAB2 was released and retrieved at a
constant rate. In general, one profile and retrieval of the TANAB2 lasted a total of one hour.
The maximum altitude of each specific profile varied as a function of environmental condi-
tions. During periods of increased wind velocities, up to three mooring lines were attached to
the TANAB2 and controlled by personnel on the ground. The use of mooring lines allowed
the TANAB2 to be deployed in environments with a maximum wind speed of 10 m s (see

Figure 2.3). The addition of each rope resulted in a lower launch altitude (and ultimately

10

less mapped area) due to addition of weight during periods of atmospheric instability such
as the afternoons. This trade-off was deemed acceptable as it was imperative to launch the
TANAB2 in both stable and unstable atmospheric conditions to successfully map diurnal
surface temperatures. The TANAB2 was launched a total of 12 times at the mining facility
(Figure 2.2), recording approximately 50 hours of TriSonica™ data. The details of each
deployment is noted in Table 2.1 below.

The DJI Zenmuse XT was also deployed either on top of stacked crates or on top of a ladder
deployed behind a stationary vehicle. In both instances, the camera had an altitude above
ground of approximately 2m. The details of each surface-based thermal camera deployment
are included in Table 2.1 where the number of TANAB2 profiles is not specified.

Figure 2.3: Use of three ropes controlled by personnel on the ground during a launch of the
TANAB2 at the mining facility in May 2018.

11

Table 2.1: TANAB2 mining facility launch details. Times are in Local Daylight Time (LDT).

Experiment Location Start date Start time End time No. Profiles Duration
1 Tailings pond 2018/05/05 13:07:00 17:00:00 - 04:07:00
2 Tailings pond 2018/05/06 09:55:00 16:45:00 - 06:50:00
3 Tailings pond 2018/05/07 21:41:00 02:47:00 14 05:06:00
4 Tailings pond 2018/05,/09 03:30:00 04:00:00 02 00:30:00
5 Tailings pond 2018/05/10 02:30:00 08:30:00 21 06:00:00
6 Tailings pond 2018/05/11 18:28:00 23:00:00 - 04:32:00
7 Tailings pond 2018/05/12 12:02:00 12:44:00 - 00:42:00
8 Tailings pond 2018/05/13 04:12:00 09:13:00 - 05:01:00
9 Tailings pond 2018/05/15 04:55:00 11:00:00 22 06:05:00
10 Tailings pond 2018/05/17 05:37:00 09:00:00 - 03:23:00
11 Mine 2018/05/18 04:12:00 11:12:00 20 07:00:00
12 Mine 2018/05/19 18:52:00 23:15:00 17 04:23:00
13 Mine 2018/05/21 11:00:00 12:17:00 04 01:17:00
14 Mine 2018/05/23 01:47:00 05:30:00 10 02:43:00
15 Mine 2018/05/24: 11:19:00 14:25:00 12 03:06:00
16 Mine 2018/05/27 14:38:00 17:50:00 18 03:12:00
17 Tailings pond 2018/05/30 10:55:00 18:57:00 24 08:02:00
18 Tailings pond 2018/05/31 11:07:00 14:43:00 08 03:36:00

2.2.2 Guelph Campaign

The TANAB2 was launched at the University of Guelph, Guelph, Ontario, Canada on July
28, 2018 and August 13, 2018. The launches occurred in the Reek Walk, a conventional
two-dimensional urban canyon, at 43.5323° N and 80.2253° W [63]. Specific launch site
geographical features are illustrated in Figure 2.4, where the yellow dot represents the Reek
Walk TANAB2 launch site and other proximal buildings are labelled appropriately. Thermal
images were captured between 05:04 and 21:21 Eastern Daylight Time (EDT) on July 28
and between 05:20 and 20:31 EDT on August 13*®. This field campaign seeked to identify
the diurnal ST variation of the campus buildings with respect to adjacent green spaces at a

high spatiotemporal resolution. Images were captured in the same manner as described in
Section 2.2.1. The details of the two TANAB2 deployments are described in Table 2.2.

Table 2.2: TANAB2 launch details for July, 28, 2018 and August 13, 2018 University of
Guelph, Guelph, Ontario, Canada deployments. Times are in Eastern Daylight Time (EDT).

Exp. Location Start date Start time End time No.Profiles Experiment time
1 Reek Walk 2018/07/28 02:04:00 21:31:00 20 19:27:00
2 Reek Walk 2018/08/13 04:49:00 20:36:00 12 15:47:00

12

Figure 2.4: Diagram of TANAB2 launches in relation to other notable buildings at Reek
Walk, University of Guelph, Guelph, Ontario, Canada.

2.3 Image Processing Method Development

The Python-based image processing workflow was created using Python 3.5 on Ubuntu 16.04
and associated open-source software, including ExifTool 10.94* and ImageMagick 7.0.7.°
Commands derived from these programs were executed through the Linux terminal win-
dow within the Python script. Data recorded by the integrated camera and flight controller
system on the TANAB2 were stored within each image file. This data was utilised within
the developed mathematical calculations. A process flow diagram for the image process-
ing workflow is displayed in Figure 2.5. Each step is discussed in detail in the following
paragraphs.

The image processing workflow includes two general functions, one to directly georefer-
ence image pixels and the other to calculate ST from selected image pixels. These two
functions will be discussed in detail separately. The process utilised to conduct the Principal
Component Analysis (PCA) of surface temperatures is also detailed.

ExifTool was used to extract and assign the gondola’s longitude and latitude coordinates,
camera gimbal’s Roll, Yaw, and Pitch angles, and gondola’s Roll, Yaw, and Pitch angles,

located in the metadata of each image, to variables in Python. A few images were removed

4https://www.sno.phy.queensu.ca/~phil /exiftool /
Shttps://www.imagemagick.org/

13

Legend Start
— — Main Program

Image
- — Removed Acquistion
— —» Added v
Extract Metadata
to Python
Omit Image +
Outside of | Filter
Pitch/Roll Images
Ranges ¢
TriSonica™ o Calculate Camera
Pressure Data Altitude & TANABZ2
Launch Location

.

Surface Directly
Elevation Data Georeference

Pixels
I

Y

Emissivity & Calculate ST

Land Surface ™ Basedon
Constants Land Type

l

Create .KML File and
Export GPS/ST to
TIXT

End

Figure 2.5: Process flow diagram of the image processing workflow.

14

from the workflow due to excessive angles of the gondola or camera. The camera Roll angle
did not significantly impact the method as the Zenmuse XT was self stabilised. However,
if the gondola Roll degree was greater than 45° or less than —45°, the camera became
destabilised. Images with gondola Roll angles outside of this range were omitted from the
workflow. Furthermore, the mechanical Pitch range of the camera was noted to be between
45° and —135°. Gimbal Pitch angles greater than 0° primarily included images of the sky,
gimbal Pitch angles equivalent to 0° were images of the horizon and gimbal Pitch angles
less than 0° included images primarily of the ground. It was determined that the recorded
camera gimbal Pitch angle corresponded to the Pitch angle for the middle of each image.
Any images with a gimbal Pitch angle greater than or equal to —2° were omitted from the
image processing analysis. Furthermore, very oblique pitch angles, greater than —30° from
the horizon, were noted to possibly introduce errors into the ST calculations® but were not
necessarily eliminated. Based on physical parameters of the camera, including the Vertical
and Horizontal Fields Of View (VFOV and HFOV) angles, images with a gimbal Pitch
angle less than or equivalent to —76° were also removed from the analysis. This filter was
chosen because the bottom of the image would have a corresponding Pitch angle of the
recorded gimbal Pitch angle, plus one half of the VFOV that would result in an angle close
to or less than —89° which may disrupt direct georeferencing calculations. The Pitch angles
filtered are related to the compromise between ST spatial distribution and ST accuracy

because the TANAB2 only reached a maximum altitude of 200 m above ground level.

2.3.1 Georeferencing

As reported in literature, the Global Positioning System (GPS)-sensor-derived altitude can
vary significantly up to 50 m as stated by Eynard et al. [24]. Padro et al. [70] reported a
vertical RMSE of 4.21 m for a system that used data collected from the GNSS system of the
UAV deployed in their experiment. The TANAB2 system utilised the DJI N3 flight controller
which includes a GNSS-Compass unit (a GPS module is included within this system).” Since
an accurate measurement of TANAB2 gondola altitude was required for direct georeferencing
of thermal images with the developed method, the hypsometric equation was used to calculate
altitude for images recorded during TANAB2 launches. Images recorded from surface-based
structures (on crate or ladder) were assumed to have an altitude of 2m. The hypsometric

equation (Equation 2.1) uses atmospheric pressure and accounts for atmospheric temperature

Shttps://dl.djicdn.com/downloads/zenmuse xt/en/sUAS Radiometry Technical Note.pdf
"http://dl.djicdn.com/downloads /N3 /N3 User+manual.pdf

15

changes within the formula [8, 88|

— P,
29— 2z ~ al,In <Fl) , (2.1)

2

where z; and 2, represent the altitudes (in meters) corresponding to the recorded pressure
measurements (in mBar, however the units of pressure do not affect this equation), P, and
P,, T, represents the average virtual temperature between the two altitudes (z; and zy),
and a is a constant equivalent to 29.3 m K [88]. The gondola altitude was calculated
in the code in a similar manner as described in Sections A.2.1 and A.3.2 for the mining
facility and the Guelph campaigns respectively. For the Guelph campaign, the ascending
TANAB2 indices were identified using the code in Section A.3.1. The uncertainty of error
for Equation 2.1 was quantified using Equations 2.2, 2.3, and 2.4 [50]. A sample calculation
was completed using the theory of error propagation, where P, is 100kPa, P; is 101.3 kPa,
and T, is 300 K. The atmospheric pressure and temperature measurements were obtained

from the TriSonica™

anemometer where the pressure measurement had an uncertainty of
0.01kPa and the temperature measurement had an uncertainty of 2 K. The uncertainty

calculated was 1.2 m using

A (22 AT 1 (92 aps (2.2)
2 — aTv v 8P2 29 N

822 . P1
8_Tv = Clh'l (E) y (23)
822 — (-1
— = — . 2.4
op, ~ v (P2> (24)

Note that since differential altitude from the ground is desired, the appropriate uncertainty
for the pressure is the resolution of the measurement. With this known uncertainty, this
method was deemed acceptable over using the raw GPS altitude data provided by the DJI
N3 flight controller unit.

All recorded TriSonica™ data were averaged to the nearest whole second (see Section
A.2.1 for detailed code). The averaging procedure was replicated for surface-based thermal
camera deployments. For each image, the corresponding day of year in seconds was calculated

T

and the altitude index with the smallest difference between the TriSonica™ and image day

of year in seconds was selected. This altitude was referred to as the altitude in meters of the

16

camera gimbal above ground level.

With the altitude of the camera gimbal known, trigonometric relationships were derived
to calculate the geographic coordinates of the four corners, the four midpoints, and centre
of each projected image on the surface of the Earth. The gimbal pitch angles for the top
and bottom of each image were calculated by adding and subtracting half of the VFOV to
the gimbal pitch angle, respectively. If the top pitch angle was greater than or equal to —1°,
the top pitch angle was adjusted to equal —1° to ensure that all image pixels included the
Earth’s surface. All angles used in the georeferencing calculations were converted to radians.

In total, the TANAB2 was launched at three locations during the entire field campaign
at the mining facility. The TANAB2 was only deployed at a maximum of one location each
day. Using Google Earth, the surface elevation above sea level was calculated for each launch
location at the mining site. For images collected during the Guelph TANAB2 campaign at
the University of Guelph, a Digital Surface Model (DSM) derived from the Panchromatic
Remote-sensing Instrument for Stereo Mapping (PRISM) sensor on board the Advanced
Land Observing Satellite (ALOS) was used.® Version 2.1 (April 2018) of the ALOS PRISM
DSM file (30m spatial resolution) was used when extracting surface elevations in Guelph,
Ontario, Canada. Using a variation of the Haversine formula, the distance between the
gondola coordinates (lats and lony) and each of the three launch locations at the mining
facility (lat; and lon;) were calculated, and the minimum distance was chosen, for which a

base altitude from Google Earth was assigned. The distance is calculated using

laty — lat lon, — 1
Araunch = R[2atan2(\/ sin” (T> + cos(laty)cos(lats)sin” (%)

, \/ (1 — (sin? <@) + cos(lat;)cos(laty)sin? <w)))], (2.5)

where R represents the Equatorial Radius of the Earth in kilometres.’

The geographic
location associated with the smallest value of djauncn Was determined to be the TANAB2
deployment location. With the smallest distance known, the appropriate base altitude in
meters above sea level was assigned for each image.

The direct georeferencing workflow considers surface elevation with respect to geographic

distance away from each TANAB2 launch location for the eight cardinal directions (north,

S8https://www.eorc.jaxa.jp/ALOS /en/aw3d30/index.htm
9https://nssdc.gsfc.nasa.gov/planetary /factsheet /earthfact.html

17

north-west, west, south-west, south, south-east, east, and north-east) and the line of sight
from the camera for a given image pixel. Land surface elevation data in meters above sea
level for the eight cardinal directions up to 10km away from each TANAB2 deployment
location at the mining facility, were obtained from the Geocontext-Profiler!? and saved as
individual text files. The camera gimbal Yaw angles were recorded in degrees positive clock-
wise from north. If the Yaw angles were negative, 360° was added to the gimbal Yaw angle.
Based on the Yaw angle of the camera gimbal and the base altitude, the appropriate file,
containing data from the Geocontext-Profiler, was loaded into the Python script and a third
order polynomial was fitted to the data. Third order models have been used to represent
curved Earth surfaces (|81]), such as those encountered in this mining facility.

The line of sight for a given image pixel was constructed by calculating the slope, which
is represented by the tangent of the pitch angle. For example, for the top centre pixel, the
tangent of the top pitch angle is the slope of the line of sight for the top pixel, equal to
the TANAB2 altitude divided by the horizontal distance from the TANAB2 launch location
to where the line of sight intercepts the horizontal axis. This slope is negative because the
camera’s line of sight is always below the horizon.

From the derived third order polynomial for land surface elevation, the horizontal distance
from the TANAB2 to where the image pixel is positioned was determined (djoyi,). The roots
of the intersection of the polynomial curve and the line of sight give the horizontal distance.
If the roots were not real, the specific image was omitted from the ST calculation process.
If multiple roots were found, the smallest real positive solution was chosen. For the mining
facility, if dyor, was greater than 100 km, the pixel was omitted from the analysis. Likewise,
for the Guelph campaign, if d}.;, was greater than 5km, for the top centre and centre of an
image especially, the pixel was omitted from the analysis. If the bottom centre of an image
had a horizontal distance away from the TANAB2 above 5km, the image was omitted from
the analysis. This value was chosen as the TANAB2 was launched in an urban canyon around
numerous multi-story buildings where the camera line of sight likely would have intersected
an object at least 5km away. This condition was implemented in the event the ALOS DSM
file spatial resolution did not fully consider building heights on the University of Guelph
campus. As a result, this filter value could be changed depending on the imaging location.

With the horizontal distance from the TANAB2 to where the image pixel is located known,
the geographic coordinate pair for the corresponding horizontal (left to right) and vertical

(top to bottom) pixel locations in the image were calculated using a variation of the Haversine

Ohttp: / /www.geocontext.org/publ/2010/04 /profiler /pl/

18

formula

d oriz . d oriz
Laty = asin[sin(Lat;)cos (hR > + cos(Lat;)sin (hR) cos(Yaw)] (2.6)

d oriz
Lony = Lon; + atan?([sin(Yaw)sin (hR) cos(Laty)]

, [cos (d‘g”) — sin(Lat;)sin(Lats)]), (2.7)

where Lat, and Lony represent the geographic coordinates for the projected image pixel pair,
Lat, and Lon; represent the geographic coordinates of the TANAB2 gondola when the image
was recorded, and dy,,i, represents the horizontal distance the projected image pixel is away
from the TANAB2 in kilometres. The geographic coordinates for the top centre, middle,
and bottom centre of each image was calculated.

When determining the geographic coordinates for the image corners and edge midpoints,

the geographic distance from the TANAB2 and the edge of the image was calculated

dhoriz

cos(0.5HFOV)’

where deqqe represents the geographic distance in kilometres from the TANAB2 to the top,
middle, and bottom of the projected image edge (both left and right edges), and HFOV

represents the camera Horizontal Field Of View. In total, three dyq., values were used, one

dedge = (2.8)

for pixels at the top of the image, another for pixels in the middle of the image, and one for
pixels at the bottom of the image. With degge known, djori, is replaced accordingly such that
geographic coordinate pairs along edges of each image can be calculated.

With the coordinate pairs of midpoints of the centre, edges, and corners of each image
calculated, pixels within the image matrix were georeferenced and the corresponding ST
values were calculated accordingly. For instances, where a new pitch angle for the top of
the image was assigned (for images whose portion of the top needed to be eliminated), a
mathematical relationship was derived to quantify which image pixel rows from the top were
to be omitted from the image processing analysis.

Figure 2.6 provides an illustration for the angles used to correlate image pixel position to
geographic coordinate location. PO, Px, P256, and P512 represent the top, the new top,

the centre, and the bottom pixel rows, respectively, as each image has 640 horizontal pixels

19

AGL

P512

_ ——"w \ Yo Yix Yt

Distance (km) p256

Figure 2.6: Relationship between pixels and horizontal geographic distances.

and 512 vertical pixels.!! Yt, Ytz, Ye, and Y represent the horizontal geographic distances
away from the TANAB2 for the top, new top, centre, and bottom of each image, respectively.
0 represents the camera gimbal pitch angle, 13° is half of the V FOV', and + and (are angles

that are used to correlate pixels to distances using

d oriz¢o
v = atan <u) : (2.9)

ZAGL
B=90°-]6|+0.5VFOV —~, (2.10)

P 0.5V PRsin(p)
~ sin(0.5VFOV)sin(180° — n)’
where VPR is the Vertical Pixel Range (512 based on the camera specifications). Note
dhoriz., 15 the horizontal distance that the TANAB2 makes with the land location associated

with the top of the image, and zaqy, is altitude above ground level. The new top pixel, X,

(2.11)

was derived from Figure 2.7 by applying the sine law and rearranging the equation. Figure
2.7 displays the red triangle, illustrating the vertical camera field of view from the TANAB2
in greater detail. X represents the number of pixel rows to omit from the top of the image

which is a function of the new top angle in the instance that the top pitch angle is greater

Uhttps:/ /www.dji.com/ca/zenmuse-xt /specs

20

N=90°-13°+p

K=90°-13°

A
4

\
256 Pixels 296X X

512 Pixels

Figure 2.7: Relationship between vertical image pixels and the camera VFOV..

than —1°.

Considering all image pixels was not a possibility due to the extreme volume of computa-
tional operations required. Instead, a geometric step function was implemented to identify
which pixel rows to consider for the ST calculation. This was motivated by the fact that
pixels near the top of the image correspond to more land surface coverage, so they must be
analysed at higher resolution. The geometric step function was achieved using the following

equation and coefficients

Ypixel = 18(1.41)", (2.12)

where n is an integer that ranges from 2 to 10. The first two pixel rows to process were
chosen to be 0 and 18. Equation 2.12 yields the corresponding pixel rows: 35, 50, 71, 100,
141, 199, 281, and 396. These rows were selected because they are densely packed in the top
half of each image. The geographic distance between pixel rows at the top of an image would
be greater than the geographic distance of pixel rows at the bottom of an image. To optimise
processing efficiency and increase ST spatial distribution, the coefficients in Equation 2.12
were chosen to satisfy the desired image processing criteria. Depending upon application,
this pixel row processing workflow can be changed to increase or decrease the number of

pixels used in the ST calculations accordingly. The horizontal pixel step was set at a fixed

21

value of 64. For each image, every 64" pixel column was used in the ST calculation.

When iterating through the image pixel matrix, 5 and v angles were calculated for each
pixel coordinate and a corresponding camera line of sight was calculated. Based on the
relationship identified in Figures 2.6 and 2.7, the sine law was employed in Equation 2.13 to
derive Equation 2.14. The resulting slope of the camera line of sight for each pixel coordinate
pair were used to relate the pixel pairs to geographic distances used to georeference pixels

within the image as completed with Equations 2.6 and 2.7

sin(0.5VFOV) sin(0.5VFOV — B)

sin(k)[0.5VPR] _ sin(n)[0.5VPR — j]’ (2.13)

8 = —atan <[0'5VP (?5;/281;21(2(2‘)@ Ov)) +0.5VFOV, (2.14)
v =90°—| 0| +0.5VFOV — 3, (2.15)

Slope = — (2.16)

tan(y)

Here, j is the location of the pixel coordinate row from top to bottom. With the slope
for the camera line of sight for a particular pixel coordinate pair known, the intersections
between the third order model representing the land surface and the pixel line of sight
were derived. The smallest real positive solution was chosen to be the projected horizontal
distance away from the TANAB2 for pixels located in the middle column (pixel 320 from
left to right) of the image. Pixels horizontally adjacent to the centre of an image required
an adjustment to the heading degree (Yaw). The offset angle (a) to apply to the heading
degree was determined to be function a of the HFOV of the camera. Depending on the

location of the pixel coordinate column ¢ from left to right, the angular offset formula varied

—HFOV

Q=0 = — 5 (2.17a)
— (#£E —) HFOV
Ai>0,i<320 = HPR) (2~17b)
Q=320 = 0, (2.17¢)
(i — B2B) POV
(0i>320,i<640 = PR , (2.17d)

22

Q=640 = %OV, (2.17e)
where H PR represents the Horizontal Pixel Range (640 pixels based on the physical camera
specifications). The Yaw heading of the camera gimbal corresponded to the middle of the
image. As a result the heading for any pixels to the left of the centre of the image required
the angular offset to be removed from the recorded Yaw. Likewise, any pixels to the right of
the image required the angular offset to be added to the recorded Yaw. In cases where the
addition of the angular offset to the heading angle resulted in a negative value or a value
greater than 27 radians, then 27 radians were either added or subtracted, respectively, to
ensure that only positive angles between 0 and 27 radians were passed to Equations 2.6 and
2.7.

The code for the direct georeferencing method is included in Sections A.2.4 and A.3.4 for

the mining facility and the Guelph campaigns.

2.3.2 Thermal Camera Calibration

Using ExifTool and ImageMagick, recorded signal values from individual pixels were ex-
tracted and saved to a matrix in the Python script. These raw signal values were converted
to surface temperatures considering a variation of Planck’s Law.

Due to field conditions and physical limitations encountered at the mining facility, errors
introduced from reflections and transmission could not be accounted for. However, the
thermal camera used in the field campaign was calibrated in a pre-field outdoors experiment
on campus at the University of Guelph, Guelph, Ontario, Canada. Three radiometric images
were captured roughly thirty seconds apart for every hour between 06:00 and 23:00 EDT
over two consecutive days. The thirty second time interval was selected as Olbrycht and
Wiecek [69] noted that uncooled thermal cameras can experience temperature drift up to
1 K per minute if a radiometric calibration was not recently completed. Four different land
surface types were imaged including water, soil, grass, and developed land (urban surfaces).
Each image included a certified thermometer which measured the corresponding land surface
temperature as recorded by the image.

Surface temperatures from the top of the thermometer were calculated from the thermal
images using FLIR Tools. For each hourly image set, the average of the surface temperatures
derived in FLIR Tools was calculated and used to calibrate the R, B, O, and F' constants

R

accordingly, where R = B The temperatures recorded by the certified thermometer were

scaled to adjust for the test location’s height above sea level (334m for Guelph, Ontario,

23

Canada). For the thermal image temperatures, (Uop;) was calculated from Equation 2.18.

R

exp (bej> — F

where Uqp; represents the radiative energy emitted from the imaged object, Top; represents

Uob; = ~0, (2.18)

the surface temperature of the imaged object derived from FLIR Tools, R represents the
uncooled camera response, B is a constant related to Planck’s radiation law, F' relates to the
non-linear response of the thermal imaging system, and O represents an offset [12]. Equation

2.18 can be rearranged to calculate Top; as per Equation 2.19.

B
= .
IH<W+F>

The R, B, O, and F' constants used to calculate the Ugy; value were the default constants

TObj == (219)

stored in the metadata of each thermal image. The default constants and calibrated constants
are displayed in Table 2.3.

Using the empirical line method, described by Smith and Milton (85|, the Uop; values and
the corresponding certified thermometer temperatures were plotted against each other to
calibrate the constants used in Equation 2.19 as a function of land surface type. The figures
illustrating the empirical line method are displayed in Figure 2.8. The Non-Linear Least-
Squares Minimization and Curve-Fitting (LMFIT) of Python library version 0.9.13'? was
used with Equation 2.19 to fit and optimise the camera constants while minimising residuals
for each specific land surface type.

Using the LMFIT library to fit camera constants for each land surface ultimately reduced
the bias and RMSE values when compared to the default camera constants shown in Table
2.4. Using the calibrated constants for the calculation of land ST at the mining facility
improved accuracy of the measurement. These findings are comparable to Gallardo-Saavedra
et al. [27] who reported that the manufacturer stated accuracy of the FLIR Vue Pro R 640,
Tau 2 640, and Zenmuse XT 640 was £5 K. Similarly, Kelly et al. [46] used the empirical
line calibration method for a FLIR Vue Pro 640 uncooled thermal camera and quantified the
accuracy of the camera to be £5K.

The Python code used to calculate the calibrated camera constants and the plots in Figure

2.8, are located in Sections A.1 and A.1.1 respectively.

2https://Imfit.github.io/Imfit-py /index.html

24

302 O Calibration experiment o
- [0 Default camera parameters
hv4 300 A Calibrated camera parameters
g
> 298 O
© o
0 296 1 o o
Q 3 o
& 204 o °©
b A
© 2921 °a °
=
B i
5 290
(@) a

2881 ,

3100 3200 3300 3400 3500 3600

Uobject (A/D counts)

(a) Default and calibrated temperature for water.

315 O Calibration experiment o
Py [0 Default camera parameters
pv4 A Calibrated camera parameters)
o 3101 2
s o
2 O g
© 3051 o g ? o
v A
Q [m]
e | A
g 300

[im)]
8 2051 ® s
b= o
hud o o
8 2904 @O o o
BA
28512 , , , ,
3000 3200 3400 3600 3800 4000

Uobject (A/D counts)

(c) Default and calibrated temperature for devel-

oped land.

Certified temperature (K)
]
o

285 1

O Calibration experiment [m]
[0 Default camera parameters]
A Calibrated camera parameters
o 2
o R
o
o 28
o
22 9
o
o o
% A
%o

o® B

g

3000 3250 3500 3750 4000 4250 4500
Uobject (A/D counts)

(b) Default and calibrated temperature for soil.

e
N N N
o v
A o o©
\ 1 A

292 1

2901

Certified temperatur

288 1

2861

O Calibration experiment [}
[0 Default camera parameters i) o
A Calibrated camera parameters o
6o
[
o g
02
@’ °
a éA
»8
m] A O
(¢]
A

3000 3100 3200 3300 3400 3500 3600
Uobject (A/D counts)

(d) Default and calibrated temperature for grass.

Figure 2.8: Certified temperature compared to radiometric image pixel signal value for water,

soil, developed land, and grass.

25

Table 2.3: Default and calibrated camera parameters.

Camera parameters R B O F
Default 366545 1428 -342 1

Calibrated water 549789 1507 -171 1.5
Calibrated soil 549800 1510 -171 1.5
Calibrated developed land 247614 1322 -513 1.5
Calibrated grass 314531 1391 -513 1.5

Table 2.4: Default and calibrated camera parameter statistics.

Surface Water Soil Developed land Grass
Default bias (K) 518 481 1.83 2.07
Default RMSE (K) 583 5.34 3.91 2.34
Calibrated bias (K) 0.27 -0.09 0.13 -0.24
Calibrated RMSE (K) 240 1.57 3.31 1.11

Surface Temperature Calculation

Camera constants were applied to the surfaces within the mining facility with geographical
coordinates closest to the calibrated land use categories. The effect of emissivity was consid-
ered by using the BroadBand Emissivity as described by Wang et al. [100] and calculated
in Equation 2.20.

BBE = a€gg9 + b631 + Cc€39, (220)

where a, b, and ¢ are constants that vary as functions of land surface, and ey, €31, and €3
are emissivities derived from the MOD11B3 MODIS data product from bands 29, 31, and
32 respectively. Wang et al. [100]| determined that a, b, and ¢ constants are similar for
vegetation, soil, and anthropogenic materials. As a result, the a, b, and ¢ coefficients were
selected to be 0.2122, 0.3859, and 0.4029, respectively [100].

The code in Section A.2.2 was used to create a point grid with a spatial resolution of 500 m
over the mining facility and the code in Section A.3.3 was used to create a point grid over the
University of Guelph campus. These point grids were imported into QGIS and overlaid on
the MODIS MOD11B3 files. The emissivity values from the three bands in addition to the
latitude and longitude coordinates were extracted for each point and saved to a file. These
files were used in Sections A.2.4 and A.3.4 to quantify the BBE for the mining facility and the
University of Guelph campus respectively. The mining facility had two MOD11B3 MODIS

images overlapping the site as a result, the code in Section A.2.3 was used to extract the

26

emissivity band data from the original satellite images. This problem was not encountered
for the Guelph field campaign.

The total signal (Ury) recorded by the uncooled thermal camera can be separated into
three components as in Equation 2.21. The first component represents the radiative energy
emitted from the imaged object (Uop;), the second component represents the reflected energy
from the imaged object (Ugen), and the third component accounts for the radiative energy
transmitted from the atmosphere (Uayn). € represents the emissivity of the surface and
is accounted for by Equation 2.20 and 7 represents the transmissivity of the atmosphere
whose value is generally close to 1.0 [93|. As a result, only the radiative energy reflected
and emitted from the imaged object are considered in Equation 2.21, where to retrieve Ugp,
and subsequently Top;j, Uren is removed from Ury. The calibration of camera constants was

completed to correct for incoming reflected radiation via

Urot = €TUopj + T(1 — €)Uget + (1 — 7)Untm. (2.21)

These calculations are detailed in Sections A.2.4 and A.3.4 corresponding to the mining
facility and the Guelph campaign. On average, it takes 17.8 seconds to directly georeference

and calculate surface temperature from one image.

2.4 Principal Component Analysis (PCA)

In order to determine the geographical direction for which one has the largest variations
in surface temperature, a PCA was performed. PCA is a very well-known approach for
analysing data (especially large data) to deduce meaningful conclusions about it. The prin-
ciple behind PCA lies in the fact that it can mathematically determine the principal com-
ponents (eigenvectors) showing the directions of the largest deviations in the data; for more
information about PCA see for instance the work of Jolliffe [42]. Note that this method gives
the main axes along which the variations in the data are the largest. In this analysis, it was
of interest to find the direction of the land surface for which the temperature gradient was
the largest. Therefore, the axis that had the most variation was picked and the results were
analysed accordingly. PCA was completed for six four-hour time intervals.
The Python code created to calculate and plot the PCA is located in Section A.2.8.

27

Chapter 3

Results and Discussion

3.1 Mining Site Campaign

Three analyses were conducted on the processed image data. The first analysis represents
median ST distribution at a spatial resolution of 1 km x 1km derived from images recorded
over the entire length of the field campaign. In total, six four-hour time intervals in Local
Daylight Time (LDT) (00:00-04:00 LDT, 04:00-08:00 LDT, 08:00-12:00 LDT, 12:00-16:00
LDT, 16:00-20:00 LDT, and 20:00-24:00 LDT) representing ST for the entire field campaign
were produced highlighting diurnal ST variation with respect to the mining facility bound-
ary, the mine, and the tailings pond as displayed in Figure 3.1. Corresponding box plots
representing the temperature variation of the mine and tailings pond are also included for
each time interval as per Figure 3.2. For each survey, on average 1910 images were used for
each four-hour time interval.

The second analysis focuses on comparing the calculated ST derived from the images col-
lected on May 24, 2018 over the 12:00-14:00 LDT time interval with respect to the MODIS
MOD11A1 image recorded during the early afternoon on May 24, 2018. Three plots were
created (as per Figure 3.3) including the ST spatial distribution map at 1km x 1km resolu-
tion derived from the workflow, the MOD11A1 dataset for each corresponding ST tile, and
the absolute error for each tile is included.

The third analysis focuses on identifying horizontal direction of the highest surface tem-
perature variances. The direction with the highest surface temperature variances for each
time interval was calculated from the images collected during the field campaign by complet-
ing a PCA on the data derived from each time interval. The results are presented in Figure
3.4.

28

The code used to separate the data into six four-hour intervals is included in Section A.2.5,
the code to correct surface temperatures as a function of land material type is included in
Section A.2.6, and the code used to create the surface temperature maps and box plots is
included in Section A.2.7.

3.1.1 Diurnal Surface Temperature

Surface temperature maps with a spatial resolution of 1km x 1km for the entire mining
facility at six four-hour time intervals are displayed in Figure 3.1. These plots were created
by calculating the median temperature for all data recorded within each time interval over
the entire field campaign within a 1km x 1km area (tile). The axes represent distance in
kilometres and the colour bar represents surface temperature in Kelvin.

Box plots (Figure 3.2) representing the surface temperature range in Kelvin of the two
key geographical features of the mining facility, the mine, and the tailings pond, at the
corresponding six four-hour time intervals were created to compare diurnal ST variation.
The ST values included in the box plot are located within the red and teal perimeters of
the mine and tailings pond, respectively, shown in Figure 2.2. The black circles represent
temperature values outside of the 95" and 5" percentiles. The upper black line and lower
black line of the box plot correspond to the 95" and 5 percentiles. The middle orange line
represents the median surface temperature of each geographical feature.

During the 00:00-04:00 LDT time interval, there was a distinct temperature gradient
between the mine, the land west of the pond, and the pond itself. This gradient is further
quantified by the corresponding box plot where the median surface temperature gradient
between the two surface features was approximately 20 K.

There was a clear surface temperature gradient between the mine and the pond during
the 04:00-08:00 LDT time interval. However, the magnitude of the temperature gradient
between the mine and the pond was the lowest during this time period. Both the surface
temperature map and the box plot display this trend as this time interval includes images
captured during and after sunrise.

Over the 08:00-12:00 LDT interval, the surface temperatures of both the mine and the
pond increase. Likewise, the temperature gradient between the two land surface features
also grows, where the mine’s surface temperature is higher than the tailings pond surface
temperature.

During the 12:00-16:00 LDT interval, an apparent temperature gradient existed between

29

Temperature (K)

13.7
290
8l 280
6
4 270
P
0 260

0 5 10 15
X (km)

(a) 00:00-04:00 LDT
Temperature (K)

13.7 300
290
! 280

2

0

0 5 10 15
X (km)

20225

(c) 08:00-12:00 LDT
Temperature (K)

13.7 310
300
6
4 290
2
0 280

0 5 10 15
X (km)

20225

(e) 16:00-20:00 LDT

Temperature (K)

280

270

5 10 15
X (km)

20225

(b) 04:00-08:00 LDT
Temperature (K)

13.7 320
310
300
290
2
% 35 1 1B w5 X
X (km)
(d) 12:00-16:00 LDT
Temperature (K
13.7 b 30(%)
12 /"’\
— 107,
é 81 : / 290
6
S I
4 {
9 ;"; 280
0() 5 10 15 2022.5
X (km)

(f) 20:00-24:00 LDT

Figure 3.1: Median temperatures over four-hour time intervals at 1km x 1km resolution;

times are in Local Daylight Time (LDT).

30

360
=< 340
()

2 320
£ 300

g 280)
é 260

240
Tailings pond Mine
Location

(a) 00:00-04:00 LDT

350
<u
= 320
£310 o
£ 300 D
2.290 éﬂ

£ 230

= 270 1

Tailings pond Mine
Location

(c) 08:00-12:00 LDT

440
2
= 380
= 360
£ 340

2,320
£ 300
= 280 =

Tailings pond Mine
Location

(e) 16:00-20:00 LDT

234
2 320
=
£ 300
< 280
é 260

400
=< 380
» 360
= 340
o
[<B)
=280
ﬁ 260
240

.

Tailings pond Mine
Location

(b) 04:00-08:00 LDT

&

Tailings pond Mine
Location

(d) 12:00-16:00 LDT

:

Tailings pond Mine
Location

(f) 20:00-24:00 LDT

Figure 3.2: Box plots representing temperature distribution over four-hour time intervals for
the tailings pond and mine, where the orange line is the median temperature; times are in

Local Daylight Time (LDT).

the tailings pond and the mine. The area to the north-west of the mine had a lower surface
temperature as compared to areas south and east of the mine.

The variability of surface temperatures between the mine and the pond decreased over the
16:00-20:00 LDT interval. Although a clear temperature gradient was present, the box plot
displays a narrower temperature range as compared to most other time intervals.

The same temperature gradient as discussed during other time periods occurs within the
20:00-24:00 LDT period. There are a few data gaps for ST north-west of the mine as the
TANAB2 was deployed less during these hours compared to other time periods. Nonetheless,
the west side of the pond possesses a lower surface temperature as compared to the mine itself.
The overall surface temperature magnitude for both land surface features was determined

to be decreasing during this interval, after sunset.

3.1.2 Satellite Comparison

On May 24, 2018 MODIS on the Terra satellite imaged the remote mining site during the
early afternoon. The TANAB2 was launched within the mine between 12:00 and 14:00 LDT
on the same date. Figure 3.3 displays the surface temperatures recorded by the thermal cam-
era from the TANAB2, the surface temperatures recorded by MODIS from the MOD11A1
dataset, and the absolute error between the two datasets.

Absolute error with respect to MODIS temperatures on May 24, 2018 was calculated
and the spatial distribution of temperature bias is displayed in Figure 3.3. The maximum,
minimum, and median absolute error were calculated to be 14.3K, —12.2K, and 0.64 K,
respectively. The bias and RMSE were determined to be 0.5 K and 5.45 K, respectively.
Furthermore, it was noted that the absolute error increased north-west of the mine, towards
the pond. This likely occurred as the TANAB2 was launched within the mine, below grade
level (with respect to the mining facility), while the land elevation increases north-west of
the mine towards the tailings pond. With this change in elevation, the calculated surface
temperatures northwest of the mine are estimated from very oblique angle images, possibly
contributing to the increased error. In addition, that region contains very localised hot spots,
such as pipelines, that are beyond MODIS data product resolutions to be detected by the
satellite but within the resolution of the thermal images in the current method. This can
also explain the discrepancy between the methods. On the other hand, the elevation of the
land surface decreased south and east of the mine. This decrease is likely attributed to less

oblique images and therefore lower absolute error between the two datasets. Nevertheless,

32

Temperature (K) Temperature (K)

13.7 13.7
320 320
310 310
6
4 4
9 300 9 : 300
00) 10 15 2022.5 00) 10 15 2022.5
X (km) X (km)
(a) Thermal camera ST (b) MODIS ST

Absolute error (K)
13.7

10

0 5 10 15 2022.5
X (km)

(c) Absolute error in ST

Figure 3.3: Comparison between the developed thermal imaging method, the MODIS
MOD11A1 dataset, and absolute error between the two methods; (a) median ST from May
24, 2018 12:00-14:00 LDT as recorded by the thermal camera at a 1km x 1km resolution;
(b) daytime temperatures captured by MODIS recorded during the early afternoon on May
24, 2018 and derived from the MOD11A1 dataset at a 1km X 1km resolution; (c) absolute
error between the two methods at a 1km x 1km resolution; times in Local Daylight Time
(LDT).

33

the localised warm regions of surface temperatures within the mine and east of the mine
recorded by MODIS were also captured from the thermal images as displayed by the surface
temperature plots in Figure 3.3.

The increase in error between the mine and the pond can be accounted for from the rapid
change in topography. In this region, the bottom of the mine pit is approximately 100 m
into the earth. Conversely, the area directly to the east of the pond (the levee) is the highest
location of the entire site. The total change of land surface elevation between the mine and
the pond is very significant and may not be fully considered by the Digital Elevation Model
(DEM) acquired from Google Earth. Wang et al. [101] evaluated the accuracy of elevation
data provided by Google Earth for over 20,000 locations of the conterminous United States.
They determined that the mean average error, RMSE, and bias of elevation was 10.72m,
22.31m, and 0.13m, respectively. Based on Wang et al. [101], Google Earth accuracy varies
significantly by location. Furthermore, since the landscape of the mining facility is changing
rapidly, the use of the Google Earth elevation data likely introduces further error into the
method. For more accurate results, sUAS-based Light Detection And Ranging (LiDAR)
could be a feasible solution, especially in areas where high time resolution data is required
or very high resolution satellite imagery capable of creating elevation models is required
[3, 29, 67].

Further improvement of the imaging workflow may also reduce errors. The imaging method
only considers elevation profiles for the eight cardinal directions of each TANAB2 launch site.
Using a high spatial resolution DEM raster and QGIS, the elevation profile for individual
images could be quantified programmatically in Python. The elevation profiles for individual
pixels within the image could also be quantified using this method. However, the accuracy
of this method is dependent upon the accuracy and resolution of the DEM data source.
Nonetheless, the accuracy of the Google Earth elevation data was deemed to be acceptable
for this application.

Using oblique and very oblique images in the method may have contributed to surface tem-
perature error even with using the corrected camera parameters R, B, O, and F. Oblique
imaging is known to affect observed surface temperatures as a function of camera pitch an-
gle [22]. Increasingly oblique imaging angles can result in a higher proportion of reflected
radiation and more varied emissivity values over waterbodies [5, 22, 90|. The proportion of
waterbodies within the mining facility is low and even the tailings pond may not truly be
representative of a pond due to byproducts introduced from the mine ore extraction process.

It is known that imaging angles higher than 30° of nadir can affect surface temperature by

34

0.5K [22, 45, 90|. For land surfaces, James et al. [40] recorded lava flows with £3 % radia-
tive power differences. The areas with the highest temperature error were not waterbodies.
Oblique images of land surfaces likely have less impact on emissivity as opposed to images
of water bodies. Nonetheless, the presence of this error source is acknowledged in this the-
sis. Additionally, the processing of oblique and very oblique images may have introduced
georeferencing (positioning) error into the quantified pixel latitude and longitude values, es-
pecially for the upper half of each image. Pixel rows at the top of each image are increasingly
further away from each other as compared to pixel rows at the bottom of an image. As a
result, georeferenced pixels near the top of oblique images may not fully consider surface
terrain variation, thus leading to increased positioning errors. Since the direct evaluation of
the georeferencing method was not evaluated, quantitative impact of these potential errors
cannot be fully determined.

Other than surface elevation variation, calculated temperature errors may have been in-
troduced from the camera constant calibration completed in Guelph, Ontario, Canada. The
surface materials at the mining site may have been different as opposed to the tested surface
temperatures recorded during the calibration experiment. The difference in physical prop-
erties may have contributed to the increased minimum and maximum errors of —12.2 K and
14.3 K, respectively. However, the overall median error was calculated to be 0.64 K which is
significantly below the manufacturer reported accuracy of + 5 K and the calibrated accuracy
of a FLIR Vue Pro 640 of £ 5 K |27, 46]. These elevated maximum and minimum errors may
be due to highly oblique images, near horizontal, where reflected radiation can significantly
impact the radiometric measurement. To avoid these errors, deploying the TANAB2 at a
higher altitude would be necessary to reduce oblique imaging angles. However, this was not
possible as the TANAB2 profile height was predetermined from aviation and site specific
regulations.

Certain parameters (such as filtering angles or calculated distances away from the TANAB2)
included in the direct georeferencing and temperature calculation code could be changed
and a sensitivity analysis could be performed. It is possible to reduce errors through the
completion of sensitivity analyses on all relevant parameters. The benefits and drawbacks
associated with changing these parameters would need to be considered before new values
are selected. For example, omitting very oblique images would reduce the area of covered
by the surface temperature maps but the errors associated with reflected radiation may be
minimised. The developed image processing method is very customisable depending on the

desired application.

35

3.1.3 Principal Component Analysis (PCA)

North
Time intervals
=»x== (00:00-04:00 LDT
—s— (04:00-08:00 LDT
==+:= 08:00-12:00 LDT
—4-- 12:00-16:00 LDT
c =#=- 16:00-20:00 LDT
.8 —¥— 20:00-24:00 LDT
@
3
South
West East

Direction

Figure 3.4: Representative horizontal directions encompassing the mining facility which
display the largest surface temperature variation for each time interval; times are in Local
Daylight Time (LDT).

The result of the PCA analysis is shown in Figure 3.4. As can be seen, the highest surface
temperature variation is the north-west-south-east direction. Referring to Figure 2.2, the
north-west-south-east direction intersects the mine and processing facilities to the south-east
and the pond and forest, beyond the facility, to the north-west. This surface temperature
variation was present in each time interval, especially during 00:00-04:00 LD'T, 04:00-08:00
LDT, and 16:00-20:00 LDT, where the normalised PCA horizontal directions are close to

overlapping each other.

36

3.2 Guelph Campaign

One analysis was conducted on the images collected during the University of Guelph Summer
2018 field campaign. Diurnal median ST distribution was calculated from the images col-
lected on July 28, 2018 and August 13, 2018 over a 1 km x 1km study area of the University
of Guelph campus. Surface temperature plots were created at two spatial resolutions, 20 m
x 20m and 50 m x 50 m, respectively. In total, five ST plots were created representing Reek
Walk and the land surrounding the TANAB2 launch site for 04:00-08:00 Eastern Daylight
Time (EDT), 08:00-12:00 EDT, 12:00-16:00 EDT, 16:00-20:00 EDT, and 20:00-24:00 EDT.
Additional landmarks were identified in Figures 3.5 and 3.6.

For each plot in Figure 3.5, differing median ST patterns exist in relation to urban surfaces
and green spaces on and around the University of Guelph campus. Although Figure 3.6
represents ST at a lower spatial resolution, the median ST distribution follows a similar
trend as depicted in Figure 3.5.

During the 04:00-08:00 EDT interval, the area to the bottom left of the TANAB2 launch
site was cooler as compared to other regions. This area consists of green space mixed with
urban surfaces. The green space could have contributed to lower surface temperatures. The
area at the bottom right of the plot has higher median ST values as compared to the bottom
left region. The area to the bottom right primarily consists of a built-up residential area
which may contribute to the increased temperatures. The upper right region in relation to
the TANAB2 launch location is The Arboretum at University of Guelph, which primarily
consists of trees and green space. The top right of the plot (The Arboretum) appears to
have higher median ST values as compared the green space to the bottom right of the
launch. These higher median ST values may be influenced by errors attributed to highly
oblique imaging angles where the ST calculation does not account for the increased fraction
of reflected or transmitted radiation [33, 40].

During the 08:00-12:00 EDT interval, urban surfaces had higher median ST values as com-
pared to green spaces. Furthermore, this time range had a greater ST range and increasingly
non-uniform temperature variations as compared to the 04:00-08:00 EDT interval. These
trends may be developed as the sunrise for nearby Hamilton, Ontario, Canada was 06:06
EDT on July 28, 2018 and 06:23 EDT on August 13, 2018.} Chudnovsky et al. [16] noted
that the minimal surface temperature values occurred immediately before sunrise. As a

result, with approximately only two hours of influent solar radiation, the 04:00-08:00 EDT

Thttps: //www.nre-cnre.ge.ca/eng/services /sunrise/index.html

37

interval should be cooler than the 08:00-12:00 EDT plot with four hours of increasingly
intense solar radiation.

Over the 12:00-16:00 EDT interval, the trend of increasing surface temperatures continue
with respect to the 08:00-12:00 EDT interval. The plot represents median ST for midday
and afternoon, which is commonly one of the intervals with the highest land surface temper-
atures. Highly urbanized surfaces, such as parking lots, especially in close proximity to the
TANAB2 launch site, had the highest median surface temperatures. Furthermore, campus
buildings generally had higher ST values as compared to their surroundings. This trend is
especially true for the Edmund C. Bovey Building, the Albert A. Thornbrough Building,
the Crop Science Building, the Fieldhouse, and the Athletic Centre. Johnston Green and
the residential area at the bottom right of the launch site, had cooler temperatures as com-
pared to the rest of the ST plot. Outside of these specific landmarks, the median surface
temperature distribution is rather uniform within the 290 K to 300 K range.

The urban surfaces of the University of Guelph campus had increased surface temperatures
as compared to the other areas in the 12:00-16:00 EDT interval. Specifically, areas to the
right of the TANAB2 launch site had the highest ST, including the Athletic Centre, the
Gryphon Centre Arena, the Crop Science Building, the Landscape Architecture Building,
and Rozanski Hall. The region to the far right and bottom right of Reek Walk also had higher
surface temperatures within the residential area. Urbanized areas with mixed green space
had generally uniform surface temperatures within the 290 K to 300 K range. Furthermore,
the far top left region of the plot had cooler surface temperatures as compared to other areas.
The Cutten Fields golf course and the University of Guelph North Residences, intermixed
with green spaces, are situated in the region.

The spatial pattern of ST where green spaces have lower ST compared to urbanized areas
has been reported in literature [108]. In nearby Hamilton, Ontario, Canada on July 28,
2018, the sunset occurred at 20:46 EDT and 20:26 EDT on July 28, 2018 and August 13,
2018, respectively. The 16:00-20:00 EDT interval was the last time range with continual
incoming solar radiation. The time period with the highest ST values varies by location.
Urban ST is known to be highly influenced by the height and width of buildings, street
orientation, building and street orientation, and the sky view factor of the location [2].
The time interval with the highest surface temperatures was calculated to be the 16:00-
20:00 EDT period. However Ahmed et al. [2| conducted a study which determined that
building roof temperatures achieved a maximum at noon and building wall and sidewalk

surface temperatures reached a maximum later in the afternoon. As a result, urban surface

38

temperature trends cannot be generalised.

The surface temperature values decrease between the 16:00-20:00 EDT and the 20:00-24:00
EDT intervals. Without incoming solar radiation, object surfaces have a net radiative loss
and ultimately possess lower surface temperatures values. The highest surface temperatures
occur at the bottom right and top right regions of the plot, in the residential area and
The Arboretum respectively. Additionally, the parking lots to the right of the TANAB2
launch, Johnston Hall, and McLaughlin library had higher temperatures as opposed to other
buildings and regions. The lowest ST values were located at the bottom left of the plot,
adjacent to the University of Guelph Equine Sport & Reproduction Center. However, surface
temperatures near the edges of this plot may be influenced by highly oblique images where
the fraction of reflected and transmitted radiation is higher than the values used in the ST
calculation.

Surface temperature plots were created at two spatial resolutions, 20m x 20m, and 50 m
x 50m. Although the 20 m spatial resolution figures provide more detail, the 50 m spatial
resolution plots may be more useful for analysis. Due to the nature of the image processing
method, pixels in the same vertical rows are selected for each image. In the event where
more images are recorded during a particular TANAB2 profile, surface temperatures from
the same region would be calculated. This process would result in concentric-like circles of
temperature gradients. In Figure 3.5, concentric-like surface temperature patterns appear for
all time periods. Conversely, the 50 m spatial resolution temperature plots do not have any
noticeable concentric temperature patterns. With a lower spatial resolution, the quantified
median temperature for each square is large enough to omit spatial temperature distribution
effects imposed from the image processing workflow.

The code used to separate the data into the five four-hour time intervals is included in
Section A.3.5 and the code used to calculate surface temperatures as a function of land

material type and to plot the surface temperature maps is included in Section A.3.6.

39

13,538 295
55 43536
%)
=,
v 43.534 290
g g
o 43.532 =
= I
E 43530 285 £
g g
Sy A

13526 280

—80.232 —80.230 —80.228 —80.226 —80.224 —80.222 —80.220 —80.218 —80.216 —80.232 —80.230 —80.228 —80.226 —80.224 —80.222 —80.220 —80.218 —80.216
Decimal Degrees [deg] Decimal Degrees [deg]
(a) 04:00-08:00 EDT (b) 08:00-12:00 EDT

300

290

I8 s
5105 310
g 305
300
205

200

—80.232 —80.230 —80.228 —80.226 —80.224 —80.222 —80.220 —80.218 —80.216 —80.232 —80.230 —80.228 —80.226 —80.224 —80.222 —80.220 —80.218 —80.216
Decimal Degrees [deg] Decimal Degrees [deg]

(c) 12:00-16:00 EDT (d) 16:00-20:00 EDT

290
285

280

—80.232 —80.230 —80.228 —80.226 —80.224 —80.222 —80.220 —80.218 —80.216
Decimal Degrees [deg]

(e) 20:00-24:00 EDT

Figure 3.5: Median surface temperatures over four-hour time intervals at 20m x 20m spa-
tial resolution, where the red dot represents the TANAB2 launch location (Reek Walk), the
black circle represents the Gryphon Centre Arena, the magenta circle represents the Uni-
versity Centre, the blue circle represents the Athletic Centre, the yellow circle represents
Varsity Field, the cyan circle represents Johnston Green, and the white circle represents the
Fieldhouse.

40

Decimal Degree:

43.538 295 .
55 43.536
%))
=
o 43.534 290
5]

[}

=

%))

do 43.532 43.532
=

= 43.530 285 43.530
2 .

j%

2 s 43.528

143.526 43.526

280

—80.232 —80.230 —80.228 —80.226 —80.224 —80.222 —80.220 —80.218 —80.216 —80.232 —80.230 —80.228 —80.226 —80.224 —80.222 —80.220 —80.218 —80.216
Decimal Degrees [deg] Decimal Degrees [deg]

(a) 04:00-08:00 EDT (b) 08:00-12:00 EDT
T K T [K
K K, .
L 310 '@‘43,536 310
=, =,
0 w2 43.534
z g 305
%D.m.ssz 300 gn
= = 300
£ w0 £ s
8 o 200 =3 295
18,526 18,526 200
—80.232 —80.230 —80.228 —80.226 —80.224 —80.222 —80.220 —80.218 —80.216 —80.232 —80.230 —80.228 —80.226 —80.224 —80.222 —80.220 —80.218 —80.216
Decimal Degrees [deg] Decimal Degrees [deg]
(¢) 12:00-16:00 EDT (d) 16:00-20:00 EDT

290

285

280

—80.232 —80.230 —80.228 —80.226 —80.224 —80.222 —80.220 —80.218 —80.216
Decimal Degrees [deg]

(e) 20:00-24:00 EDT

Figure 3.6: Median surface temperatures over four-hour time intervals at 50m x 50 m spa-
tial resolution, where the red dot represents the TANAB2 launch location (Reek Walk), the
black circle represents the Gryphon Centre Arena, the magenta circle represents the Uni-
versity Centre, the blue circle represents the Athletic Centre, the yellow circle represents
Varsity Field, the cyan circle represents Johnston Green, and the white circle represents the

Fieldhouse.

41

Chapter 4

Conclusion and Future Work

4.1 Conclusion

A novel, small Unmanned Aerial System (sUAS)-based and open-source thermal image pro-
cessing approach was developed to directly georeference and calculate Earth surface temper-
atures with a high spatiotemporal resolution. An uncooled thermal camera was launched
on a tethered balloon during May 2018 at a remote northern Canadian mining facility and
at the University of Guelph, Guelph, Ontario, Canada on July 28, 2018 and August 13,
2018. Based on the topography of the surrounding land, the camera’s Global Positioning
System (GPS) location, the balloon altitude, and the camera’s Pitch, Yaw, and Roll angles,
individual pixels within each image were directly georeferenced by assigning a calculated lon-
gitude and latitude to each respective pixel. The derived imaging workflow was developed

for images recorded with oblique angles relative to the land surface.

4.1.1 Georeferencing

The accuracy of the direct georeferencing method was indirectly evaluated through the com-
parison with an image from the MODerate resolution Imaging Spectroradiometer (MODIS).
However a similar direct georeferencing system using a Global Navigation Satellite System
(GNSS) module reported horizontal positioning errors of 1.06 m [70]. A direct comparison of
planimetric geographical pixel positioning could be completed with the images obtained from
the Guelph field campaign in relation to GPS coordinates of recognizable building footprints
from satellite images in a Geographic Information System (GIS) application. The Tethered
And Navigated Air Blimp 2 (TANAB2) vertical altitude accuracy however was quantified

42

to be 1.2m as calculated with the uncertainty of error equation. Aside from potential posi-
tioning errors, the direct georeferencing workflow is economically and conceptually efficient.
When recording images, Ground Control Points (GCPs) are not required as the geographical
positioning of the camera is used in conjunction with camera field of view, Pitch, Roll, and
Yaw parameters to calculate planimetric pixel position. The omission of GCPs from field
campaigns allows airborne imaging platforms to be deployed in environments where GCPs
cannot be placed such as industrial facilities, large waterbodies, and urban centres where

it is generally assumed to be unsafe, logistically challenging, or legally restrictive to deploy
GCPs.

4.1.2 Thermal Imaging

A radiometric calibration was completed for the DJI Zenmuse XT 19-mm camera for grass,
water, soil, and developed land surfaces in an outdoors field experiment at the University of
Guelph, Guelph, Ontario, Canada. Using a non-linear fitting library in Python, the camera
constants (B, R, O, and F) used in the surface temperature calculation of individual thermal
image pixels were optimised as a function of land surface material. These constants were
used to quantify surface temperatures from images collected from both the mining facility
and the University of Guelph field campaigns.

The calculated land surface temperatures from images recorded during the mining cam-
paign accurately represented the diurnal variation of surface temperature with a high degree
of spatiotemporal accuracy as compared to conventional remote sensing techniques including
satellites. A comparison between a MODIS satellite image and the results from the imaging
workflow yielded a bias of 0.5 K, a Root Mean Square Error (RMSE) of 5.45 K, and a median
absolute error of 0.64 K of surface temperatures surrounding the mining facility. A Principal
Component Analysis (PCA) was conducted for each four-hour time interval and the direction
with the highest surface temperature variation was determined to be north-west-south-east.
The PCA agrees well with the diurnal surface temperature maps and the MODIS image.

The quantified land surface temperatures from images recorded during the Guelph cam-
paign displayed temperature variations diurnally. Two sets of surface temperature plots at
20m x 20m and 50 m x 50 m spatial resolution were created for five four-hour time periods.
Based on the image processing workflow, the 50 m spatial resolution figures may be more
appropriate than the 20 m resolution plots as circles of concentric surface temperature vari-

ations are easily identifiable in plots with the higher spatial resolution. This issue could be

43

corrected by changing the image processing workflow or by recording more images for each
four-hour interval at a variety of altitudes, camera Pitch, and Yaw angles respectively.

The developed direct georeferencing thermal imaging method is able to quantify surface
temperatures at a high spatiotemporal resolution as compared to satellite-based remote
sensing alternatives. The use of an airborne platform enables operators to measure Earth
surface temperature over any time interval. Furthermore, the low level flight of the airborne
vector significantly increases the spatial resolution of the imaged Earth surface. Physical
capabilities of the thermal imaging camera limit the accuracy of the measured Earth surface
temperature such that calculated absolute temperature measurements may not be suitable
for applications where a high degree of accuracy is required. However, the calculated Earth
surface temperatures are suitable for representing relative surface temperatures. Nonetheless,
the derivation of the direct georeferencing equations are applicable to a wide range of remote

sensing cameras and will continue to be relevant as thermal imaging technology advances.

4.2 Future Work

Proper, direct validation of the direct georeferencing method should be quantified, espe-
cially if very high spatial resolution temperature data (below 10m) is desired. Quantitative
positional accuracy is also required if the workflow were to be used to process images and
calculate temperatures comparable to a legal standard. Similarly, methods to reduce the
RMSE of the surface temperature measurement should be studied and implemented to in-
crease surface temperature accuracy. Furthermore, the use of a very high resolution (less
than 10m) Digital Surface Model (DSM) or Digital Elevation Model (DEM) to quantify
terrain elevation above sea level for any camera Yaw degree would reduce georeferencing er-
rors in environments with highly variable surfaces (for example urban areas or mountainous
regions). The use of Unmanned Aerial System (UAS)-based Light Detection And Ranging
(LiDAR) could be equipped to the TANAB2 to develop very high resolution DSM files for
thermally imaged locations [38, 98, 99]|. To increase versatility of the imaging method, it
is recommended that images are acquired through the use of an airborne vehicle, such as
a drone. Deployment of the TANAB2 requires multiple personnel to control mooring ropes
that stabilise the balloon in strong wind conditions.

The developed imaging workflow could be applied to other Earth surfaces such as wa-
terbodies. Evaluation and mapping of thermal plume distribution in waterbodies, such as

lakes and rivers, especially in urban areas has been published in literature [13, 20, 53]. The

44

direct georeferencing method could be applied to other imaging systems such as hyperspec-
tral, multispectral, and Red Green Blue (RGB)-colour cameras. Hyperspectral cameras have
been used in remote sensing for a wide variety of applications including but not limited to
precision agriculture and for geological mapping of minerals [10, 39, 87|. Multispectral cam-
eras have been used heavily for precision agriculture and forestry applications |7, 14, 71].
RGB cameras have been used, along with multispectral cameras, to identify algal blooms in
waterbodies [103, 105]. The developed direct georeferencing method functions independently
of camera type. As a result, the detailed mathematical equations in this thesis are suitable

for numerous applications.

45

Bibliography

1]

2|

13l

4]

5]

6]

17l

8]

9]

ABER, J. S. Lighter-than-air platforms for small-format aerial photography. Transac-
tions of the Kansas Academy of Science 107, 1 (2004), 39-44.

AHMED, A. Q., OsseEN, D. R., JAMEI, E., MANAF, N. A., SAID, I., AND AHMAD,
M. H. Urban surface temperature behaviour and heat island effect in a tropical planned
city. Theor. Appl. Climatol. 119, 3-4 (2015), 493-514.

AKTURK, E., AND ALTUNEL, A. O. Accuracy assessment of a low-cost UAV derived

digital elevation model (DEM) in a highly broken and vegetated terrain. Measurement
136 (2019), 382-386.

Bau, M. K., GUNSHOR, M. M., AND SCHMIT, T. J. Generation of GOES-16 true
color imagery without a green band. Earth Space Sci. 5,9 (2018), 549-558.

BAKER, E. A., LauTz, L. K., MCKENZIE, J. M., AND AUBRY-WAKE, C. Improving

the accuracy of time-lapse thermal infrared imaging for hydrologic applications. J.
Hydrol. 571 (2019), 60-70.

BakurA, K., SALACH, A., WZIATEK, D. Z., OSTROWSKI, W., GORSKI, K., AND
KURCZYNSKI, Z. Evaluation of the accuracy of lidar data acquired using a UAS for
levee monitoring: preliminary results. Int. J. Remote Sens. 38, 8-10 (2017), 2921-2937.

BERNI, J. A., ZARCO-TEJADA, P. J., SUAREZ, L., AND FERERES, E. Thermal and
narrowband multispectral remote sensing for vegetation monitoring from an unmanned

aerial vehicle. IEEE T. Geosci. Remote 47, 3 (2009), 722-738.

BoraNakis, D. E., Kotsis, K. T., AND LAOPOULOS, T. Temperature influence on
differential barometric altitude measurements. In 2015 IEEE 8th International Con-
ference on Intelligent Data Acquisition and Advanced Computing Systems: Technology
and Applications (IDAACS) (Warsaw, Poland, Sep. 2015), vol. 1, pp. 120-124.

Boon, M. A., DRIJFHOUT, A. P., AND TESFAMICHAEL, S. Comparison of a fixed-

wing and multi-rotor UAV for environmental mapping applications: a case study. Int.
Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W6 (2017), 47-54.

46

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BOUBANGA-TOMBET, S., Huor, A., VITINS, I., HEUBERGER, S., VEUVE, C.,
E1sELE, A., HEWSON, R., GuvyoT, E., MARCOTTE, F., AND CHAMBERLAND, M.

Thermal infrared hyperspectral imaging for mineralogy mapping of a mine face. Remote
Sens-Basel 10, 10 (2018), 1518.

BRENNER, C., ZEEMAN, M., BERNHARDT, M., AND SCHULZ, K. Estimation of
evapotranspiration of temperate grassland based on high-resolution thermal and visible

range imagery from unmanned aerial systems. Int. J. Remote Sens. 39, 15-16 (2018),
5141-5174.

BubDzIiER, H., AND GERLACH, G. Calibration of uncooled thermal infrared cameras.
J. Sens. Sens. Syst. 4,1 (2015), 187-197.

CALDWELL, S. H., KELLEHER, C., BAKER, E. A., AND LAuTZ, L. K. Relative infor-
mation from thermal infrared imagery via unoccupied aerial vehicle informs simulations

and spatially-distributed assessments of stream temperature. Sci. Total Environ. 661
(2019), 364-374.

CANDIAGO, S., REMONDINO, F., DE GicLiO, M., DUBBINI, M., AND GATTELLI,

M. Evaluating multispectral images and vegetation indices for precision farming ap-
plications from UAV images. Remote Sens-Basel 7, 4 (2015), 4026-4047.

CHASTAIN, R., HOUSMAN, 1., GOLDSTEIN, J., FINCO, M., AND TENNESON, K.
Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and
Landsat-7 ETM-+ top of atmosphere spectral characteristics over the conterminous
United States. Remote Sens. Environ. 221 (2019), 274-285.

CHUDNOVSKY, A., BEN-DOR, E., AND SAARONI, H. Diurnal thermal behavior of

selected urban objects using remote sensing measurements. FEnerg. Buildings 36, 11
(2004), 1063-1074.

CINTINEO, R. M., OTKIN, J. A., JONES, T. A., KOCH, S., AND STENSRUD, D. J.
Assimilation of synthetic GOES-R ABI infrared brightness temperatures and WSR-
88D radar observations in a high-resolution OSSE. Mon. Weather Rev. 144, 9 (2016),
3159-3180.

COLOMINA, [.; AND MOLINA, P. Unmanned aerial systems for photogrammetry and
remote sensing: A review. ISPRS J. Photogramm. 92 (2014), 79-97.

CRrOssON, W. L., AL-HAMDAN, M. Z., HEMMINGS, S. N. J., AND WADE, G. M.
A daily merged MODIS Aqua-Terra land surface temperature data set for the conter-
minous United States. Remote Sens. Environ. 119, 8 (2012), 315-324.

DEMARIO, A., LOPEZ, P., PLEWKA, E., WiX, R., XIA, H., ZAMORA, E., GESSLER,
D., AND YALIN, A. P. Water plume temperature measurements by an Unmanned
Aerial System (UAS). Sensors-Basel 17, 2 (2017), 306.

47

[21]

[22]

23]

24]

[25]

[26]

[27]

28]

29]

[30]

[31]

[32]

DUFFY, J. P., AND ANDERSON, K. A 21st-century renaissance of kites as platforms
for proximal sensing. Prog. Phys. Geog. 40, 2 (2016), 352-361.

DUGDALE, S. J. A practitioner’s guide to thermal infrared remote sensing of rivers
and streams: recent advances, precautions and considerations. WIREs Water 3 (2016),
251-268.

EsTOQUE, R. C., AND MURAYAMA, Y. Classification and change detection of built-up
lands from landsat-7 etm-+ and landsat-8 oli/tirs imageries: a comparative assessment
of various spectral indices. Ecol. Indic. 56 (2015), 205-217.

EYNARD, D., VASSEUR, P., DEMONCEAUX, C., AND FREMONT, V. Real time UAV

altitude, attitude and motion estimation from hybrid stereovison. Auton. Robot. 33,
1-2 (2012), 157-172.

FaNG, L., ZHAN, X., HAIN, C. R., YIN, J., Liu, J., AND SCHULL, M. A. An
assessment of the impact of land thermal infrared observation on regional weather

forecasts using two different data assimilation approaches. Remote Sens-Basel 10, 4
(2018), 625.

FLIR-SYSTEMS. The ultimate infrared handbook for RED professionals. FLIR Sys-
tems, 2012.

GALLARDO-SAAVEDRA, S., HERNANDEZ-CALLEJO, L., AND DUQUE-PEREZ, O.
Technological review of the instrumentation used in aerial thermographic inspection
of photovoltaic plants. Renew. Sust. Energ. Rev. 93 (2018), 566-579.

GEMES, O., TOBAK, Z., AND VAN LEEUWEN, B. Satellite based analysis of surface
urban heat island intensity. J. Environ. Geogr. 9, 1-2 (2016), 23-30.

GrAy, P. C., RIDGE, J. T., PouLIN, S. K., SEYMOUR, A. C., SCHWANTES, A. M.,
SWENSON, J. J., AND JOHNSTON, D. W. Integrating drone imagery into high resolu-
tion satellite remote sensing assessments of estuarine environments. Remote Sens-Basel

10, 8 (2018), 1257.

Hais, M., AND KUCERA, T. The influence of topography on the forest surface tem-
perature retrieved from landsat TM, ETM-+ and ASTER thermal channels. ISPRS J.
Photogramm. 64, 6 (2009), 585-591.

HarDIN, P. J., LuLLA, V., JENSEN, R. R., AND JENSEN, J. R. Small unmanned
aerial systems (sUAS) for environmental remote sensing: challenges and opportunities

revisited. Gisci. Remote Sens. 56, 2 (2019), 309-322.

HIirANO, A., WELCH, R., AND LANG, H. Mapping from ASTER stereo image data:
DEM validation and accuracy assessment. ISPRS J. Photogramm. 57, 5-6 (2003),
356-370.

48

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

HopskiINSON, C., BARLOW, J., DEMUTH, M., AND POMEROY, J. Mapping changing
temperature patterns over a glacial moraine using oblique thermal imagery and lidar.

Can. J. Remote Sensing. 36, Suppl. 2 (2010), S257-S265.

HorrOCKS, L. A., CANDY, B., NIGHTINGALE, T. J., SAUNDERS, R. W.,
O’CARROLL, A., AND HARRIS, A. R. Parameterizations of the ocean skin effect
and implications for satellite-based measurement of sea-surface temperature. J. Geo-
phys. Res-Oceans 108, C3 (2003), 3096.

HorroN, T. W., OLINE, A., HAUSER, N., KHAN, T. M., LAUTE, A., STOLLER, A.,
TisoN, K., AND ZAWAR-REZA, P. Thermal imaging and biometrical thermography
of humpback whales. Front. Mar. Sci. 4 (2017), 424.

INAMDAR, A. K., FRENCH, A., HOOK, S., VAUGHAN, G., AND LUCKETT, W.

Land surface temperature retrieval at high spatial and temporal resolutions over the
southwestern United States. J. Geophys. Res-Atmos. 113, D7 (2008), 1-18.

IroNs, J. R., DWYER, J. L., AND BARSI, J. A. The next landsat satellite: the
landsat data continuity mission. Remote Sens. Environ. 122 (2012), 11-21.

JAAKKOLA, A., HyvypPA, J., KUKKO, A., YU, X., KAARTINEN, H., LEHTOMAKI,
M., AND LIN, Y. A low-cost multi-sensoral mobile mapping system and its feasibility
for tree measurements. ISPRS. J. Photogramm. 65, 6 (2010), 514-522.

JAKOB, S., ZIMMERMANN, R., AND GLOAGUEN, R. The need for accurate geo-
metric and radiometric corrections of drone-borne hyperspectral data for mineral ex-

ploration: MEPHySTo-a toolbox for pre-processing drone-borne hyperspectral data.
Remote Sens-Basel 9, 1 (2017), 88.

JAMES, M. R., ROBSON, S., PINKERTON, H., AND BALL, M. Oblique photogram-

metry with visible and thermal images of active lava flows. B. Volcanol. 69, 1 (2006),
105-108.

J1, L., AND BROWN, J. F. Effect of NOAA satellite orbital drift on AVHRR-derived
phenological metrics. Int. J. Appl. Earth Obs. 62 (2017), 215-223.

JOLLIFFE, 1. Principal component analysis, second edition. Springer-Verlag, New York,
2002.

KALEGAEV, V. V., AND VLASOVA, N. A. Some peculiarities of longitudinal distri-
bution of proton fluxes at high latitudes. Adv. Space Res. 48, 12 (2011), 2028-2035.

Kawal, Y., AND WADA, A. Diurnal sea surface temperature variation and its impact
on the atmosphere and ocean: a review. J. Oceanogr. 63, 5 (2007), 721-744.

49

[45] KAy, J. E., KamMpPF, S. K., HANDCOCK, R. N., CHERKAUER, K. A., GILLESPIE,

A. R., AND BURGES, S. J. Accuracy of lake and stream temperatures estimated from
thermal infrared images. J. Am. Water Resour. As. 41, 5 (2005), 1161-1175.

[46] KeELLY, J., KLJUN, N., OLSSON, P.-O., MiHAI, L., LILJEBLAD, B., WESLIEN, P.,
KLEMEDTSSON, L., AND EKLUNDH, L. Challenges and best practices for deriving

temperature data from an uncalibrated UAV thermal infrared camera. Remote Sens-
Basel 11, 5 (2019), 567.

[47] KLEMAS, V. Remote sensing of coastal plumes and ocean fronts: overview and case
study. J. Coastal Res. 28, 1 (2012), 1-7.

[48] KLEMAS, V. V. Coastal and environmental remote sensing from unmanned aerial
vehicles: An overview. J. Coastal Res. 31, 5 (2015), 1260-1267.

[49] KOLODOCHKA, A. A. Schemes of profile models of heat and mass transfer in large
lakes. Water Resour. 30, 1 (2003), 34-41.

[50] Ku, H. H. Notes on the use of propagation of error formulas. J. Res. Nat. Bur. Stand.
Sec. C: Eng. Inst. 70, 4 (1966), 263.

[51] KUMAR, A. Long term (2003-2012) spatio-temporal MODIS (Terra/Aqua level 3)
derived climatic variations of aerosol optical depth and cloud properties over a semi
arid urban tropical region of Northern India. Atmos. Environ. 83 (2014), 291-300.

[52] LAzARrO, J. R. G., Ruiz, J. A. M., AND ARBELO, M. Effect of spatial resolution
on the accuracy of satellite-based fire scar detection in the northwest of the Iberian
Peninsula. Int. J. Remote Sens. 34 (2013), 4736-4753.

[53] LEE, E., YOoON, H., HYUN, S. P., BURNETT, W. C., KOH, D.-C., HA, K., KiM,
D.-3., KiM, Y., AND KANG, K.-M. Unmanned aerial vehicles (UAVs)-based thermal
infrared (TIR) mapping, a novel approach to assess groundwater discharge into the
coastal zone. Limnol. Oceanogr.: Methods 14, 11 (2016), 725-735.

[54] L1, Z.-L., TanG, B.-H., Wu, H., REN, H., YaN, G., WAN, Z., TriGO, I. F.,
AND SOBRINO, J. A. Satellite-derived land surface temperature: Current status and
perspectives. Remote Sens. Environ. 131 (2013), 14-37.

[55] Lin, D., MaAs, H.-G., WESTFELD, P., BUDZIER, H., AND GERLACH, G. An ad-
vanced radiometric calibration approach for uncooled thermal cameras. Photogramm.
Rec. 83, 161 (2018), 30-48.

[56] Liu, L., L1, C., LE1, Y., YIN, J., AND ZHAO, J. Volcanic ash cloud detection from
MODIS image based on CPIWS method. Acta Geophys. 65, 1 (2017), 151-163.

50

[57]

[58]

[59]

|60]

[61]

[62]

[63]

|64]

|65]

[66]

[67]

[68]

MavLAMIRI, H. R. G., RousTA, 1., OLAFSSON, H., ZARE, H., AND ZHANG, H. Gap-
filling of MODIS time series Land Surface Temperature (LST) products using Singular

Spectrum Analysis (SSA). Atmosphere-Basel 9, 9 (2018), 334.

MALBETEAU, Y., PARKES, S., ARAGON, B., RosAs, J., AND McCABE, M. F.

Capturing the diurnal cycle of land surface temperature using an unmanned aerial
vehicle. Remote Sens-Basel 10, 9 (2018), 1407.

MATHEW, A., KHANDELWAL, S., AND KAUL, N. Analysis of diurnal surface tem-

perature variations for the assessment of surface urban heat island effect over indian
cities. Energ. Buildings 159 (2018), 271-295.

MILDREXLER, D. J., ZHAO, M., AND RUNNING, S. W. Satellite finds highest land
skin temperatures on Earth. B. Am. Meteorol. Soc. 92, 7 (2011), 855-860.

MOEN, R., PASTOR, J., AND COHEN, Y. Accuracy of GPS telemetry collar locations
with differential correction. J. Wildlife Manage. 61, 2 (1997), 530-539.

MOHAMED, A. A., ODINDI, J., AND MUTANGA, O. Land surface temperature
and emissivity estimation for urban heat island assessment using medium- and low-
resolution space-borne sensors: a review. Geocarto Int. 32, 4 (2017), 455-470.

MORADI, M., DYER, B., NAZEM, A., NAMBIAR, M. K., NAHIAN, M. R., BUENO,
B., MACKEY, C., VASANTHAKUMAR, S., NAZARIAN, N., KRAYENHOFF, E. S.
NORFORD, L. K., AND ALIABADI, A. A. The Vertical City Weather Generator
(VCWG v1.0.0). Geosci. Model Dev. Discuss. (2019).

MOUKOMLA, S.; AND BLANKEN, P. D. Remote sensing of the North American
Laurentian Great Lakes’ surface temperature. Remote Sens-Basel 8, 4 (2016), 286.

NaAMBIAR, M. K., BYERLAY, R., NAzZEM, A., NAHIAN, M. R., MORADI, M., AND
ALIABADI, A. A. A Tethered and Navigated Air Blimp (TANAB) for observing the
microclimate over a complex terrain. Geosci. Instrum. Method. Data Syst. Discuss.
(2019).

NEFESLIOGLU, H. A., SAN, B. T., GOKCEOGLU, C., AND DUMAN, T. Y. An
assessment on the use of Terra ASTER L3A data in landslide susceptibility mapping.
Int. J. Appl. Earth Obs. 14, 1 (2012), 40-60.

NEMMAOUI, A., AGUILAR, F. J., AGUILAR, M. A., AND QIN, R. DSM and DTM
generation from VHR satellite stereo imagery over plastic covered greenhouse areas.
Comput. Electron. Agr. 164 (2019), 104903.

NETELER, M. Estimating daily land surface temperatures in mountainous environ-
ments by reconstructed MODIS LST data. Remote Sens-Basel 2, 1 (2010), 333-351.

51

[69]

[70]

71

[72]

(73]

[74]

[75]

[76]

[77]

78]

[79]

[30]

OLBRYCHT, R., AND WIECEK, B. New approach to thermal drift correction in mi-
crobolometer thermal cameras. Quant. Infr. Therm. J. 12, 2 (2015), 184-195.

PADRO, J.-C., MuNoz, F.-J., PLANAS, J., AND PoNs, X. Comparison of four
UAV georeferencing methods for environmental monitoring purposes focusing on the

combined use with airborne and satellite remote sensing platforms. Int. J. Appl. Earth
Obs. 75 (2019), 130-140.

PAJARES, G. Overview and current status of remote sensing applications based on
unmanned aerial vehicles (UAVs). Photogramm. Eng. Rem. S. 81, 4 (2015), 281-330.

PATEL, N. R. Investigating relations between satellite derived land surface parameters
and meteorological variables. Geocarto Int. 21, 3 (2006), 47-53.

PuLITI, S., ORKA, H. O., GOBAKKEN, T., AND NASSET, E. Inventory of small forest
areas using an unmanned aerial system. Remote Sens-Basel 7, 8 (2015), 9632-9654.

RAHAGHI, A. 1., LEMMIN, U., SAGE, D., AND BARRY, D. A. Achieving high-
resolution thermal imagery in low-contrast lake surface waters by aerial remote sensing
and image registration. Remote Sens. Environ. 221 (2019), 773-783.

RanAMAN, K. R., HAssAN, Q. K., AND CHOWDHURY, E. H. Quantification of local
warming trend: a remote sensing-based approach. PLOS ONE 13, 5 (2018), e0196882.

RANKIN, A. M., AND WOLFF, E. W. Aerosol profiling using a tethered balloon in
coastal Antarctica. J. Atmos. Ocean. Tech. 19, 12 (2002), 1978-1985.

REICHLE, R. H., KUMAR, S. V., MAHANAMA, S. P. P., KOSTER, R. D., AND LIU,
Q. Assimilation of satellite-derived skin temperature observations into land surface
models. J. Hydrometeorol. 11 (2010), 1103-1122.

REINTSMA, K. M., McGowaN, P. C., CALLAHAN, C., COLLIER, T., GRAY, D.,
SULLIVAN, J. D., AND PROSSER, D. J. Preliminary evaluation of behavioral response
of nesting waterbirds to small unmanned aircraft flight. Waterbirds 41, 3 (2018), 326
331.

REN, L., CasTiLLO-EFFEN, M., YU, H., JOHNSON, E., YOON, Y., TAKUMA, N,
AND IppOLITO, C. A. Small unmanned aircraft system (sUAS) categorization frame-
work for low altitude traffic services. In 2017 IEEE/AIAA 36th Digital Avionics Sys-
tems Conference (DASC) (St. Petersburg, FL, USA, September 2017).

RIBEIRO-GOMES, K., HERNANDEZ-LOPEZ, D., ORTEGA, J. F., BALLESTEROS, R.,
POBLETE, T., AND MORENO, M. A. Uncooled thermal camera calibration and opti-

mization of the photogrammetry process for UAV applications in agriculture. Sensors-
Basel 17, 10 (2017), 2173.

52

[81]

[82]

[83]

[84]

[85]

[36]

[87]

38

[89]

[90]

[91]

[92]

SCHMIDT, J., EVANS, I. S., AND BRINKMANN, J. Comparison of polynomial models
for land surface curvature calculation. Int. J. Geogr. Inf. Sci. 17, 8 (2003), 797-814.

Scumit, T. J., GRIFFITH, P., GUNSHOR, M. M., DANIELS, J. M., GOODMAN,
S. J., AND LEBAIR, W. J. A closer look at the ABI on the GOES-R series. B. Am.
Meteorol. Soc. 98, 4 (2017), 681-698.

Scumit, T. J., GUNSHOR, M. M., MENZEL, W. P., GURKA, J. J., L1, J., AND
BACHMEIER, A. S. Introducing the next-generation advanced baseline imager on
GOES-R. B. Am. Meteorol. Soc. 86, 8 (2005), 1079-1096.

SHENG, H., CHAO, H., CoopPMANS, C., HAN, J., MCKEE, M., AND CHEN, Y. Low-
cost UAV-based thermal infrared remote sensing: platform, calibration and applica-
tions. In Proceedings of 2010 IEEE/ASME International Conference on Mechatronic
and Embedded Systems and Applications (Qingdao, China, 2010), pp. 38-43.

SMITH, G. M., AND MILTON, E. J. The use of the empirical line method to calibrate
remotely sensed data to reflectance. Int. J. Remote Sens. 20, 13 (1999), 2653-2662.

STOCKER, C., NEX, F., KOEVA, M., AND GERKE, M. Quality assessment of com-
bined IMU /GNSS data for direct georeferencing in the context of UAV-based mapping.
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W6 (2017), 355-361.

STUART, M. B., MCGONIGLE, A. J. S., AND WILLMOTT, J. R. Hyperspectral imag-
ing in environmental monitoring: a review of recent developments and technological
advances in compact field deployable systems. Sensors-Basel 19, 14 (2019), 3071.

STULL, R. B. Practical Meteorology: An Algebra-based Survey of Atmospheric Science.
Univ. of British Columbia, 2015.

TomriNsoON, C. J., CHAPMAN, L., THORNES, J. E., AND BAKER, C. Remote

sensing land surface temperature for meteorology and climatology: a review. Meteorol.
Appl. 18, 3 (2011), 296-306.

TORGERSEN, C. E., FAux, R. N., McInTosH, B. A., POAGE, N. J., AND NORTON,
D. J. Airborne thermal remote sensing for water temperature assessment in rivers and

streams. Remote Sens. Environ. 76, 3 (2001), 386-398.

TORRES-RUA, A. Vicarious calibration of sUAS microbolometer temperature imagery
for estimation of radiometric land surface temperature. Sensors-Basel 17, 7 (2017),
1499.

TURNER, D., LUCIEER, A., AND WALLACE, L. Direct georeferencing of ultrahigh-
resolution UAV imagery. IEEE T. Geosci. Remote 52, 5 (2014), 2738-2745.

53

93]

[94]

[95]

[96]

[97]

98]

[99]

[100]

[101]

[102]

103

104]

USAMENTIAGA, R., VENEGAS, P., GUEREDIAGA, J., VEGA, L., MOLLEDA, J.,
AND BULNES, F. G. Infrared thermography for temperature measurement and non-

destructive testing. Sensors-Basel 14, 7 (2014), 12305-12348.

VAN DER MEER, F. Near-infrared laboratory spectroscopy of mineral chemistry: a
review. Int. J. Appl. Earth Obs. 65 (2018), 71-78.

VERYKOKOU, S., AND IOANNIDIS, C. Oblique aerial images: a review focusing on
georeferencing procedures. Int. J. Remote Sens. 39, 11 (2018), 3452-3496.

VIERLING, L. A., FERSDAHL, M., CHEN, X., LI, Z., AND ZIMMERMAN, P. The
Short Wave Aerostat-Mounted Imager (SWAMI): A novel platform for acquiring re-
motely sensed data from a tethered balloon. Remote Sens. Environ. 103, 3 (2006),
255-264.

VON BUEREN, S. K., BURKART, A., HUENI, A., RASCHER, U., TUOHY, M. P.,

AND YULE, I. J. Deploying four optical UAV-based sensors over grassland: challenges
and limitations. Biogeosciences 12, 1 (2015), 163-175.

WALLACE, L., LUCIEER, A., WATSON, C., AND TURNER, D. Development of a
UAV-LiDAR system with application to forest inventory. Remote Sens-Basel 6, 4

(2012), 1519-1543.

WALLACE, L., LUCIEER, A., AND WATSON, C. S. Evaluating tree detection and
segmentation routines on very high resolution UAV LiDAR data. IEEE T. Geosci.
Remote. 52, 12 (2014), 7619-7628.

Wwana, K., WAN, Z., WANG, P., SPARROW, M., Liu, J., ZHOU, X., AND HAGI-
NOYA, S. Estimation of surface long wave radiation and broadband emissivity us-
ing Moderate Resolution Imaging Spectroradiometer (MODIS) land surface tempera-
ture/emissivity products. J. Geophys. Res-Atmos. 110, 11 (2005).

WANG, Y., Zou, Y., HENRICKSON, K., WANG, Y., TANG, J., AND PARK, B.-J.

Google Earth elevation data extraction and accuracy assessment for transportation
applications. PLoS ONE 12, 4 (2017), 1-17.

WHITEHEAD, K., HUGENHOLTZ, C. H., MYSHAK, S., BROWN, O., LECLAIR, A.,
AND TAMMINGA, A. Remote sensing of the environment with small unmanned aircraft

systems (UASs), part 2: scientific and commercial applications. J. Unmanned Veh.
Syst. 2, 3 (2014), 86-102.

Wu, D., L1, R., ZHANG, F., AND Liu, J. A review on drone-based harmful algae
blooms monitoring. Enviorn. Monit. Assess. (2019), 191-211.

XIONG, X., CAa0, C., AND CHANDER, G. An overview of sensor calibration inter-
comparison and applications. Front. Earth Sci. Chin. 4, 2 (2010), 237-252.

o4

[105] Xu, F., Gao, Z., JIANG, X., SHANG, W., NING, J., SONG, D., AND A1, J. A
UAV and S2A data-based estimation of the initial biomass of green algae in the South
Yellow Sea. Mar. Pollut. Bull. 128 (2018), 408-414.

[106] ZAKSEK, K., AND OSTIR, K. Downscaling land surface temperature for urban heat
island diurnal cycle analysis. Remote Sens. Environ. 117 (2012), 114-124.

[107] ZE1sE, B., KLEINSCHMIDT, S. P., AND WAGNER, B. Improving the interpretation
of thermal images with the aid of emissivity’s angular dependency. In 2015 IEEFE
International Symposium on Safety, Security and Rescue Robotics (SSRR) (2015),
pp- 1-8.

[108] ZHANG, X., ZHONG, T., FENG, X., AND WANG, K. Estimation of the relationship

between vegetation patches and urban land surface temperature with remote sensing.
Int. J. Remote Sens. 30, 8 (2009), 2105-2118.

[109] ZHANG, X. H., Guo, F., AND L1, X. X. A novel Stop&Go GPS precise point posi-
tioning (PPP) method and its application in geophysical exploration and prospecting.
Surv. Rev. 44, 327 (2012), 251-255.

95

Appendix A

Source Code

A.1 Thermal Camera Calibration

Accurate as of October 11, 2019
Code to optimize R, B, O, and F used in the ST calculation as a function of surface

material

import pandas as pd
from pylab import x*
import numpy as np
from lmfit import Minimizer, Parameters, report fit

Reads data from CSV file

This is the signal value of the pixel, back—calculated by substituting in the manufacturer
calculated

R, B, O, and F values as well as the temperature value retreived from FLIR Tools

Upixel data = ’/export/home/users/username/Documents/DG_Temp/Calibration/’ \

)

’Experiment Data/Upixel.csv

This is the certified thermometer data
cert therm data = ’/export/home/users/username/Documents/DG Temp/Calibration/’ \

’Exoeriment _Data/CertifiedTemperature.csv’

Import CSV data into Pandas dataframe

Upixel = pd.read csv(Upixel data)

Separate signal value columns for each surface material type

Upixel grass = (Upixel.values.astype(float64)[:,0])
Upixel soil = (Upixel.values.astype(float64)[:,1])
Upixel concrete = (Upixel.values.astype(float64)[:,2])
Upixel water = (Upixel.values.astype(float64)[:,3])

Slice Upixel water array to remove N an values. Nan values cannot be present when using

the lmfit library.

56

Water temperature data was not collected for each time interval , Nan values cannot be
present when using the lmfit library
Upixel _water = Upixel water [0:7]

Call in the certified thermometer temperature data

cert therm = pd.read csv(cert therm data)

Separate certified temperature columns for each surface material type

cert therm grass = (cert therm.values.astype(float64)[:,0])
cert therm soil = (cert therm.values.astype(float64)[:,1])

cert therm concrete = (cert therm.values.astype(float64)][:,2])
cert therm water = (cert therm.values.astype(float64)][:,3])

Slice thermometer water array. Nan values cannot be present when using the Imfit library.
Water temperature data was not collected for each time interval

cert _therm water = cert_therm water[0:7]

Create arrays for the signal value and certified temperature for each land surface
material .

Can onlt calibrate one surface material at a time.

For Grass

Upixel counts = np.array(Upixel grass, dtype=float64)

cert _temp = np.array (cert therm grass, dtype=float64)

For Soil
Upixel counts = np.array(Upixel soil, dtype=float64)
cert _temp = np.array(cert therm soil, dtype=float64)

For Concrete

Upixel counts = np.array(Upixel concrete, dtype=float64)
cert temp = np.array(cert therm concrete, dtype=float64)
For Water

Upixel counts = np.array(Upixel water, dtype=float64)

cert _temp = np.array(cert therm water, dtype=float64)

Define objective function, return the array to be minimised
def fcn2min (params, Upixel counts, cert temp):

= params| 'B’|
= params| 'R’ |

= params| 'O’

SR GR=v e

params | 'F’|
model = B / np.log(R / (Upixel counts + O) + F)

return model — cert_temp

Create a set of Parameters (R, B, O, and F) with the manufacturer value and maximum/
minimum values

params = Parameters ()

57

Declare manufacturer constant values and set maximum/minimum possible constant values
params.add(’B’, value=1428, min=714, max=2142)

params.add (’R’, value=366545, min=183272, max=549817)

params.add (’0’, value=-342, min=-513, max=-—171)

params.add (’F’, value=1, min=0.5, max=1.5)

Use the least squares model and fit the curve to the imported data
minner = Minimizer (fcn2min, params, fcn args=(Upixel counts, cert temp))

result = minner.minimize ()

Calculate the final result

final = cert temp + result.residual

Print Fit Statistics, Variables (R, B, O, and F) and Correlations
report fit(result)

Try to plot the non linear fit

try:
import matplotlib.pyplot as plt

plt.plot (Upixel counts, cert temp, ’k+’)
plt.plot (Upixel counts, final, ’ro’)
plt .show ()
except ImportError:
pass

A.1.1 Thermal Camera Calibration Plots

import numpy
from matplotlib import pyplot as plt

File with certified temperature
certified temperature file = ’/export/home/users/username/Documents/DG Temp/’ \

>Calibration /Experiment Data/CertifiedTemperature.csv’
File with corresponding Upixel (raw signal) values
Upixel values file = ’/export/home/users/username/Documents/’ \

'DG_Temp/ Calibration /Experiment Data/Upixel.csv’

Import certified temperature data

certified temperature data = numpy.genfromtxt(certified temperature file,delimiter=",")

Separate Columns

cert grass_ temp = certified temperature data[:,0]
cert _soil temp = certified temperature data[:,1]
cert concrete temp = certified temperature data[:,2]
cert_water temp = certified temperature_data[:,3]

Import image Upixel (raw signal) data

Upixel values data = numpy.genfromtxt(Upixel values file, delimiter=",")

Separate Columns

Upixel values grass Upixel values data[:,0]
Upixel values soil = Upixel values data[:,1]
Upixel values concrete = Upixel values data|[:,2]

Upixel values water Upixel values data|[:,3]

Remove Nan data

Upixel values water = Upixel values water[0:8]

State original FLIR factory Planck constants, from image metadata
R1_ flir = 17096.453

R2 flir = 0.046642166

B flir = 1428

O flir =-342

F_flir =1

R_flir = R1_flir/R2 _flir

Back—calculate Temperature From Upixel values

]

Initialize Arrays

backcalc grass temp = numpy.zeros ((len(Upixel values grass)))

backcalc _soil temp = numpy.zeros ((len(Upixel values soil)))
backcalc concrete temp = numpy.zeros ((len(Upixel values concrete)))
backcalc _water temp = numpy.zeros ((len(Upixel values water)))

Back—calculate image pixel temperature based on Upixel data and Factory set FLIR Constants
for i in range(0, len(Upixel values grass)):
backcalc grass temp[i] = B_flir /(numpy.log(R1_flir /(R2 flir+(Upixel values grass|[i]+
O _flir))+F _flir))
backcalc _soil temp|[i] = B_flir /(numpy.log(R1 _ flir /(R2 flirx(Upixel values soil[i]+O _flir
))+F _flir))
backcalc concrete temp|[i]
|+ O _flir))+F _flir))

B _flir /(numpy.log (R1_flir /(R2_flir*(Upixel values concrete|i

for i in range(0, len(backcalc water temp)):
backcalc _water temp|[i| = B_flir / (numpy.log(R1_ flir / (R2_ flir = (Upixel values water|[i
| + O _flir)) + F_flir))

Calculate Error, Square Error, Percentage Error, Bias, RMSE, and average percentage error
between certified temperature and back—calculated temperature
Initialize arrays

Back—calculate Grass

backcalc grass error = numpy.zeros ((len(Upixel values grass)))
backcalc grass sq_error = numpy.zeros ((len(Upixel values grass)))
backcalc grass PE = numpy.zeros ((len(Upixel values grass)))

Back—calculate Soil

backcalc soil error

numpy . zeros ((len (Upixel values soil)))

59

backcalc soil sq error = numpy.zeros ((len(Upixel values soil)))

backcalc soil PE = numpy.zeros ((len(Upixel values soil)))

Back—calculate Concrete

backcalc concrete error = numpy.zeros ((len(Upixel values concrete)))
backcalc concrete sq error = numpy.zeros ((len(Upixel values concrete)))
backcalc concrete PE = numpy.zeros ((len(Upixel values concrete)))

Back—calculate Water
backcalc _water error = numpy.zeros ((len(Upixel values water)))
en

backcalec water sq _error = numpy. zeros (((Upixel values water)))

backcalc_water PE = numpy.zeros ((len(Upixel values water)))

Calculate error in back—calculated temperatures
for

i in range(0, len(Upixel values grass)):

backcalc grass error|[i]| = backcalc grass temp|[i]—cert grass temp]|i]
backcalc soil error[i] = backcalc soil temp|[i]—cert soil temp][i]
backcalc concrete error|[i]| = backcalc concrete temp|[i]—cert concrete temp]i]

for i in range(0, len(backcalc water temp)):

backcalc water error[i] = backcalc water temp|[i]—cert water temp]i]

Calculate Temperature Bias for each material

backcalc grass bias = numpy.average(backcalc grass error)
backcalc soil bias = numpy.average(backcalc soil error)
backcalc concrete bias = numpy.average(backcalc concrete error)
backcalc _water bias = numpy.average (backcalc water error)

Calculate Square Error

for i in range(0, len(Upixel values grass)):

backcalc grass sq_error[i] = backcalc grass error[i]xx2
backcalc soil sq_ error[i] = backcalc soil error[i]*x2
backcalc concrete sq_error[i] = backcalc concrete error|[i]**2

for i in range(0, len(backcalc water temp)):

backcalc _water sq_error[i]| = backcalc water error|[i]**2

Calculate RMSE

backcalc grass RMSE = numpy.sqrt (numpy.average (backcalc grass sq_error))
backcalc soil RMSE = numpy.sqrt (numpy.average (backcalc soil sq error))

backcalc concrete RMSE = numpy.sqrt (numpy.average (backcalc concrete sq_error))

backcalc _water RMSE = numpy.sqrt (numpy. average (backcalc water sq_error))

Calculate Percentage Error (PE)
for i in range(0, len(Upixel values grass)):
backcalc grass PE[i] = numpy.abs((cert grass temp|[i]—backcalc grass temp[i])/
cert grass temp|[i]) =100

backcalc _soil PE[i] = numpy.abs((cert soil temp[i]—backcalc soil temp[i])/cert soil temp
[i])*100
backcalc concrete PE[i] = numpy.abs((cert concrete temp|[i]—backcalc concrete temp|[i])/

cert concrete temp|[i])=*100

60

for i in range(0, len(backcalc water temp)):
backcalc _water PE[i]| = numpy.abs((cert water temp|[i]—backcalc water temp[i])/

cert _water temp|[i])=*100

Calculate Average Percentage Error

backcalc grass average PE = numpy.average(backcalc grass PE)
backcalc soil average PE = numpy.average (backcalc soil PE)
backcalc concrete average PE = numpy.average (backcalc concrete PE)

backcalc _water average PE = numpy.average (backcalc water PE)

4

LMFIT (using the lmfit library) Planck Constants and Temperature back—calculate
Grass

R_Imfit grass = 314531

B_Imfit_grass = 1391

—-513

F_lmfit grass = 1.5

O _Imfit _grass

Soil

R Imfit soil = 549800
B Imfit soil = 1510
O Imfit soil = —171
F_Imfit soil = 1.5

Concrete

R Imfit concrete = 247614
B_Imfit concrete = 1322
—513

F_lmfit concrete = 1.5

O _lmfit_concrete

Water

R_Imfit _water = 549789
B Imfit water = 1507
O Imfit water = —171
F_ Imfit water = 1.5

Back—calculate temperature given new constants and Upixel values
Initialize arrays

Grass

lmfit grass temp = numpy.zeros ((len(Upixel values grass)))

Imfit grass error = numpy.zeros ((len(Upixel values grass)))
Imfit grass sq_error = numpy.zeros ((len(Upixel values grass)))
Soil

Imfit soil temp = numpy.zeros ((len(Upixel values soil)))
Imfit soil error = numpy.zeros ((len(Upixel values soil)))
Imfit soil sq error = numpy.zeros ((len(Upixel values soil)))

Concrete

Imfit concrete temp = numpy.zeros ((len(Upixel values concrete)))

61

Imfit concrete error = numpy.zeros ((len(Upixel values concrete)))

Imfit concrete sq_error = numpy.zeros ((len(Upixel values concrete)))
Water

Imfit water temp = numpy.zeros ((len(Upixel values water)))

Imfit water error = numpy.zeros ((len(Upixel values water)))

Imfit water sq error = numpy.zeros ((len(Upixel values water)))

Back—calculate temperature accordingly
for i in range(0, len(Upixel values grass)):
Imfit grass temp[i] = B_lmfit grass / (numpy.log (R _Ilmfit grass / (Upixel values grass|[i]
+ O_Imfit grass) + F_lmfit_ grass))

Imfit soil temp[i] = B_lmfit soil / (numpy.log(R _ Imfit soil / (Upixel values soil[i] +
O _Imfit_soil) + F_lmfit_ soil))
Imfit concrete temp[i] = B _Imfit concrete / (numpy.log(R_lmfit concrete / (

Upixel values concrete[i] + O _lmfit concrete) + F_ Ilmfit concrete))

for i in range(0, len(backcalc water temp)):
Imfit water temp[i] = B_Imfit water / (numpy.log (R _lmfit water / (Upixel values water|[i]
+ O _ Imfit water) + F_Imfit water))

Calculate error, Square Error, bias and RMSE for back—calculated LMFIT temperature

Initialize arrays

R S

LMFIT error

for i in range(0, len(Upixel values grass)):
Imfit grass error[i] = lmfit grass temp[i] — cert grass temp]i]
Imfit soil error[i] = lmfit soil temp[i] — cert soil temp|i]
Imfit concrete error|[i] = lmfit concrete temp|[i] — cert concrete temp|[i]

for i in range(0, len(backcalc water temp)):

Imfit water error[i] = lmfit water temp|[i] — cert water temp][i]

Bias calculation

Imfit grass bias = numpy.average (lmfit grass error)

Imfit soil bias = numpy.average (lmfit soil error)

Imfit concrete bias = numpy.average (lmfit concrete error)
Imfit water bias = numpy.average (lmfit water error)

LMFIT square error
for i in range(0, len(Upixel values grass)):

Imfit grass sq_error|[i] = lmfit grass error[i]|*=2
Imfit soil sq_error[i] = Imfit soil error[i]**2
Imfit concrete sq_error[i| = lmfit concrete error[i]*%2

for i in range(0, len(backcalc water temp)):

Imfit water sq_error[i] = lmfit water error[i]xx2

Calculate RMSE

Imfit grass rmse = numpy.sqrt(numpy.average (lmfit grass sq error))

Imfit soil rmse = numpy.sqrt(numpy.average(lmfit soil sq_error))

Imfit concrete rmse = numpy.sqrt (numpy.average (lmfit concrete sq_error))
Imfit water rmse = numpy.sqrt (numpy.average (lmfit water sq_error))

62

Plot Upixel vs certified temperature for Grass, soil, concrete, and water considering the
calibration

experiment , the calibrated camera parameters, and the default camera parameters

fig direct = ’/export/home/users/username/Documents/DG_Temp/’ \

"Calibration /Calibrated Figures/’

Grass

plt.figure ()

Calibration experiment

plt.scatter (Upixel values grass, cert grass temp, c='k’, marker="+")

Default Camera Parameters

plt.scatter (Upixel values grass, backcalc grass temp, c=’g’, marker=’d’)

Caibrated camera parameters

plt.scatter (Upixel values grass, lmfit grass temp, c='r’, marker=’x")

plt.xlabel(’Uobject_[A/D_Counts]|’)

plt.ylabel (’Certified _Temperature_[K] ")

plt.legend (["Calibration_Experiment’, ’'Default_Camera_Parameters’, ’Calibrated_Camera_
Parameters’|)

plt.savefig(fig direct+’GrassCalibration.png’)

plt .show ()

Soil

plt.figure ()

Calibration experiment

plt.scatter (Upixel values soil, cert soil temp, c='k’, marker="+")

Default Camera Parameters

plt.scatter (Upixel values soil, backcalc soil temp, c=’g’, marker=’d’)

Caibrated camera parameters

plt.scatter (Upixel values soil, lmfit soil temp, c='r’, marker="x")

plt.xlabel(’Uobject_[A/D_Counts]’)

plt.ylabel(’Certified _Temperature_[K]|)

plt.legend ([*Calibration_Experiment’, ’'Default_Camera_Parameters’, ’Calibrated_Camera_
Parameters’|)

plt.savefig(fig direct+’SoilCalibration.png’)

plt .show ()

Concrete/Developed land

plt.figure ()

Calibration experiment

plt.scatter (Upixel values concrete, cert concrete temp, c='k’, marker="+")

Default Camera Parameters

plt.scatter (Upixel values concrete, backcalc concrete temp, c=’g’, marker='d’)

Caibrated camera parameters

plt.scatter (Upixel values concrete, lmfit concrete temp, c=’r’, marker="%")

plt.xlabel(’Uobject_[A/D_Counts]’)

plt.ylabel(’Certified _Temperature_[K]|)

plt.legend ([*Calibration_Experiment’, ’'Default_Camera_Parameters’, ’Calibrated_Camera_
Parameters’|)

plt.savefig(fig direct+’DevelopedLandCalibration.png’)

63

plt .show ()

Remove Nan water data

cert _water temp = cert water temp[0:8]

Water

plt . figure ()

Calibration experiment

plt.scatter (Upixel values water, cert water temp, c='k’, marker="+")

Default Camera Parameters

plt.scatter (Upixel values water, backcalc water temp, c=’g’, marker='d’)

Caibrated camera parameters

plt.scatter (Upixel values water, lmfit water temp, c=’r’, marker=’x")

plt.xlabel(’Uobject_[A/D_Counts]’)

plt.ylabel(’Certified _Temperature_[K])

plt.legend ([*Calibration_Experiment’, ’'Default_Camera_Parameters’, ’Calibrated_Camera_
Parameters’])

plt.savefig(fig direct+’WaterCalibration.png’)

plt.show ()

A.2 Mining Site Campaign

A.2.1 TriSonica Atmospheric Pressure to Altitude

Code to load in Trisonica data, concatenate data for entire May 2018 campaign, and
calculate 1 second averaged data

Current as of October 16, 2019

import sys

import numpy

import datetime

import matplotlib.dates as dates

from datetime import date

Call in Trisonica data for each day after completing preliminary

processing (using excel/libre office Calc to remove colon/character

delimiters and remove Nan data etc. such that data can easily

be post processed in Python)

The TriSonica data has been pre—processed before being loaded into this script. Indices of

ascending and

descending TANAB2 launches have been identifed from another script and were used to
create a file wused in

this script identifying the ground level Pressure (Altitude) at the start of each TANAB2
profile

May 7/2018
Call in all Pressure Data including year, month, hour, minute, seconds
fileName MFT = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/ TriSonica
/Unaveraged/’ \
’Cleaned Files/Individual Files/2018—05—07—Data.txt’

64

data_ MFT = numpy. genfromtxt (fileName MFT, skip header=5, invalid raise=False,

)
)

usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’

filling values=numpy.nan)

Separate columns

year MFT = data_ MFT|[:,0]
month MFT = data MFT[: ,1]
day MFT = data MFT[: ,2]

hour MFT = data_ MFT|: , 3]
minute MFT = data MFT|[: ,4]
seconds MFT = data_ MFT|[: ,5]
temp MFT = data_ MFT|[:,6]

P MFT — data MFT]: 7]

4 May 9/2018
fileName 09 05 2018 = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned Files/Individual Files/2018—05—09—Data.txt’

data 09 05 2018 = numpy.genfromtxt (fileName 09 05 2018, skip header=5, invalid raise=False,
usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’’,

filling values=numpy.nan)

Separate columns

year 09 05 2018 = data_09 05 2018]:,0]
month 09 05 2018 = data_09 05 2018[: 1]
day 09 05 2018 = data 09 05 2018[: 2]
hour 09 05 2018 = data_09 05 2018]:,3]
minute 09 05 2018 = data 09 05 2018[: ,4]
seconds 09 05 2018 = data 09 05 2018[:,5]
temp 09 05 2018 = data 09 05 2018(:,6]

P 09 05 2018 — data 09 05 2018[:,7]

May 10/2018
fileName 10 05 2018 = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned Files/Individual Files/2018—05—10—Data.txt’

data 10 05 2018 = numpy.genfromtxt (fileName 10 05 2018, skip header=5, invalid raise=False,
usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’’,

filling values=numpy.nan)

Separate columns

year 10 _05_ 2018 = data_10_05_2018[:,0]
month 10 05 2018 = data_10_ 05 2018[:,1]
day_10_05_ 2018 = data_10_05_ 2018[: ,2]
hour_10_05_2018 = data_10_05_2018][: ,3]
minute 10 05 2018 = data_10_05_ 2018[: ,4]
seconds_10_05_2018 = data_10_05_2018[: ,5]
temp 10 05 2018 = data 10 05 2018[:,6]

P 10 05 2018 = data_10_ 05 2018[:,7]

65

May 15/2018
fileName 15 05 2018 = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned Files/Individual Files/2018—05—15—Data.txt’

data 15 05 2018 = numpy.genfromtxt (fileName 15 05 2018, skip header=5, invalid raise=False,
usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’’,

filling values=numpy.nan)

Separate columns

year 15 05 2018 = data_15_05_2018[:,0]
month 15 05 2018 = data_15 05 2018[:,1]
day 15 05 2018 = data_15_ 05 2018]: 2]
hour_15_05_2018 = data_15_05_2018][: ,3]
minute 15 05 2018 = data_15_ 05 2018[: ,4]
seconds_15_05_2018 = data_15_05_2018[: ,5]
temp 15 05 2018 = data 15 05 2018[:,6]

P 15 05 2018 = data_15 05 2018[:,7]

May 18/2018
fileName 18 05 2018 = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned Files/Individual Files/2018—05—18—Data.txt’

data 18 05 2018 = numpy.genfromtxt (fileName 18 05 2018, skip header=5, invalid raise=False,

usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’"",
filling values=numpy.nan)

Separate columns

year_18 05_2018 = data_18_05_2018[:,0]
month 18 05 2018 = data 18 05 2018[:,1]
day 18 05 2018 = data_ 18 05 2018]: 2]
hour_18_05_2018 = data_18_05_2018][: ,3]
minute 18 05 2018 = data_ 18 05 2018[: ,4]
seconds 18 05 2018 = data_ 18 05 2018[:,5]
temp 18 05 2018 = data_ 18 05 2018(:,6]
P_18 05 2018 = data_18 05 2018[:,7]

May 19/2018
fileName 19 05 2018 = ’/export/home/users/username/Documents/DG Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned Files/Individual Files/2018—05—19—Data. txt’

data_19 05 2018 = numpy.genfromtxt (fileName 19 05 2018, skip header=5, invalid raise=False,

usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’",

filling values=numpy.nan)

Separate columns

year_19_05_2018 = data_19_05_2018[:,0]
month 19 05 2018 = data 19 05 2018(:,1]
day 19 05 2018 = data_ 19 05 2018[:,2]

66

hour_19_05_2018 = data_19_05_2018][: ,3]
minute 19 05 2018 = data_ 19 05 2018[: ,4]
seconds 19 05 2018 = data_ 19 05 2018[:,5]
temp 19 05 2018 = data_ 19 05 2018(:,6]
P_19 05 2018 = data_19 05 2018[:,7]

May 21/2018
fileName 21 05 2018 = ’/export/home/users/username/Documents/DG Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned Files/Individual Files/TriSonica/2018—05—21—Data. txt’

data_21 05 2018 = numpy.genfromtxt (fileName 21 05 2018, skip header=5, invalid raise=False,

usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’",

filling values=numpy.nan)

Separate columns

year_21_05_2018 = data_21_05_2018[:,0]
month 21 05 2018 = data_21 05 2018[: 1]
day 21 05 2018 = data_ 21 05 2018[: ,2]
hour 21 05 2018 = data_ 21 05 2018]:,3]
minute 21 05 2018 = data 21 05 2018[: ,4]
seconds 21 05 2018 = data 21 05 2018[:,5]
temp 21 05 2018 = data 21 05 2018]:,6]
P_21 05 2018 = data_21 05 2018[:,7]

May 23/2018
fileName 23 05 2018 = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned _Files/Individual Files/2018—05—23—Data. txt’

data_23_05_2018 = numpy.genfromtxt (fileName_ 23 05 2018, skip_ header=5, invalid _raise=False,

usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’",

filling values=numpy.nan)

Separate columns

year 23 05 2018 = data_ 23 05 2018([:,0]
month 23 05 2018 = data_ 23 05 2018(:,1]
day 23 05 2018 = data 23 05 2018[: ,2]
hour 23 05 2018 = data_23 05 2018[: ,3]
minute_23 05 2018 = data_23 05 2018[: 4]
seconds 23 05 2018 = data_23 05 2018[:,5]
temp 23 05 2018 = data 23 05 2018[: ,6]

P 23 05 2018 = data_ 23 05 2018]:,7]

May 24/2018
fileName 24 05 2018 = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned _Files/Individual Files/2018—05—24—Data. txt’

data_24 05_2018 = numpy.genfromtxt (fileName_24 05_2018, skip_header=5, invalid _raise=False,

usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’",

filling values=numpy.nan)

67

Separate columns

year 24 05 2018 = data_ 24 05 2018(:,0]
month 24 05 2018 = data 24 05 2018(:,1]
day 24 05 2018 — data 24 05 2018[:,2]
hour 24 05 2018 — data_24 05 2018[: ,3]
minute_24 05 2018 = data_24 05 2018[: 4]
seconds 24 05 2018 = data_24 05 2018[:,5]
temp 24 05 2018 = data 24 05 2018[: ,6]

P 24 05 2018 = data_ 24 05 2018[:,7]

May 27/2018
fileName 27 05 2018 = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned Files/Individual Files/TriSonica/2018—05—27—Data. txt’

data_27_05_2018 = numpy. genfromtxt (fileName_27_ 05_2018, skip_header=5, invalid _raise=False,
usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’",

filling values=numpy.nan)

Separate columns

year 27 05 2018 = data 27 05 2018([:,0]
month 27 05 2018 = data 27 05 2018[:,1]
day 27 05 2018 = data_27_05_2018][: ,2]
hour 27 05 2018 = data_27 05 2018[: ,3]
minute 27 05 2018 = data_ 27 05 2018[: 4]
seconds 27 05 2018 = data_27 05 2018[:,5]
temp 27 05 2018 = data 27 05 2018[: ,6]

P 27 05 2018 = data 27 05 2018[:,7]

May 30/2018
fileName 30 05 2018 = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned _Files/Individual _Files/2018—05—30—Data. txt’

data 30 05 2018 = numpy.genfromtxt (fileName 30 05 2018, skip header=5, invalid raise=False,
usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’",

filling values=numpy.nan)

Separate columns

year 30 05 2018 = data 30 05 2018][:,0]
month_30_ 05 2018 = data_30 05 2018[: 1]
day 30 05 2018 — data 30 05 2018[: ,2]
hour 30 05 2018 = data 30 05 2018][: ,3]
minute 30 05 2018 = data_ 30 05 2018[: ,4]
seconds 30 05 2018 = data 30 05 2018[:,5]
temp 30 05 2018 = data_ 30_05 2018([:,6]

P 30 05 2018 = data 30 05 2018[:,7]

May 31/2018

fileName 31 05 2018 = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \

68

’Cleaned _Files/Individual _Files/2018—05—31—Data. txt’

data_31_05_2018

numpy . genfromtxt (fileName 31 05 2018, skip header=5, invalid raise=False,

usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’’

)

filling values=numpy.nan)

Separate columns

year 31 05 2018 = data 31 05 2018][:,0]
month_31_05_ 2018 = data_31_ 05 2018[:,1]
day 31 05 2018 — data_ 31 05 2018]:,2]
hour 31 05 2018 = data_31 05 2018]:,3]
minute_31_05_ 2018 = data_31 05 2018[: 4]
seconds_31_05_ 2018 = data_31_ 05 _2018[:,5]
temp 31 05 2018 = data_ 31 05 2018([:,6]
P_31_05 2018 = data_31_05_2018[:,7]

Concatenate columns together
year = numpy.concatenate ([year MFT, year 09 05 2018, year 10 05 2018, year 15 05 2018,
year 18 05 2018,
year 19 05 2018, year 21 05 2018, year 23 05 2018, year 24 05 2018
year 27 05 2018, year 30 05 2018, year 31 05 2018])
month = numpy.concatenate ([month MFT, month 09 05 2018, month 10 05 2018, month 15 05 2018,
month 18 05 2018,
month 19 05 2018, month 21 05 2018, month 23 05 2018,
month 24 05 2018,
month 27 05 2018, month 30 05 2018, month 31 05 2018])
day = numpy.concatenate ([day MFT, day 09 05 2018, day 10 05 2018, day 15 05 2018,
day 18 05_2018,
day 19 05_2018, day_ 21_05_2018, day 23_05_2018, day_ 24 05_ 2018,
day 27 _05_2018,
day 30_05_2018, day_31_05_2018])
hour = numpy.concatenate ([hour_ MFT, hour_09_05_2018, hour_10_05_2018, hour_15_05_2018,
hour_18_05_2018,
hour_19_05_2018, hour_21_05_2018, hour_23_05_2018, hour_24_05_2018
, hour 27 05 2018,
hour 30 05 2018, hour 31 05 2018])
minute = numpy.concatenate ([minute MFT, minute 09 05 2018, minute 10 05 2018,
minute 15 05 2018,
minute 18 05 2018, minute 19 05 2018, minute 21 05 2018,
minute 23 05 2018,
minute 24 05 2018, minute 27 05 2018, minute 30 05 2018,
minute 31 05 2018])
seconds = numpy.concatenate ([seconds MFT, seconds 09 05 2018, seconds 10 05 2018,
seconds_15_05_2018,
seconds_18 05 2018, seconds_19_ 05_ 2018, seconds_21_05_2018,
seconds 23 05 2018,
seconds_24 05_2018, seconds_27_05_2018, seconds_30_05_2018,
seconds_31_05_2018])
temp = numpy.concatenate (([temp_MFT, temp_ 09_05_2018, temp_10_05_2018, temp_15_05_2018,
temp_18_05_2018,
temp_19_05_2018, temp_21_05_2018, temp_23_05_2018,

69

temp 24 05 2018, temp 27 05 2018,
temp 30 05 2018, temp 31 05 2018]))
P = numpy.concatenate ([P_MFT, P_09 05 2018, P 10 05 2018, P 15 05 2018, P 18 05 2018,
P 19 05 2018, P_21 05 2018,
P 23 05 2018, P_24 05 2018, P_27 05 2018, P_30 05 2018, P_31 05 2018
1)

Calculate Altitudes from pressure

From another analysis (via first order fit of hypsometric equation) define 1st
order polyfit coefficients to convert pressure to altitude alt=axp+tb

a = —8.51514286e+00

b = 8.62680905e+03

Initialize altitude array

altitude = numpy.zeros(len(year))

print (P)

Calculate altitude for each index
for i in range(0, len(altitude)):
altitude [i] =(axP[i])+b

Calculate the number of minutes passed since the beginning of 2018 (based on day of year)
doy min = numpy.zeros (len(year))
for i in range(0, len(year)):
if day[i] = 7:
doy min[i] = (127%24%60)+(hour[i]+*60)+minute|1i]

elif day[i|] = 8:
doy min[i] = (128%24%60)+(hour[i]+*60)+minute|1i]

elif day[i] = 9:
doy min[i] = (129%24%60)+(hour[i]+*60)+minute|1i]

elif day[i] = 10:
doy min[i] = (130%24%60)+(hour[i]+*60)+minute|i]

elif day[i] = 15:
doy min[i] = (135%24%60)+(hour[i]+*60)+minute|1i]

elif day|[i] = 18:
doy min[i] = (138%24%60)+(hour[i]*60)+minute|1i]

elif day|[i] = 19:
doy min[i] = (139%24%60)+(hour[i]+*60)+minute|i]

elif day|[i] = 21:
doy min[i] = (141%24%60)+(hour[i]+*60)+minute|1i]

elif day|[i] = 23:
doy min[i] = (143%24%60)+(hour[i]+*60)+minute|1i]

elif day[i] = 24:

70

doy min[i] = (144%24%60)+4(hour[i]+*60)+minute|1i]

elif day|i] = 27:
doy min[i] = (147%24%60)+(hour[i]+*60)+minute|1i]

elif day|[i] = 30:
doy min[i] = (150%24%60)+(hour[i]*60)+minute|1i]

elif day[i] = 31:
doy min[i] = (151%24%60)+(hour[i]+*60)+minute|1i]

else:

print (’More_Dates_need_to_be_included_above’)

Save Unaveraged concatenated variables and altitudes to file
today date = datetime.date.today().strftime ("%B _%d_%Y")

outputFileName = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned Files/TriSonica May 2018 Unaveraged Airborne Altitudes.txt’

)

outputFile = open(outputFileName, ’'w’)
outputFile. write ("#_Data_collected _by_TriSonica_for_May_2018_field _campaign._Includes_
Altitude_calculation_\n")
outputFile. write ("#By: _Ryan_Byerlay_\n")
outputFile. write ("#Created _on_"+today date+"_\n")
outputFile. write ("#Recorded _Time_is_Local_Time_(MDT)_\n")
outputFile. write ("#0:Year_\t_#1:Month_\t_#2:Day_\t_#3:Hour_\t_#4:Minute_\t_#5:Seconds_\t"
"_#6:DOY_In_Minutes_\t__#7:Pressure_\t_#8:Altitude_\n")
for i in range(0, len(year)):
outputFile. write ("%i_\t %1\t %o\t %1\t %1\t %"
TN f L\t L\t LB\t % \n" % (year[i], month[i], day[i], hour[i],
minute[i],
seconds[i]|, doy min[i], P[i], altitude
[i], temp[i]))
outputFile. close ()

H

Complete 1 second averaging

Second Averaging (10 Hz Frequency)
AverageSample = 10

Total number of samples
Ntotal = numpy.size (altitude)
NSample = int (Ntotal/AverageSample)

Calculate 1 second averaged altitudes , year, month, day, hour, minute, second,

pressure, day of year in minutes, and temperature averages for each sample

yearavg = numpy. zeros ((NSample, 1))

71

monthavg = numpy. zeros ((NSample, 1))
houravg = numpy. zeros ((NSample, 1))
dayavg = numpy. zeros ((NSample, 1))

minuteavg = numpy.zeros ((NSample, 1))
secondavg = numpy.zeros ((NSample, 1))
pressureavg = numpy.zeros ((NSample, 1))

altitudeavg = numpy.zeros ((NSample, 1))
doy min_avg = numpy.zeros ((NSample, 1))
temp avg = numpy.zeros ((NSample, 1))

Calculate Averages

for i in range(0, NSample):

yearavg|[i] = numpy.mean(year|[i*xAverageSample:(i+1)xAverageSample])
monthavg|i]| = numpy.mean(month[i*AverageSample:(i+1)xAverageSample])
houravg|[i] = numpy.mean(hour[i*AverageSample:(i+1)*xAverageSample])
dayavg|[i] = numpy.mean(day|i*xAverageSample:(i+1)xAverageSample])
minuteavg|[i]| = numpy.mean(minute|i*AverageSample:(i+1)xAverageSample])
secondavg|[i]| = numpy.mean(seconds|i*xAverageSample:(i+1)xAverageSample])
pressureavg|[i]| = numpy.mean(P|[i*AverageSample:(i+1)xAverageSample])
altitudeavg[i] = numpy.mean(altitude [i*AverageSample:(i+1)xAverageSample])
doy min_ avg[i]| = numpy.mean(doy min|i*AverageSample:(i+1)xAverageSample])
temp avg|i| = numpy.mean(temp|i*AverageSample:(i+1)xAverageSample])

58, 59, 0 are being averaged together so the value will be < 59

Include a condition to omit Nan values too

S

skip index
for i in range(0, len(secondavg)):
print (secondavg[i])
if numpy.isnan (secondavg|[i]) = True:

continue

else:

print (type(secondavg|i]))
print (int (secondavg|i]))

if int(secondavg|i]) = 58 and int(secondavg|[i+1]) != 59:
yearavg|i-+1] = numpy.nan
monthavg|[i+1] = numpy.nan
houravg|i+1] = numpy.nan
dayavg|[i+1] = numpy.nan
minuteavg[i+1] = numpy.nan
secondavg|[i+1] = numpy.nan

pressureavg[i+1] numpy . nan
altitudeavg|[i+1] = numpy.nan
doy min_avg|i+1] = numpy.nan

temp avg[i+1] = numpy.nan

77

each TANAB2 launch. The indices file identifies the time and location

launch .

72

The following is to the fix the issue where in the averaged second column,

the 59th averaged second does not equal 59, instead it is a lower value. For example:

When saving, put in a check to see if the values are Nan, if index has Nan values, then

Call in TriSonica Base Altitude files: Previously created from the indices files for

of each TANAB2

fileName BaseAlt = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
TriSonica/Unaveraged/’ \
’Cleaned _Files/Ascending_Descending_ TANAB2/BaseAltitudesTriSonica_V3.txt’

data BaseAlt = numpy. genfromtxt (fileName BaseAlt, skip header=5)

day BaseAlt = data_ BaseAlt [:,2]

hour BaseAlt = data BaseAlt[:,3]

minute BaseAlt = data BaseAlt[:,4]

doy BaseAlt = data_BaseAlt [:,6]
BasePressure trisonica = data_BaseAlt[:,7]
BaseAlt trisonica = data BaseAlt[:,8]
Location BaseAlt = data_BaseAlt[:,9]

Initialize variable that stores the difference between day of year in minutes
for the TriSonica base altitude and for the second averaged file

delta doy = numpy.zeros ((len(data BaseAlt) ,1))

Initialize BaseAltitude used to calculate change in altitude and index Base to
indicate the index with the smallest day of year in minutes difference
BaseAltitude = numpy.zeros ((NSample,1))

BasePressure = numpy. zeros ((NSample,1))

Location = numpy.empty (NSample, dtype=str)

index Base = numpy.zeros ((NSample,1))

Match day of year in minutes indices from Base Altitude file & second averaged file
loop through averaged day of year in minutes indices
for i in range(0, len(yearavg)):
Skip Nan values
if numpy.isnan(yearavg|[i]) = True:
continue
else:
Loop through Base Altitude indices
for j in range(0, len(day BaseAlt)):
Calculate difference between day of year in minutes times

delta _doy|[j] = abs(doy BaseAlt|j]|—doy min_ avg|i])

When at the last value of the Base Altitude file , find the index with the
minimum value

Also record location and index of the Base Altitude file
if

j = (len(BaseAlt trisonica)—1):
BaseAltitude[i| = BaseAlt trisonica [numpy.argmin(delta doy)]
BasePressure|[i| = BasePressure trisonica|[numpy.argmin(delta doy)]

index Base[i] = numpy.argmin(delta doy[j])

Initialize variables for change in atmospheric pressure and change in altitude relative to
the ground

deltaPressure = numpy.zeros ((NSample,1))

deltaAltitude = numpy.zeros ((NSample,1))

Calculate the change in pressure and the change in altitude and assign geographic

locations to each index

73

for i in range(0, NSample):
Skip Nan values
if numpy.isnan(pressureavg|[i]) = True:
continue
else:
deltaPressure|1i]
deltaAltitude[i]

abs(BasePressure|i]|—pressureavg|[i])
= abs(BaseAltitude|[i]—altitudeavg[i])

if dayavg|i] = 7 or dayavg|[i] =— 8:
Location[i] = 'T’

elif dayavg|[i] = 9 or dayavg|[i] = 10 or dayavg|[i|] = 15 or dayavg|[i] = 30 or dayavg|i
| = 31:
Location[i] = ’B’

elif dayavg|[i] = 18 or dayavg|[i|] = 19 or dayavg|i| = 21 or dayavg|[i] = 23 or dayavg]|
i] = 24 or dayavg|i] = 27:
Location[i] = "M’

else:

Note: Need to manually remove rows with 'N’ in the resulting text file
Location[i] = ’N’
print ('Day_falls __outside_of_the_ones_listed_above’)

print (BaseAltitude)

Save Averaged data to file
outputFileName avg = ’/export/home/users/username/Documents/DG Temp/Mining Facility 2018/
TriSonica/’ \
"TriSonica May2018 Altitudes averaged.txt’

outputFile avg = open(outputFileName avg, ’'w’)
outputFile avg.write("#_Second_Avgeraged_Data_collected _by_TriSonica_for_May"
"_2018_field _campiagn._Includes_Altitude_calculation_\n")
outputFile avg.write("#By:_Ryan_Byerlay_\n")
outputFile avg.write("#Created_on_"+today date+"_\n")
outputFile avg.write("#Recorded_Time_is_Local_Time_(MDT)_\n")
outputFile avg.write ("#0:AvgYear_\t_#1:AvgMonth_\t_#2:AvgDay_\t"
"_#3:AvgHour_\ t _#4: AvgMinute_\t_#5:AvgSeconds_\t_#6:Location_(T=MFT/B=
Berm /M=Mine /N=NoMatch) "
"_\t_#T7:Day_of_Year_in_minutes_\t_#8:AvgPressure_\t_#9:BasePressure_\t"
"_#10:DeltaPressure_\t_#11:AvgAltitude_\t_#12: BaseAltitude_\t_#13:
DeltaAltitude_\t"
"_#14:Temperature (degC)_\t_#15:Index_in_BaseAlt_File_\n")
for i in range(0, NSample):
If index has Nan value, skip and do not write
if numpy.isnan(yearavg[i]|) = True:
continue
else:
outputFile avg.write ("%i \t %1\t %i_ \t %1 .\t %i"
TONE P01 L\t LTos L\t LT L\t LTE L\t %"
TONETE Nt LTf L\t LT L\t TE L\t %"
"\t %i\n" % (yearavg|[i], monthavg[i], dayavg[i], houravg[i],
minuteavg|i],

secondavg|i], Location[i], doy min avg[i],

74

pressureavg|[i], BasePressure[i],
deltaPressure[i], altitudeavg|[i], BaseAltitude]|i
|, deltaAltitude[1i],
temp avg|i], index Base[i]))
outputFile avg.close ()

A.2.2 Spatial Coordinate Grid Overlaid on Mine Site

import numpy

import math
from math import radians

from math import degrees
from math import asin
from math import tan
from math import atan2
from math import sin
from math import cos
from math import acos
from math import sqrt
from math import atan

Current as of October 16, 2019
Given a desired spatial resolution, coordinates about an approximately
”

40km by 30km rectangle around mine are calculated and saved to a file

The created file can be imported into QGIS and the coordinates can be laid on top of
satellite images/raster

files (MODIS emissivity , surface temperature and surface elevation etc.) and data from

?Ft ?Ft

the images can be extracted for each point

Calculate latitude/longitude coordinates based on the defined spatial resolution
def SiteCoordinatesCalc(res_x, y_iterator, TLeft_ lat_rads, R, TLeft_lon_rads, GPS_matrix):
for a in range(0, res x):
for b in range(0, res_y)
if a=— 0 and b — 0:

continue

elif a=— 0 and b != 0:
d km = y iterator[b—1]
Yaw = 180

Yaw rads = math.radians (Yaw)

lat2 = math. asin (math.sin (TLeft lat rads) * math.cos(d km / R) + math. cos(
TLeft lat rads)
* math.sin(d km / R) * math.cos(Yaw_rads))
lon2 = TLeft lon rads + math.atan2 (math.sin(Yaw rads) * math.sin(d km / R) =x
math. cos (TLeft lat rads),
math.cos(d_ km / R) — math.sin(
TLeft lat rads) * math.sin(lat2))

Convert back to decimal degrees
lat2 = math.degrees(lat2)

1)

lon2 = math.degrees(lon2)

Save to GPS Matrix
GPS_matrix[a]|[b][0] = lat2
GPS_ matrix[a][b][1] = lon2

continue

elif b = 0 and a != 0:
d km = x_iterator[a—1]
Yaw = 90

Yaw rads = math.radians (Yaw)

lat2 = math. asin (math.sin (TLeft lat rads) # math.cos(d km / R) + math.cos(
TLeft lat rads)
* math.sin(d km / R) * math.cos(Yaw_rads))
lon2 = TLeft lon rads + math.atan2 (math.sin(Yaw rads) * math.sin(d km / R) =x
math. cos (TLeft lat rads),
math.cos(d km / R) — math.sin(
TLeft lat rads) * math.sin(lat2))

Convert back to decimal degrees
lat2 = math.degrees(lat2)

lon2 = math.degrees(lon2)

Save to GPS Matrix

GPS_matrix[a][b][0] = lat2
GPS_matrix[a][b][1] = lon2
continue

else:
d km = y _iterator|[b]
Yaw = 180
Yaw rads = math.radians (Yaw)

lat2 = math.asin (math.sin (math.radians (GPS_matrix[a][0][0])) *math.cos(d_km /
R)
+ math. cos(math.radians (GPS_matrix[a][0][0])) * math.sin (
d km/R)*math.cos(Yaw_rads))

lon2 = math.radians (GPS_matrix[a|[0][1]) + \
math.atan2 (math.sin (Yaw_rads)smath.sin (d _km/R) % math.cos (math.
radians (GPS_matrix[a|[0][0])),
math. cos (d_km/R)—math. sin (math.radians (GPS_matrix|a
[[0][0]))*math.sin(lat2))

Convert back to decimal degrees
lat2 = math.degrees(lat2)
lon2 = math.degrees(lon2)

Save to GPS Matrix

GPS_matrix[a]|[b][0] = lat2
GPS_matrix[a][b][1] = lon2

76

return GPS_matrix

Get GPS coordinates for an approximately 40km by 30km rectangle around mine
Identify the Top Left latitude/longitude

For the horizontal loop

Use the top left as a reference point

TLeft lat = XX.XXXXXX

TLeft lon = —XXX.XXXXXX

Convert degrees to radians
TLeft lat rads = radians(TLeft_lat)
TLeft lon_ rads = radians(TLeft lon)

Ending lat/lon
TRight lat = XX.XXXXXX
TRight lon = —XXX.XXXXX

For the vertical loop

Starting latitude/longitude
BRight lat = XX.XXXXXX
BRight lon = —XXX.XXXXXX

Ending latitude/longitude
BLeft lat = XX.XXXXXX
BLeft lon = —XXX.XXXXXX

Equatorial radius of earth as per: https://nssdc.gsfc.nasa.gov/planetary/factsheet/
earthfact.html

R = 6378.1

#

Number of horizontal and vertical squares per spatial resolution
500m by 500m resolution

resb00_x = 113

resb00_y = 114

100m by 100m resolution
res100 x = 570
resl00 y = 570

lkm by 1lkm resolution
res1000_x = 57
res1000_y = 57

#

For code below use the following resolution

res_x = resl00_x

7

res_y = resl00_y

Create array for declaring the iterator to be used for the horizontal and vertical
directions

x iterator = numpy.zeros ((res_x,1))

y_iterator = numpy.zeros ((res_y,1))

Initialize longitude/latitude matrix

GPS_matrix = numpy. zeros ((res_x, res_y, 2))

Assign Known GPS latitude/longitude to matrix
GPS_matrix [0][0][0] = TLeft lat
GPS_matrix[0][0][1] = TLeft_lon

The number of GPS coordinates to save to file

len _save = res_xxres_y
save GPS_ matrix = numpy.zeros ((len save,2))
save_ GPS_matrix [:] = numpy.nan

Set up x_iterator vector for left to right GPS coordinates
if res x == resl100_ x:
d_ iterator = 0.1
elif res x = res500 x:
d_iterator = 0.5
elif res x == resl000_ x:
d_iterator = 1

if i = 0:
x _iterator[i] = d_iterator
else
x _iterator[i| = d_iterator=(i+1)

Set up y iterator vector for top to bottom GPS coordinates

for i in range(0, res_y):

if i — 0:
y _iterator[i] = d_iterator
else:
y _iterator[i] = d_iteratorx(i+1)

Calculate new latitude and longitude coordinates 500m apart from each other and save to
text file

Create Site Grid
SiteCoordinatesCalc (res _x, y iterator, TLeft lat rads, R, TLeft lon rads, GPS_ matrix)

Save GPS coordinates in matrix
for i in range(0,res x):
for j in range(0,res y):
for k in range(0, len save):
if numpy.isnan (save GPS matrix[k]|[0]) = True:
save GPS_ matrix[k][0] = GPS_matrix[i][j][0]

78

save GPS_ matrix |[k][1] = GPS_matrix[i][]j][1]
break

Save Data to file
if res x = resl00 x:
outputFileName = ’/export/home/users/username/Documents/DG Temp/Mining Facility 2018/
MODIS/QGIS/’ \
’100m_Resolution Mine Site Grid.csv’
elif res x = res500_ x:
outputFileName = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
MODIS/QGIS/’ \
’500m_ Resolution Mine Site Grid.csv’
elif res_x == res1000_x:
outputFileName = ’/export/home/users/username/Documents/DG Temp/Mining Facility 2018/
MODIS/QGIS/’ \
’1000m _ Resolution Mine Site Grid.csv’

outputFile = open(outputFileName, ’'w’)

numpy . savetxt (outputFileName, save GPS matrix, delimiter=’,’, fmt="%f’, header=’#0:Lat,#1:
Lon’)

A.2.3 Emissivity Data Retrieval

import numpy
Current as of October 16, 2019

Import outputted emissivity data extracted from QGIS for the two adjacent MODIS images
If one MODIS latitude/longitude is zero/Nan, the other image should have the data
Identify latitude/longitude with emissivity of 0, Nan etc. and output

(CSV with latitude/longitude and a single emissivity value for each band

Load emissivity data (3 bands) from the two adjacent MODIS images
emis filename = ’/export/home/users/username/Documents/DG Temp/Mining Facility 2018 /MODIS/
Emissivity /QGIS/” \
'Bmis_29 31 32 May 2018 MODIS11B3_C6_V2.txt’

emis data = numpy.genfromtxt (emis filename, delimiter=’,", skip header=1)
Assign emissivity data to variables

Latitude = emis data[:,0]

Longitude = emis data[:,1]

N_emis 29 = emis_data[:,2]
N_emis_31 = emis_data[:,3]

N_emis_32 = emis_data[:,4]
S_emis_29 = emis_data[:,5]

S emis 31 = emis data[:,6]

S emis 32 = emis data[:,7]

79

Create new vectors for latitudes and longitudes with zero emissivity

Lat_zero numpy . empty ((len (Latitude) ,1))

Lat zero[:]| = numpy.nan

Lon zero numpy . empty ((len (Longitude) ,1))

Lon zero[:]| = numpy.nan

Create new vectors for emissivity in bands 29, 31, and 32
corresponding to each respective latitude/longitude coordinate
Lat emis = numpy.empty ((len(Latitude) ,1))

Lat emis [:] = numpy.nan

Lon emis = numpy.empty ((len(Latitude) ,1))

Lon emis[:] = numpy.nan

emis 29 = numpy.empty ((len(Latitude) ,1))

emis_ 29 [:] = numpy.nan

emis 31 = numpy.empty ((len(Latitude) ,1))

emis_31[:] = numpy.nan

emis 32 = numpy.empty ((len(Latitude) ,1))

emis 32 [:] = numpy.nan

If any emissivity value is 0, write the latitude/longitude location to CSV
for i in range(0, len(Latitude)):

Check if zero

if N _emis 29[i] = 0 and N _emis 31[i] = 0 and N _emis 32[i] = 0\
and S emis 29[i] = 0 and S _emis 31[i] = 0 and S _emis 32[i] = O0:
for j in range(0, len(Lat zero)):
if numpy.isnan(Lat zero[j]) = True:
Lat zero[j] = Latitude|i]
Lon_ zero|j] = Longitude|i]
break

Check if North image is zero, if so, write South image data to appropriate arrays

elif (N _emis 29[i] = 0 and N _emis 31[i] = 0 and N_emis 32[i] = 0)\
and (S _emis 29[i] != 0 and S _emis 31[i] != 0 and S emis 32[i] != 0):
for j in range(len(Lat emis)):

if numpy.isnan(Lat emis|[j]) = True:
Lat emis[j]| = Latitude[i]
Lon emis[j]| = Longitude]i]
emis 29[j] = S_emis_29][i]
emis 31[j] = S_emis 31[i]
emis 32[j] = S_emis 32[i]
break

Check if South image is zero, if so write North image data to appropriate arrays
elif (N _emis 29[i] != 0 and N _emis 31[i] != 0 and N_emis 32[i] != 0)\
and (S _emis 29[i] = 0 and S _emis 31[i] = 0 and S _emis 32[i] = 0):
for j in range(len(Lat emis)):

if numpy.isnan(Lat emis[j]) = True:

80

Lat_emis|]]

Latitude[i]
Lon emis|[j] = Longitude|i]

emis 29[j]

N emis 29[i]
N _emis 31[i]
emis 32[j] = N_emis 32[i]
break

emis 31[j]

Check to see if the emissivity values from the north image

the emissivity wvalues

from the south image
elif (N _emis 29[i] = S _emis_29[i| and N emis 31[i] = S _emis_31[i| and N emis 32[i] =
S _emis_32[i]):
for j in range(len(Lat emis)):
if numpy.isnan(Lat_ emis[j]) = True:
Lat emis|[j] = Latitude[i]
Lon emis|[j] = Longitude|i]

1If both the south and north image data are the same,
it doesnt matter which data is saved to the final array
emis 29[j] = N_emis 29][i]
emis 31[j] = N_emis 31[i]
emis 32[j] = N_emis 32[i]
break
If emissivity values from both images are present for each band and

they are different values, average the band emissivities

elif (N_emis 29[i] > 0 and S_emis_29[i] > 0 and N_emis_29[i] != S_emis_29[i]) or)\
(N_emis 31[i] > 0 and S emis 31[i] > 0 and N_emis 31[i]| != S _emis 31[i]) or)\
(N_emis_32[i] > 0 and S _emis_32[i] > 0 and N_emis_32[i]| != S_emis 32[i]):
for j in range(len(Lat emis)):
if numpy.isnan(Lat emis[j]) = True:

Lat emis|[j] = Latitude[i]
Lon emis|[j] = Longitude|[i]

If both the south and north image data are the same,

it doesnt matter which data is saved to the final array
emis 29[j| = float ((N_emis 29[i]+S_emis 29[i]) /2)

emis 31[j| = float ((N_emis 31[i]+S_emis 31[i]) /2)

emis 32[j| = float ((N_emis 32[i|+S_emis 32[i]) /2)

break

Column stack latitude zero/longitude zero and emissivity bands with the corresponding

latitudes and longitudes

GPS_zero = numpy.column _stack ((Lat zero,Lon_ zero))
GPS_emis = numpy.column_stack (((Lat emis,Lon emis, emis 29,emis 31,emis 32)))

Save combined emissivity /latitude/longitude file

outputFileName emis = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
MODIS/ Emissivity /7 \

"May_ 2018 _MODIS_Lat_Lon_Emissivity.csv’
outputFile emis = open(outputFileName emis, ’w’)

81

Save zero emissivity/latitude/longitude file
numpy . savetxt (outputFileName emis, GPS emis, delimiter=’,",
header="+#0:Lat ,#1:Lon,#2:Band 29 Emissivity,#3:Band 31 Emissivity ,#4:

Band 32 Emissivity’)
A.2.4 Direct Georeferencing and Temperature Calculation

Calculate temperatures (degK and degC) and GPS position from individual pixels within each
image

Created By: Ryan Byerlay On: April 26, 2018, Current as of: October 15, 2019

Successfully works on ImageMagick (IM) 7.0.7 and ExifTool 10.94 on a linux OS

(both Ubuntu 16.04 and Ubuntu 18.04) with Python 3.5

NOTE: Syntax for IM before 7 is different

NOTE: The Raw Thermal Image Type must be TIFF, to check put image in same folder as IMT7,

ExifTool and this script and type the following into the command line: "exiftool filename
.jpg"

NOTE: May need to install ubuntu/linux developer tools for TIFF, PNG, JPEG etc as IM 7 may

not be able to process images

NOTE: Updated versions of ExifTool may have more functionality for FLIR Images, may result

in improved quantitative image analysis

Check here for the latest on ExifTool: https://www.sno.phy.queensu.ca/ phil/exiftool/

#

import os

import subprocess
import numpy

import time

import math

from math import tan
from math import sin
from math import cos
from math import asin
from math import sqrt
from math import atan2
from math import radians
from math import atan
import datetime
import simplekml

from numba import jit
import pytemperature

Data derived from the Geocontext—Profiler
(http://www.geocontext.org/publ/2010/04/ profiler /en/) and saved to text documents
def LandSlopeEquations (BaseAltitude, heading):

Convert the heading from float to int

heading int = int (heading)

82

Degree of poly fit. Use degree of 3 for Earth surface elevation as
per: https://doi.org/10.1080/13658810310001596058
poly deg = 3

For the Berm (TANAB2 launch location)
if BaseAltitude — 337:
For the North direction
Between N (0 deg) and NNE (22.5 deg) or NNW (337.5 deg) and N (360 deg)
if heading int >= 0 and heading int < 22.5 or heading int > 337.5 and heading int

<=360:
Elevation data for 10 km due North of the TANAB2 launch location
Berm N _filename = ’/export/home/users/username/Documents/DG_Temp/

Mining Facility 2018/Elevation Data/’ \
"Berm /Berm N. txt’

Load distance and elevation data from file

Berm N _ data = numpy.genfromtxt (Berm N _filename, delimiter=’,")

Distance away from the TANAB2 launch location in meters
distance_ Berm N = Berm N data[:, 0]

Elevation above sea level in meters for each data point away from the TANAB2
launch location
elevation Berm N = Berm N data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Berm N, elevation Berm N, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the North direction
ground _elev_ASL_fitted = numpy.polyval(Land_Poly_Coeff, distance_Berm_ N)

Detrend the resulting land surface elevations calculated from the derived
polynomial with respect to the elevation data derived from Geocontext—Profiler

ground elev. AGL = elevation Berm N — ground elev ASL fitted
return ground elev ASL fitted, ground elev_ AGL

For the North—East direction
Between NNE (22.5 deg) and ENE (67.5 deg)
elif heading int > 22.5 and heading int < 67.5:
Elevation data for 10 km due North East of the TANAB2 launch location
Berm NE filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018/Elevation Data/’ \
"Berm /Berm NE. txt’

Load data from file

Berm NE data = numpy.genfromtxt (Berm NE filename, delimiter=’,")

Distance away from the TANAB2 launch location in meters

83

distance_ Berm NE = Berm_NE_data[:, 0]

Elevation above sea level in meters for each data point away from the TANAB2
launch location in meters
elevation Berm NE = Berm NE data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding surface elevation above sea
level in meters

Land_Poly Coeff = numpy. polyfit (distance_ Berm NE, elevation Berm NE, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the North East direction
ground elev_ASL _fitted = numpy.polyval(Land_ Poly Coeff, distance Berm NE)

Detrend the resulting land surface elevations from the derived
polynomial with respect to the elevation data derived from the Geocontext—
Profiler

ground_elev_AGL = elevation_Berm_ NE — ground_elev_ASL_fitted
return ground elev ASL fitted, ground elev_ AGL

For the East direction
Between ENE (67.5 deg) and ESE (112.5 deg)
elif heading int > 67.5 and heading int < 112.5:
Elevation data for 10 km due East of the TANAB2 launch location
Berm E filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Elevation Data/’ \
"Berm/Berm_E. txt’

Load data from file

Berm E data = numpy.genfromtxt(Berm E filename, delimiter=’,")

Distance away from the TANAB2 launch location in meters
distance_Berm _E = Berm_E_data[:, 0]

Elevation above sea level in meters for each data point away from the TANAB2
launch location

elevation Berm E = Berm E data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Berm E, elevation Berm E, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the East direction
ground elev_ASL_fitted = numpy. polyval(Land_Poly_ Coeff, distance Berm_ E)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

84

ground_elev_AGL = elevation_Berm E — ground_elev_ASL_fitted
return ground_elev_ASL_fitted, ground_elev_AGL

For the South—East direction
Between ESE (112.5 deg) and SSE (157.5 deg)
elif heading int > 112.5 and heading int < 157.5:
Elevation data for 10 km due South East of the TANAB2 launch location
Berm SE_filename = ’/export/home/users/username/Documents/DG_ Temp/
Mining Facility 2018/Elevation Data/’ \
"Berm/Berm_SE. txt’

Load data from file

Berm SE_data = numpy.genfromtxt (Berm SE_filename, delimiter=",")

Distance away from TANAB2 launch location in meters
distance_ Berm _SE = Berm_SE_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation Berm SE = Berm_ SE data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Berm SE, elevation Berm SE, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the South East direction
ground elev_ASL _fitted = numpy.polyval(Land_ Poly Coeff, distance Berm_ SE)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation_Berm_SE — ground_elev_ASL_fitted

return ground elev_ ASL fitted, ground elev_AGL

For the South direction
Between SSE (157.5 deg) and SSW (202.5 deg)
elif heading int > 157.5 and heading int < 202.5:
Elevation data for 10 km due South of the TANAB2 launch location
Berm S filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Elevation Data/’ \
"Berm/Berm_S. txt’

Load data from file

Berm_S_data = numpy.genfromtxt(Berm_S_filename, delimiter=’,")

Distance away from TANAB2 launch location in meters
distance_Berm_S = Berm_S_data[:, 0]

85

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation_Berm_S = Berm_S_data[:, 1]

Returns coefficients for the polyfit equation between the distance away from

the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Berm S, elevation Berm S, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the South direction
ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance Berm S)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation_Berm S — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the South—West direction
Between SSW (202.5 deg) and WSW (247.5 deg)
elif heading int > 202.5 and heading int < 247.5:
Elevation data for 10 km due South West of the TANAB2 launch location
Berm SW _filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018/Elevation Data/’ \
"Berm /Berm SW. txt’

Load data from file
Berm_ SW_data = numpy.genfromtxt(Berm SW _filename, delimiter=",")

Distance away from TANAB2 launch location in meters
distance_ Berm_SW = Berm_SW_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2

launch location
elevation Berm SW = Berm_ SW _data|:, 1]

Returns coefficients for the polyfit equation between the distance away from

the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Berm SW, elevation Berm SW, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the South West direction
ground elev_ ASL fitted = numpy. polyval(Land Poly Coeff, distance Berm SW)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation_Berm_SW — ground_elev_ASL_fitted

86

return ground_elev_ASL_fitted, ground_elev_AGL

For the West direction
Between WSW (247.5 deg) and WNW (292.5 deg)
elif heading int > 247.5 and heading int < 292.5:
Elevation data for 10 km due West of the TANAB2 launch location
Berm W _filename = ’/export /home/users/username/Documents/DG_Temp/
Mining Facility 2018/Elevation Data/’ \
"Berm/Berm W. txt’

Load data from file
Berm W data = numpy.genfromtxt(Berm W filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance_ Berm W = Berm_ W _data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation Berm W = Berm W data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Berm W, elevation Berm W, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the West direction
ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance Berm W)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation_Berm W — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the North—West direction
Between WNW (292.5 deg) and NNW (337.5 deg)
elif heading int > 292.5 and heading int < 337.5:
Elevation data for 10 km due North West of the TANAB2 launch location
Berm NW filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018/Elevation Data/’ \
"Berm/Berm_ NW. txt ’

Load data from file
Berm NW data = numpy. genfromtxt (Berm NW filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance_ Berm NW = Berm_ NW_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2

launch location

87

elevation_ Berm NW = Berm NW_data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Berm NW, elevation Berm NW, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the North West direction
ground elev_ASL fitted = numpy. polyval(Land_ Poly Coeff, distance Berm NW)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation_Berm NW — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the Mine (TANAB2 launch location)
elif BaseAltitude — 317:
For the North direction
Between N (0 deg/360 deg), NNE (22.5 deg) and NNW (337.5 deg)
if heading_int >= 0 and heading_int < 22.5 or heading_int > 337.5 and heading_int

<=360:
Elevation data for 10 km due North of the TANAB2 launch location
Mine N _filename = ’/export/home/users/username/Documents/DG Temp/

Mining Facility 2018 /Elevation Data/’ \
"Mine/Mine N. txt’

Load data from file

Mine N _ data = numpy.genfromtxt(Mine N _filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance_Mine_N = Mine_N_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation Mine N = Mine N _data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance_Mine N, elevation Mine N, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the North direction
ground elev_ASL_fitted = numpy. polyval(Land_Poly_Coeff, distance_ Mine_ N)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation_Mine N — ground_elev_ASL_fitted

88

return ground_elev_ASL_fitted, ground_elev_AGL

For the North—East direction
Between NNE (22.5 deg) and ENE (67.5 deg)y
elif heading int > 22.5 and heading int < 67.5:
Elevation data for 10 km due North East of the TANAB2 launch location
Mine NE filename = ’/export/home/users/username/Documents/DG_ Temp/
Mining Facility 2018/Elevation Data/’ \
"Mine/Mine NE. txt’

Load data from file
Mine NE data = numpy.genfromtxt (Mine NE_filename, delimiter=",")

Distance from TANAB2 launch location in meters
distance_ Mine NE = Mine NE_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation Mine NE = Mine NE data|:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Mine NE, elevation Mine NE, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the North East direction
ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance Mine NE)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation_Mine NE — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the East direction
Between ENE (67.5 deg) and ESE (112.5 deg)
elif heading int > 67.5 and heading int < 112.5:
Elevation data for 10 km due East of the TANAB2 launch location
Mine E _filename = ’/export/home/users/username/Documents/DG_ Temp/
Mining Facility 2018/Elevation Data/’ \
"Mine /Mine E. txt’

Load data from file

Mine E data = numpy.genfromtxt(Mine E filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance_Mine E = Mine_E_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2

89

launch location
elevation Mine E = Mine E data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Mine E, elevation Mine E, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the East direction
ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance Mine E)

Detrend the resulting land surface elevations calculated from the derived
polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation Mine_ E — ground_elev_ASL_fitted
return ground_elev_ASL_fitted, ground_elev_AGL

For the South—East direction
Between ESE (112.5 deg) and SSE (157.5 deg)
elif heading int > 112.5 and heading int < 157.5:
Elevation data for 10 km due South East of the TANAB2 launch location
Mine SE _filename = ’/export/home/users /username/Documents/DG_ Temp/
Mining Facility 2018/Elevation Data/’ \
"Mine/Mine_SE. txt’

Load data from file
Mine SE data = numpy.genfromtxt(Mine SE filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance_Mine_SE = Mine_SE_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation Mine SE = Mine SE data|:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Mine SE, elevation Mine SE, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the South East direction
ground elev ASL fitted = numpy. polyval(Land Poly Coeff, distance Mine SE)

Detrend the resulting land surface elevations calculated from the derived
polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation_Mine_ SE — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

90

For the South direction
Between SSE (157.5 deg) and SSW (202.5 deg)
elif heading int > 157.5 and heading int < 202.5:
Elevation data for 10 km due South of the TANAB2 launch location
Mine S filename = ’/export/home/users/username/Documents/DG Temp/
Mining Facility 2018/Elevation Data/’ \
"Mine /Mine_S. txt’

Load data from file
Mine S data = numpy.genfromtxt(Mine S filename, delimiter=’",")

Distance from TANAB2 launch location in meters
distance_Mine S = Mine_S_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation _Mine_S = Mine_S_data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Mine S, elevation Mine S, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the South direction
ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance Mine S)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation_Mine_ S — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the South—West direction
Between SSW (202.5 deg) and WSW (247.5 deg)
elif heading int > 202.5 and heading int < 247.5:
Elevation data for 10 km due South West of the TANAB2 launch location
Mine SW filename = ’/export/home/users/username/Documents/DG Temp/
Mining Facility 2018/Elevation Data/’ \
"Mine/Mine SW. txt’

Load data from file
Mine SW data = numpy.genfromtxt (Mine SW filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance_Mine SW = Mine_SW_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation_Mine_SW = Mine_SW_data[:, 1]

91

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Mine SW, elevation Mine SW, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the South West direction
ground elev ASL fitted = numpy. polyval(Land Poly Coeff, distance Mine SW)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground _elev_AGL = elevation Mine SW — ground_ elev_ASL _fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the West direction
Between WSW (247.5 deg) and WNW (292.5 deg)
elif heading int > 247.5 and heading int < 292.5:
Elevation data for 10 km due West of the TANAB2 launch location
Mine W _filename = ’/export/home/users/username/Documents/DG_ Temp/
Mining Facility 2018/Elevation Data/’ \
"Mine /Mine W. txt’

Load data from file
Mine W _data = numpy. genfromtxt (Mine W filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance_ Mine_ W = Mine W _data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation_Mine W = Mine_ W_data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance Mine W, elevation Mine W, poly deg)

Evaluate the polynomial at specific values as given by the distance away from

the TANAB2 launch location in the West direction

ground elev_ASL _fitted = numpy. polyval(Land_ Poly Coeff, distance Mine W)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation Mine_ W — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the North—West direction

92

Between WNW (292.5 deg) and NNW (337.5 deg)
elif heading int > 292.5 and heading int < 337.5:
Elevation data for 10 km due North West of the TANAB2 launch location
Mine NW _filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018/Elevation Data/’ \
"Mine /Mine NW. txt’

Load data from file
Mine NW_data = numpy.genfromtxt (Mine NW filename, delimiter=",")

Distance from TANAB2 launch location in meters
distance_ Mine NW = Mine NW data|:, 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation_Mine_ NW = Mine_ NW_data[: , 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in

meters

Land Poly Coeff = numpy. polyfit (distance Mine NW, elevation Mine NW, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the North West direction
ground elev ASL fitted = numpy. polyval(Land Poly Coeff, distance Mine NW)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground _elev_AGL = elevation Mine NW — ground_ elev_ASL_fitted
return ground_elev_ASL_fitted, ground_elev_AGL

For MFT (TANAB2 launch location)
elif BaseAltitude — 398:
For the North direction
Between N (0 deg/360 deg), NNE (22.5 deg) and NNW (337.5 deg)
if heading_int >= 0 and heading_int < 22.5 or heading_int > 337.5 and heading_int

<=360:
Elevation data for 10 km due North of the TANAB2 launch location
MFT N _filename = ’/export/home/users/username/Documents/DG_Temp/

Mining Facility 2018/Elevation Data/’ \
'MFT/MFT _N. txt’

Load data from file
MFT_N_data = numpy. genfromtxt (MFT_N_filename, delimiter=’",")

Distance from TANAB2 launch location in meters
distance_ MFT_N = MFT_N_data[: , 0]

Elevation above sea level in meters for each data point away from TANAB2

launch location

93

elevation MFT N = MFT N data[:, 1]

Returns coefficients for the polyfit equation between the distance away from

the TANAB2 launch location and the corresponding elevation above sea level
meters

Land Poly Coeff = numpy. polyfit (distance. MFT N, elevation MFT N, poly deg)

Evaluate the polynomial at specific values as given by the distance away from

the TANAB2 launch location in the North direction
ground elev_ASL fitted = numpy. polyval(Land Poly Coeff, distance. MFT_N)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation_ MFT_N — ground_elev_ASL _fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the North—East direction
Between NNE (22.5 deg) and ENE (67.5 deg)
elif heading int > 22.5 and heading int < 67.5:
Elevation data for 10 km due North East of the TANAB2 launch location
MFT NE filename = ’/export/home/users/username/Documents/DG_ Temp/
Mining Facility 2018/Elevation Data/’ \
'MFT/MFT _NE. txt’

Load data from file
MFT NE data = numpy. genfromtxt (MFT_ NE filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance. MFT_NE = MFT_NE_data[: , 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation. MFT NE = MFT_NE data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level
meters

Land Poly Coeff = numpy. polyfit (distance MFT NE, elevation MFT NE, poly deg)

Evaluate the polynomial at specific values as given by the distance away from

the TANAB2 launch location in the North East direction
ground elev_ ASL fitted = numpy. polyval(Land_ Poly Coeff, distance MFT NE)

Detrend the resulting land surface elevations calculated from the derived
polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation MFT_ NE — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

94

For the East direction
Between ENE (67.5 deg) and ESE (112.5 deg)
elif heading int > 67.5 and heading int < 112.5:
Elevation data for 10 km due East of the TANAB2 launch location
MFT _E filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018/Elevation Data/’ \
"MFT/MFT_E. txt ’

Load data from file
MFT_E data = numpy. genfromtxt (MFT_E_filename, delimiter=’",")

Distance from TANAB2 launch location in meters
distance. MFT _E = MFT_E_ data[: , 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation MFT E = MFT E data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance MFT E, elevation MFT E, poly deg)

Evaluate the polynomial at specific values as given by the distance away
from the TANAB2 launch location in the East direction
ground elev ASL fitted = numpy. polyval(Land Poly Coeff, distance MFT E)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation MFT_E — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the South—East direction
Between ESE (112.5 deg) and SSE (157.5 deg)
elif heading int > 112.5 and heading int < 157.5:
Elevation data for 10 km due South East of the TANAB2 launch location
MFT _ SE_filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018/Elevation Data/’ \
'MFT/MFT_SE. txt’

Load data from file
MFT SE data = numpy. genfromtxt (MFT_ SE filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance. MFT_SE = MFT_SE data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation MFT_SE = MFT_SE_data[:, 1]

95

Returns coefficients for the polyfit equation between the distance away from

the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance MFT SE, elevation MFT SE, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the South East direction
ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance MFT SE)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation MFT_ SE — ground elev_ASL _fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the South direction
Between SSE (157.5 deg) and SSW (202.5 deg)
elif heading int > 157.5 and heading int < 202.5:
Elevation data for 10 km due South of the TANAB2 launch location
MFT S filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018/Elevation Data/’ \
'MFT/MFT_S. txt’

Load data from file
MFT_ S data = numpy.genfromtxt (MFT S filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance. MFT_S = MFT_S_data[: , 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation_ MFT_S = MFT_S_data[:, 1]

Returns coefficients for the polyfit equation between the distance away from

the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance. MFT S, elevation MFT S, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the South direction
ground elev ASL fitted = numpy. polyval(Land Poly Coeff, distance MFT_ §)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground_elev_AGL = elevation MFT_S — ground_elev_ASL _fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the South—West direction
Between SSW (202.5 deg) and WSW (247.5 deg)

96

elif heading int > 202.5 and heading int < 247.5:
Elevation data for 10 km due South West of the TANAB2 launch location
MFT _ SW _filename = ’/export/home/users/username/Documents/DG_ Temp/
Mining Facility 2018 /Elevation Data/’ \
"MFT/MFT_SW. txt ’

Load data from file
MFT SW_data = numpy.genfromtxt (MFT_SW _filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance. MFT SW = MFT_SW _data[: , 0]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation MFT SW = MFT_SW_data[:, 1]

Returns coefficients for the polyfit equation between the distance away from
the TANAB2 launch location and the corresponding elevation above sea level in

meters

Land Poly Coeff = numpy. polyfit (distance. MFT SW, elevation MFT SW, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the South West direction
ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance MFT SW)

Detrend the resulting land surface elevations calculated from the derived
polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground elev. AGL = elevation MFT SW — ground elev_ASL fitted
return ground_elev_ASL_fitted, ground_elev_AGL

For the West direction
Between WSW (247.5 deg) and WNW (292.5 deg)
elif heading int > 247.5 and heading int < 292.5:
Elevation data for 10 km due West of the TANAB2 launch location
MFT W _filename = ’/export/home/users/username/Documents/DG_ Temp/
Mining Facility 2018/Elevation Data/’ \
"MFT/MFT_W. txt ’

Load data from file
MFT W _data = numpy. genfromtxt (MFT W _filename, delimiter=",")

Distance from TANAB2 launch location in meters
distance. MFT W = MFT W _data[:, O]

Elevation above sea level in meters for each data point away from TANAB2
launch location
elevation MFT W = MFT W _data[: , 1]

Returns coefficients for the polyfit equation between the distance away from

the TANAB2 launch location and the corresponding elevation above sea level in

97

meters
Land_Poly Coeff = numpy. polyfit (distance MFT_W, elevation. MFT_W, poly_deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the West direction
ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance MFT W)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground elev AGL = elevation MFT W — ground elev_ASL fitted

return ground_elev_ASL_fitted, ground_ elev_AGL

For the North—West direction
Between WNW (292.5 deg) and NNW (337.5 deg)
elif heading int > 292.5 and heading int < 337.5:
Elevation data for 10 km due North West of the TANAB2 launch location
MFT NW filename = ’/export/home/users/username/Documents/DG Temp/
Mining Facility 2018 /Elevation Data/’ \
"MFT/MFT_NW. txt ’

Load data from file
MFT NW _data = numpy.genfromtxt (MFT NW filename, delimiter=’,")

Distance from TANAB2 launch location in metersqualifying transaction
distance. MFT NW = MFT NW data[: , 0]

Elevation above sea level in meters for equalifying transactionach data point
away from TANAB2 launch location
elevation MFT_NW = MFT NW_data[:, 1]

Returns coefficients for the polyfit equation between the distance away from

the TANAB2 launch location and the corresponding elevation above sea level in
meters

Land Poly Coeff = numpy. polyfit (distance. MFT NW, elevation MFT NW, poly deg)

Evaluate the polynomial at specific values as given by the distance away from
the TANAB2 launch location in the North West direction
ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance MFT NW)

Detrend the resulting land surface elevations calculated from the derived

polynomial with respect to the elevation data derived from Geocontext—
Profiler

ground elev_ AGL = elevation MFT NW — ground elev_ASL fitted

return ground_elev_ASL_fitted, ground_elev_AGL

NOTE: Using the Numba library and the @jit (Just In Time compiler),

98

these functions are sped up with parallel processing as this function
is executed in another compiler in the computer after the code is transformed to machine
code

This library supports CUDA GPU processing within Python
This library is continually being updated and future versions should have increased

functionality with respect to parallel processing, GPU/CUDA processing from a Python
script

Calculate pixel distance to assign emissivity value. For selected pixels
Use the JIT compiler to translate Python/numpy code into machine code
that is executed in parallel with the Python code

This compiler reduced the run time of the code by 90%
The following formulas are based off of:
https://stackoverflow.com/questions /19412462/getting —distance —between—two—points—based—on—
latitude —longitude
@jit (nopython=True, parallel=True)
def HaversinePixelCalc (emis lat, lat2 pixel, emis lon, lon2 pixel, Radius Earth, haversine d
):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat[k] — lat2 pixel)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis lon[k] — lon2 pixel)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(lat2 pixel))
* 0\
math. cos (math.radians (emis lat[k]|)) = math.sin(haversine dlon / 2) x*x
2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs

haversine d[k] = Radius_ Earth % haversine c¢
return haversine d

Calculate pixel distance to assign emissivity value for the top left pixel

Use the JIT compiler to translate Python/numpy code into machine

code that is executed in parallel with the Python code

This compiler reduced the run time of the code by 90%

@jit (nopython=True, parallel=True)

def HaversinePixelCalc_top_left (emis_lat, lat2 top_left, emis_lon, lon2_ top_left,
Radius_Earth, haversine_d):

Calculate the haversine distance between each coordinate pair

99

for k in range(0, len(emis lat)):

Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat|[k] — lat2 top left)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis lon[k] — lon2 top left)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(
lat2 _top left)) = \
math. cos (math.radians (emis lat[k])) = math.sin(haversine dlon / 2) x*=x
2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine d[k] = Radius_Earth * haversine_ c

return haversine d

Calculate pixel distance to assign emissivity value for the top center pixel
Use the JIT compiler to translate Python/numpy code into machine
code that is executed in parallel with the Python code
This compiler reduced the run time of the code by 90%
@jit (nopython=True, parallel=True)
def HaversinePixelCalc top center(emis lat, lat2 top, emis lon, lon2 top, Radius Earth,
haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis_lat[k] — lat2_ top)
Calculate the difference between the two longitude locations

haversine dlon = math.radians (emis lon[k] — lon2 top)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) % 2 + math.cos(math.radians(lat2 top)) =
\
math. cos (math.radians (emis lat[k])) % math.sin (haversine dlon / 2) xx
2

haversine ¢ = 2 % math.atan2(math.sqrt (haversine a), math.sqrt(l1 — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine d[k] = Radius_Earth % haversine c¢

return haversine d

Calculate pixel distance to assign emissivity value for the top right pixel

Use the JIT compiler to translate Python/numpy code into machine

code that is executed in parallel with the Python code

This compiler reduced the run time of the code by 90%

@jit (nopython=True, parallel=True)

def HaversinePixelCalc_top_right (emis_lat, lat2_top_right, emis_lon, lon2_ top_right,

100

Radius_Earth, haversine_d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat|[k] — lat2 top right)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis lon[k] — lon2 top right)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) =xx 2 + math.cos(radians(lat2 top right))
* 0\
math. cos (radians (emis lat[k])) * math.sin (haversine dlon / 2) *x 2
haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine_d[k] = Radius_FEarth x haversine_c

return haversine d

Calculate pixel distance to assign emissivity value for the center left pixel
Use the JIT compiler to translate Python/numpy code into machine
code that is executed in parallel with the Python code
This compiler reduced the run time of the code by 90%
@jit (nopython=True, parallel=True)
def HaversinePixelCalc center left(emis lat, lat2 center left, emis lon, lon2 center left,
Radius Earth, haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis_lat[k] — lat2 center_left)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis lon[k] — lon2 center left)

Separate parts of the haversine formula into different variables for calculation
simplicity

haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(
lat2 center left)) = \

math. cos (math.radians (emis lat[k])) % math.sin (haversine dlon / 2) xx
2

haversine ¢ = 2 % math.atan2(math.sqrt (haversine a), math.sqrt(l1 — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine d[k] = Radius_Earth % haversine c¢
return haversine d

Calculate pixel distance to assign emissivity value for the center pixel

Use the JIT compiler to translate Python/numpy code into machine

code that is executed in parallel with the Python code

This compiler reduced the run time of the code by 90%

@jit (nopython=True, parallel=True)

def HaversinePixelCalc_center(emis_lat, lat2_ center, emis_lon, lon2_ center, Radius_Earth,
haversine d):

101

Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat|[k] — lat2 center)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis lon[k]| — lon2 center)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(lat2 center)
) o\
math. cos (math.radians (emis lat[k]|)) = math.sin(haversine dlon / 2) x*=x
2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine_d[k] = Radius_FEarth x haversine_c

return haversine d

Calculate pixel distance to assign emissivity value for the center right pixel
Use the JIT compiler to translate Python/numpy code into machine
code that is executed in parallel with the Python code
This compiler reduced the run time of the code by 90%
@jit (nopython=True, parallel=True)
def HaversinePixelCalc center right(emis lat, lat2 center right, emis lon, lon2 center right
)
Radius_Earth, haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat)):

Calculate the difference between the two latitude locations

haversine dlat = math.radians(emis lat[k] — lat2 center right)
Calculate the difference between the two longitude locations
haversine dlon = math.radians(emis lon[k]| — lon2 center right)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(
lat2 center right)) = \
math. cos (math.radians (emis lat[k])) % math.sin (haversine dlon / 2) xx
2

haversine ¢ = 2 % math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine d[k] = Radius_Earth % haversine c¢
return haversine d

Calculate pixel distance to assign emissivity value for the bottom left pixel

Use the JIT compiler to translate Python/numpy code into machine

code that is executed in parallel with the Python code

This compiler reduced the run time of the code by 90%

@jit (nopython=True, parallel=True)

def HaversinePixelCalc_bottom _left (emis_lat, lat2_ bottom _left, emis_lon, lon2_ bottom _left,

102

#

Radius_Earth, haversine_d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis_ lat[k] — lat2 bottom left)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis lon[k] — lon2 bottom left)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) *% 2 + math.cos(math.radians(
lat2 bottom left)) = \
math. cos (math.radians (emis lat[k])) = math.sin(haversine dlon / 2) x*=x
2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine_d[k] = Radius_FEarth x haversine_c

return haversine d

Calculate pixel distance to assign emissivity value for the bottom center pixel

Use the JIT compiler to translate Python/numpy code into machine

#

code that is executed in parallel with the Python code

This compiler reduced the run time of the code by 90%
@jit (nopython=True, parallel=True)

def HaversinePixelCalc bottom (emis lat, lat2 bottom, emis lon, lon2 bottom, Radius Earth,

#

haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat[k] — lat2 bottom)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis lon[k] — lon2 bottom)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(lat2 bottom)
) o\
math. cos (math.radians (emis lat[k])) % math.sin (haversine dlon / 2) xx
2

haversine ¢ = 2 % math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine d[k| = Radius_Earth % haversine ¢

return haversine d

Calculate pixel distance to assign emissivity value for the bottom right pixel

Use the JIT compiler to translate Python/numpy code into machine

code that is executed in parallel with the Python code

This compiler reduced the run time of the code by 90%

@jit (nopython=True, parallel=True)

def HaversinePixelCalc bottom right(emis lat, lat2 bottom right, emis lon, lon2 bottom right

103

Radius_Earth, haversine_d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat[k] — lat2 bottom right)
Calculate the difference between the two longitude locations

haversine dlon = math.radians (emis lon[k] — lon2 bottom right)

Separate parts of the haversine formula into different variables for calcula
simplicity
haversine a = math.sin(haversine dlat / 2) *% 2 + math.cos(math.radians(

lat2 bottom right)) * \
math. cos (radians (emis lat[k])) * math.sin (haversine dlon / 2) =*x

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l1 — haversine a

Solve for the geographic distance between the two coordinate pairs
haversine_d[k] = Radius_FEarth x haversine_c

return haversine d

tion

2
))

Save picture data to master file (master file saves to text file with all image data
within the ’Rawlmages’ folder
Save image matrix data to master matrix
@jit (nopython=True, parallel=True)
def SaveMasterMatrix (x_pixel range, v_pixel top, y pixel range, image matrix,
all pixel data multi image, filename image, filenames total):

for i in range(0, x_pixel range):

r j in range(v_pixel top, y_ pixel range):

If a real value exists with latitude/longitude etc, then save to master

i
fo

if numpy.isnan (image matrix[i]|[j][5]) = False:
for k in range(0, len(all pixel data multi image)):
Write data to matrix if index is Nan
if numpy.isnan(all pixel data multi image|k][0]) = True:
Save name of file to master array

filenames total[k]|[0] = filename image[i][]j][0]

Save year image was taken to master array

all pixel data multi image[k][0] = image matrix[i][j]|[O0]
Save month image was taken to master array

all pixel data multi image[k][1] = image matrix[i][j]|[1]
Save day image was taken to master array

all _pixel data_ multi_ image[k][2] = image matrix[i][]j]|[2]
Save hour image was taken to master array

all _pixel data_multi_image[k][3] = image_ matrix[i][j]|[3]
I

Save minute image was taken to master array

all pixel data multi image[k]|[4] = image matrix[i][j][4]
Save calculated geographic latitude to master array
all pixel data multi image[k]|[5] = image matrix[i][j][5]

Save calculated geographic longitude to master array

104

matrix

all pixel data multi image[k]|[6] = image matrix[i][]j][6]

Save the horizontal pixel value of the image where ST was
calculated

to master array

all pixel data multi image[k][7] = image matrix[i]|[j]|[7]

Save the vertical pixel value of the image where ST was calculated

to master array

all pixel data multi image[k][8] = image matrix[i][]j][8]
Save the ST in kelvin considering the MODIS emissivity of the land
surface

to master array

all _pixel data_multi_ image[k][9] = image matrix[i][j]|[9]

Save the ST in degC considering the MODIS emissivity of the land
surface to

master array

all pixel data multi image[k]|[10] = image matrix[i][j][10]

break

return all pixel data multi_ image

Calculate the start time of the script
start = time.time ()

Directory where RAW ’DJI XXX.jpg’' images to process are located
directory = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018 /Rawlmages’

Return the number of images in ’'Rawlmages’ directory

numFiles = sum([len(files) for r, d, files in os.walk(directory)])

Loop through each thermal image in the ’'Rawlmages’ directory
for file in os.listdir (directory):
Read the filename that would be shown in the Linux Terminal
filename = os.fsdecode(file)

print (’The_Image_being_processed _now_is:_'+str(filename))

Extract variables in image metadata used for georeferencing calculations

Extract GPS Latitude from image via the Linux terminal with ExifTool

(ExifTool converts to decimal degrees)

Latitude = subprocess.Popen(|"exiftool_—b_—GPSLatitude_" + directory + "/" + filename],
shell=True, stdout=subprocess.PIPE).communicate() [0]

Decode Latitude to data type string

Latitude = Latitude.decode("utf—8")

Convert from string to float

Latitude = float (Latitude)

Extract GPS Longitude from image via the Linux terminal with ExifTool

(ExifTool converts to decimal degrees)

Longitude = subprocess.Popen(["exiftool_—b_—GPSLongitude_" + directory + "/" + filename
] ’

shell=True, stdout=subprocess.PIPE).communicate() [0]

105

Decode Longitude to data type string
Longitude = Longitude.decode ("utf—8")
Convert from string to float

Longitude = float (Longitude)

Extract camera Gimbal Roll Degree from image via the Linux terminal with ExifTool
gRollDeg = subprocess.Popen(["exiftool_—b_—GimbalRollDegree_" + directory + "/" +
filename |,
shell=True, stdout=subprocess.PIPE).communicate() [0]
Decode Gimbal Roll Degree to data type string
gRollDeg = gRollDeg.decode ("utf—8")
Convert from string to float
gRollDeg = float (gRollDeg)

Extract camera Gimbal Yaw Degree from image via the Linux terminal with ExifTool
gYawDeg = subprocess.Popen(["exiftool_—b_—GimbalYawDegree_" + directory + "/" + filename
1,
shell=True, stdout=subprocess.PIPE).communicate() [0]
Decode Gimbal Yaw Degree to data type string
gYawDeg = gYawDeg.decode ("utf—8")
Convert from string to float

gYawDeg = float (gYawDeg)

Extract camera Gimbal Pitch Degree from image via the Linux terminal with ExifTool
gPitchDeg = subprocess.Popen(["exiftool_—b_—GimbalPitchDegree_" + directory + "/" +
filename |,
shell=True, stdout=subprocess.PIPE).communicate() [0]
Decode Gimbal Pitch Degree to data type string
gPitchDeg = gPitchDeg.decode("utf—8")
Convert from string to float
gPitchDeg = float (gPitchDeg)

Extract Flight (Gondola) Roll Degree from image as recorded by N3 via the Linux
terminal with ExifTool

fRollDeg = subprocess.Popen(["exiftool_—b_—FlightRollDegree_" + directory + "/" +
filename |,

shell=True, stdout=subprocess.PIPE).communicate() [0]

Decode Flight Roll Degree to data type string

fRollDeg = fRollDeg.decode("utf—8")

Convert from string to float

fRollDeg = float (fRollDeg)

Extract Flight (Gondola) Yaw Degree from image as recorded by N3 via the Linux
terminal with ExifTool

fYawDeg = subprocess.Popen (["exiftool_—b_—FlightYawDegree_" + directory + "/" + filename
I

shell=True, stdout=subprocess.PIPE).communicate() [0]

Decode Flight Yaw Degree to data type string

fYawDeg = fYawDeg.decode ("utf—8")

Convert from string to float

fYawDeg = float (fYawDeg)

106

Extract Flight (Gondola) Pitch Degree from image as recorded by N3 via the Linux
terminal with ExifTool

fPitchDeg = subprocess.Popen (["exiftool_—b_—FlightPitchDegree_" + directory + "/" +
filename |,

shell=True, stdout=subprocess.PIPE).communicate() [0]

Decode Flight Pitch Degree to data type string

fPitchDeg = fPitchDeg.decode("utf—8")

Convert from string to float

fPitchDeg = float (fPitchDeg)

#

Filtering Parameters for GPS georeferencing:

If Gondola Roll > +/— 45 deg (since camera is self stabilized, roll should be minimal)

If Gondola tilt (fPitchDeg) is > +45 degrees or < —135 degrees (as per mechanical
range of

Zenmuse XT:https://www. dji.com/zenmuse—xt/info) This can affect the self
stabilization of the camera

If latitude or longitude = 0 degrees, Longitude > 180 degrees or

Longitude < 180 degrees, Latitude > 90 degrees or Latitude < 90 degrees

If Camera Gimbal pitch is >= to 0 degrees (center of the image), GPS georeferencing

will not work as the camera line of sight will extend to the sky

if fRollDeg > 45 or fRollDeg < —45 or fPitchDeg > 45 or fPitchDeg < —135 or gPitchDeg >=
0:
continue

elif Latitude <= 0 or Latitude > 90 or Latitude < —90:
continue

elif Longitude = 0 or Longitude > 180 or Longitude < —180:
continue

If the gimbal pitch plus half of the vertical field of view is <= —76 degrees, then
skip the image

If this was not included, the bottom of the image could theoretically be

positioned behind the camera which could complicate calculations

if gPitchDeg <= —76:

continue

If gimbal pitch is greater than 2 degrees, skip image
if gPitchDeg > —2:

continue

Parameters for temperature calculation

For all Planck Constants below, reference Martiny et al. 1996,

"In Situ Calibration for Quantitative Infrared Thermography":

http://qirt.gel.ulaval.ca/archives/qirt1996 /papers/001.pdf

Also reference FLIR Systems, Installation manual: FLIR A3XX and FLIR A6XX series ,
2010: http://91.143.108.245/Downloads/Flir /Dokumentation/T559498%a461 Manual.pdf

107

Get Planck Rl constant from image metadata with ExifTool via Linux terminal

R1 = subprocess.Popen(["exiftool_—b_—PlanckR1_" + directory + "/" + filename],
shell=True, stdout=subprocess.PIPE).communicate() [0]

Decode Planck Rl constant to data type string

R1 = R1l.decode("utf—8")

Convert from string to float

R1 = float (R1)

Get Planck R2 constant from image metadata with ExifTool via Linux terminal

R2 = subprocess.Popen(["exiftool_—b_—PlanckR2_" + directory + "/" + filename],
shell=True, stdout=subprocess.PIPE).communicate() [0]

Decode Planck R2 constant to data type string

R2 = R2.decode("utf—8")

Convert from string to float

R2 = float (R2)

Get Planck B constant from image metadata with ExifTool via Linux terminal

B = subprocess.Popen (["exiftool_—b_—PlanckB_" + directory + "/" + filename],
shell=True, stdout=subprocess.PIPE).communicate() [0]

Decode Planck B constant to data type string

B = B.decode("utf—-8")

Convert from string to float

B = float (B)

Get Planck O constant from image metadata with ExifTool via Linux terminal

planck O = subprocess.Popen(["exiftool _—b_—PlanckO_" + directory + "/" + filename],
shell=True, stdout=subprocess.PIPE).communicate() [0]

Decode Planck O constant to data type string

planck O = planck O.decode("utf—8")

Convert from string to float

planck_ O = float (planck_O)

Get Planck F constant from image metadata with ExifTool via Linux terminal

F = subprocess.Popen(["exiftool_—b_—PlanckF_" + directory + "/" + filename],
shell=True, stdout=subprocess.PIPE).communicate() [0]

Decode Planck F constant to data type string

F = F.decode("utf—8")

Convert from string to float

F = float (F)

#

The next few lines is for TriSonica Altitude calculations to derive TANAB2 altitude
above ground level

Need to call in the date from each picture and convert to day of year

(doy) in minutes, then the hours in minutes and add the minutes

Next,find the closest doy in TriSonica doy, return the index with the closest

value to identify the altitude of TANAB2.

Get date and time when pictures were taken

1If the following variables do not exist as a local variable ,

108

then initialize them (this only occurs for the first image)
if ’'Year’ not in locals():

Year = numpy.empty (numFiles, dtype=object)

Month = numpy.empty (numFiles, dtype=object)

Days = numpy.empty (numFiles, dtype=object)

Hour = numpy.empty (numFiles, dtype=object)

Minutes = numpy.empty (numFiles, dtype=object)

Get date and time from images via the Linux terminal with ExifTool
dates = subprocess.Popen(|"exiftool_—b_—DateTimeOriginal_" + directory + "/" + filename
I
shell=True, stdout=subprocess.PIPE).communicate() [0]
Convert dates to data type string
dates = str(dates)
Slice string to only include date and time
print (’The_Image_Date_and_Time_is:_’'+str(dates[2:21]))
Date & time as ’YYYY:MM:DD HH:MM: SS’format
dates = dates|[2:21]
Convert date format to date time from string
dates = datetime.datetime.strptime (dates, "%Y:%m:%d_%dL%M:%S")

Separate image date and time into variables and change data type from datetime to
string

yr = str(dates.year)

mnth = str (dates.month)

day = str(dates.day)

hr = str(dates.hour)

minute = str(dates.minute)

#

Assign the Base Altitude (elevation above sea level) for each TANAB2 launch location
(MFT, Berm, and Mine for May 2018 campaign)
Estimated elevations from Google Earth,

Had to convert GPS coordinates to decimal degrees from Degrees Minutes Seconds via:
https://www.latlong.net/degrees—minutes—seconds—to—decimal—degrees ,

also: https://www. fcc.gov/media/radio/dms—decimal

Latitude of TANAB2 MFT Launch

BaseLatMFT = XX.XXXXXXXX

Longitude of TANAB2 MFT Launch

BaseLonMFT = —XXX.XXXXXXXX

Elevation of land above sea level of TANAB2 MFT Launch

BaseAItMFT = 398 # |[m]|

Latitude of TANAB2 Berm Launch

BaseLatBerm = XX.XXXXXXXX

Longitude of TANAB2 Berm Launch

BaseLonBerm = —XXX.XXXXXXXX

Elevation of land above sea level of TANAB2 Berm Launch
BaseAltBerm = 337 # [m]

109

Latitude of TANAB2 Mine Launch

BaseLatMine = XX.XXXXXXXX

Longitude of TANAB2 Mine Launch

BaseLonMine = —XXX.XXXXXXXX

Elevation of land above sea level of TANAB2 Mine Launch
BaseAltMine = 317 # [m]|

Assign all Base Latitude/Longitude/Altitude into a corresponding array for simplicity
BaseLat = [BaseLatMFT, BaseLatBerm, BaseLatMine|

Change BaseLat from type list to type numpy array
BaseLat = numpy. asarray (BaseLat)
BaseLon = [BaseLonMFT, BaseLonBerm, BaseLonMine]

Change BaseLon from type list to type numpy array
BaseLon = numpy.asarray (BaseLon)
BaseAlt = [BaseAItMFT, BaseAltBerm, BaseAltMine |

Initialize array for distance between two geographic locations

For each image, reinitialize arrays

The goal is the identify where the TANAB2 was launched from (MFT, Berm, or Mine)
distance LaunchSite TANAB = numpy. zeros (3)

Equatorial radius Radius of earth in km: https://nssdc.gsfc.nasa.gov/planetary/
factsheet /earthfact .html
Radius Earth = 6378.1

To find distance between two pairs of latitudes and longitudes, use the Haversine
function

for i in range(0, len(BaseLat)):

The geographic location of the TANAB2 launch location |[radians|
launchSite lat rads = math.radians(BaseLat[i])

launchSite lon rads = math.radians (BaseLon[i])

The geographic location of the gondola/camera [radians]
FLIR image lat rads = math.radians(Latitude)
FLIR image lon rads = math.radians(Longitude)

Calculate the distance between the latitude and the longitude between the two
coordinates

delta lat rads = FLIR image lat rads — launchSite lat rads

delta lon_rads

FLIR image lon_ rads — launchSite lon_rads

Assign two variables to simply haversine formula

a_ launch = math.sin(delta lat rads / 2)%x2 + cos(launchSite lat rads) = \
cos (FLIR image lat rads) * sin(delta lon rads / 2)=*x2

¢_launch = 2 % math.atan2(sqrt(a_launch), sqrt(1 — a_launch))

distance_LaunchSite_ TANAB [i] = c_launch % Radius_Earth

Find smallest value in distance and assign BaseAltitude of launch to each image

110

BaseAlt idx = distance LaunchSite TANAB. tolist () .index (min(distance LaunchSite TANAB))

Initialize BaseAltitude variable as a type float variable
BaseAltitude = 0.00000

If the minimum index returned was 0, the TANAB2 was launched at MFT, therefore assign
the BaseAltitude as MFT BaseAlt above sea level
if BaseAlt idx = 0:

BaseAltitude = BaseAlt[0]

If the minimum index returned was 1, the TANAB2 was launched at the Berm, therefore

assign
the BaseAltitude as Berm BaseAlt above sea level
elif BaseAlt idx =— 1:

BaseAltitude = BaseAlt[1]
If the minimum index returned was 2, the TANAB2 was launched at the Mine, therefore

assign
the BaseAltitude as Mine BaseAlt above sea level
elif BaseAlt idx =— 2:

BaseAltitude = BaseAlt[2]

else:
print (’Something_is_wrong_with_the_code_above’)

print (’The_Base_Altitude_above_sea_level_for_the TANAB_launch_site_is:_’+str(
BaseAltitude)+ ’_[m] 7)

Call in averaged data extracted from TriSonica

(manual copying/pasting was completed to created the compiled averaged file.)

As of Sept 20/2018: includes average temperature from balloon flights and fix for
second averaged
data where the 0 second was averaged with the 59 second.
trisonica avg fileName = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /TriSonica/’ \
’TriSonica May2018 Altitudes averaged.txt’

Call in TriSonica averaged data

trisonica avg = numpy.genfromtxt (trisonica avg fileName, usecols=[5,7,13])

Call in second averaged data column (A data value is available for every second)
TriSonica recorded data at 10Hz, averaged these values about each whole second

trisonica seconds = trisonica_avg|[:,0]

Call in the previously calculated day of the year (from Jan. 1/2018) in minutes
trisonica_doy = trisonica_avg|[:,1]

Calculate the day of year in seconds (from Jan. 1/2018)
Initialize TriSonica doy in terms of seconds (soy)

trisonica_soy = numpy.zeros (len(trisonica doy))

Convert from minute doy to second doy

for i in range(0, len(trisonica seconds)):

111

trisonica soy[i]| = (trisonica doy[i]*60) + trisonica seconds|i]

Call in the TriSonica derived altitude from pressures. The altitude is relative to the
land surface

(Base Altitude must be added to get altitude above sea level)

trisonica altitude = trisonica_ avg|:,2]

Day/hour /minute in May when picture was taken (some variables may be redundant as the
day,

hour and minute from each image was assigned to variables above)

month picture = dates.month

day picture = dates.day

hour picture = dates.hour

minute picture = dates.minute

seconds picture = dates.second

Initialize doy seconds for pictures

doy seconds_picture = 0

Convert day/hour/minute into doy seconds based on the day the picture was recorded (
day picture)
Assuming month of May in 2018
if day picture = 5:
doy seconds picture = (((125%24%60)+(hour picture*60)+minute picture)*60)+
seconds picture

elif day picture — 6:
doy seconds picture = (((126%24%60)+(hour picture*60)+minute picture)*60)+
seconds _picture

elif day picture =— 7:
doy seconds picture = (((127%24%60)+(hour picture*60)+minute picture)*60)+
seconds picture

elif day picture =— 8:
doy seconds picture = (((128%24%60)+(hour picture*60)+minute picture)*60)+
seconds picture

elif day picture = 9:
doy seconds picture = (((129%24%60)+(hour picture*60)+minute picture)*60)+
seconds picture

elif day picture — 10:
doy seconds picture = (((130%24%60)+(hour picture*60)+minute picture)*60)+
seconds picture

elif day picture — 11:
doy seconds picture = (((131%24%60)+(hour picture*60)+minute picture)*60)+

seconds picture

elif day picture — 12:
doy seconds picture = (((132%24%60)+(hour picture*60)+minute picture)*60)+

112

seconds picture

elif day picture = 13:
doy seconds picture = (((133%24%60)+(hour picture*60)+minute picture)*60)+

seconds picture

elif day picture =— 14:
doy seconds picture = (((134%24%60)+(hour picture*60)+minute picture)*60)+
seconds picture

elif day picture =— 15:
doy seconds picture = (((135%24%60)+(hour picture*60)+minute picture)*60)+

seconds picture

elif day picture =— 16:
doy seconds picture = (((136%24%60)+(hour picture*60)+minute picture)*60)+

seconds picture

elif day picture =— 17:
doy seconds picture = (((137%24%60)+(hour picture*60)+minute picture)*60)+

seconds picture

elif day picture =— 18:
doy seconds picture = (((138%24%60)+(hour picture*60)+minute picture)*60)+
seconds picture

elif day picture — 19:
doy seconds picture = (((139%24%60)+(hour picture*60)+minute picture)*60)+

seconds _picture

May 21st was the day the TriSonica did not work properly,,, it stopped around noon.
Extract absolute altitude from the image metadata with ExifTool and
subtract from Mine Base Alt (This operation is coded below)
elif day picture — 21:
print (’Altitude_will _be_dealt_with_via_extracting_absolute_alt_from_image’
> &_calc_the_absolute_of_(image_Alt_—_Mine_Base_Alt)’)

elif day picture = 23:
doy seconds picture = (((143%24%60)+(hour picture*60)+minute picture)*60)+

seconds picture

elif day picture — 24:
doy seconds picture = (((144%24%60)+(hour picture*60)+minute picture)*60)+
seconds picture

elif day picture =— 26:
doy seconds picture = (((146%24%60)+(hour picture*60)+minute picture)*60)+

seconds picture
elif day picture =— 27:

doy seconds picture = (((147%24%60)+(hour picture*60)+minute picture)*60)+

seconds picture

113

elif day picture = 30:
doy seconds picture = (((150%24%60)+(hour picture*60)+minute picture)*60)+

seconds picture

elif day picture =— 31:
doy seconds picture = (((151%24%60)+(hour picture*60)+minute picture)*60)+
seconds picture

else:

print (’More_Dates_need_to_be_included_above’)

Initialize delta doy in seconds (soy) variable
(difference between image capture time and TriSonica data time index)

delta soy = numpy.zeros(len(trisonica doy))

Fix for the day the TriSonica stopped measuring, Use Altitude recorded by N3 and saved
in image metadata
if day picture = 21:
Call in Positioning Data
GPS Altitude (meters above sea level (msl))
Altitude = subprocess.Popen(|["exiftool_—b_—GPSAltitude_" + directory + "/" +
filename],
shell=True, stdout=subprocess.PIPE).communicate() [0]
Decode Altitude to data type string
Altitude = Altitude.decode("utf—8")
Convert from string to float
Altitude = float (Altitude)

Subtract Base Altitude from absolute altitude
Altitude AGL = abs(Altitude — BaseAltMine)

Match DOY second indices from second averaged file & each individual image

Loop through averaged doy indices from TriSonica data

for i in range(0, len(trisonica_ soy)):
If the image is dated May 21, break loop as TriSonica
data is not available on this date (use N3 data instead)
if day picture =— 21:
break
else:
Loop through Base Altitude indices

Calculate difference between doy times

(each individual image and each second averaged TriSonica index

delta soy|[i]| = abs(doy seconds picture — trisonica_ soy[i])

When at the last value of the TriSonica averaged file ,

find index of minimum value and write corresponding BaseAlt to the Altitude

variable
Also record the index of the Base Altitude file
if i = (len(trisonica_ soy) — 1):

Altitude AGL = trisonica_altitude [numpy.argmin(delta soy) |

114

print (’The_Altitude_above_the TANAB_launch_location_is:_’+str (Altitude AGL)+’_[m] ")

#

Set up variables that are used within the georeferencing calculations below

Reference this image for Yaw, Roll and Pitch frame of

references: http://blog—gh4—france.over—blog.com/2015/12/test —du—dji—ronin—m-sur—le—
gh4 . html

Yaw of gimbal is calibrated to the True North, it is not necessary to add the flight
yaw angle

Yaw = gYawDeg

Assume the gimbal roll is zero (cannot be controlled)
Roll = fRollDeg

Pitch and Roll angles are independent of each other, i.e. if one changes

(ex. the flight parameter), it will directly affect the gimbal but it will

not be accounted for by the gimbal pitch/roll variable

Positive upward from horizontal; usually negative for lines of sight below horizontal
Pitch = gPitchDeg

Field of View angles in degrees for the 19 mm Zenmuse XT thermal
camera (Specifications: https://www.dji.com/ca/zenmuse—xt/specs)
Vertical Field of View [degree]

FoVV = 26
Horizontal Field of View [degree|
FoVH = 32

When the camera lens is exactly perpendicular to the ground (pointed towards to
horizon),

the resulting pitch angle for the center of an image is 0 degrees

If the camera is tilted towards the ground, the pitch angle is negative,

if camera tiled upwards, the pitch angle is positive

References for mechanical rotational limits of the Zenmuse XT: https://www. dji.com/
zenmuse—xt /info

Find GPS coordinates for middle (tilt center),

top middle (tilt top), and bottom middle (tilt bottom) of each image

These three values are all related to the gimbal pitch angle from the image metadata

and the physical vertical field of view for the 19mm lens camera

Tilt angle [degree]

tilt _center = Pitch

tilt bottom = Pitch—(FoVV/2)

tilt _top = Pitch+(FoVV/2)

Need to check if the sky will be in the image. Images with a top tilt
angle will have their tilt angle adjusted to include pixels below an assumed pixel
row which is a direct function of an assumed tilt angle

The center tilt angle does not need to be considered as images

115

with a gimbal pitch angle >= 0 were already skipped over in the code near the top of
the script

If top of the image has a tilt angle >= 0 then, assign an assumed tilt angle is
assigned
to omit pixels that may contain the sky (i.e. above horizontal)
if tilt _top >= —1:
print ("The_tilt _angle_for_the_top_of_the_image_is:_’ + str(tilt top))
Change tilt angle so it is equal to an arbitrary tilt angle. —1 deg was assumed
and can be changed.
tilt top = —1

)

print (’The_top_tilt _angle_(deg)_for_the_image_is:_ ’ + str(tilt top))
str(tilt center))
str(tilt bottom))

print (’The_center_tilt _angle_(deg)._for_the_image_is:_

+
print (’The_bottom_tilt _angle_(deg)_for_the_image_is:_’ +

#

Used this section of code to implement a sensitivity analysis. Can be revisited if

required .

Apply an offset to each Pitch angle used during the sensitivity analysis as of Dec.
5/2018.

December 17, 2018: After completing a few tests, the developed method does not need
the

tilt angle adjusted, therefore set theta offset as 0

thetaOffset = 0

theta top_degrees = tilt top—thetaOffset
theta center degrees = tilt center—thetaOffset

theta bottom degrees = tilt_bottom—thetaOffset

#

Convert theta angles to radians. All trigonometric functions in Python assume that
angles are in radians

theta top rads = math.radians(theta top degrees)

theta center rads = math.radians(theta center degrees)

theta bottom rads = math.radians(theta bottom degrees)

Note: If heading is 0 deg or 360 deg = north exactly, if 90 deg = -east, 180 deg =
south, 270 deg = west
Set Heading variable for georeferencing calculations

heading = Yaw

Adjust heading if less than 0 degrees, add 360 degrees, so the angles will always be
positive

if heading < 0:
heading = heading + 360

116

Convert Latitude/Longitude/Yaw to radians for georeferencing calculations
Yaw_ rads = math.radians (heading)

Latitude rads = math.radians(Latitude)

Longitude rads = math.radians (Longitude)

Call the LandSlopeEquations Function

Function fits a polynomial relating the elevation above sea

level for the land in the 8 cardinal directions at each TANAB2 launch site to

a distance away from the launch site (up to 10km away from the origin of each TANAB2
launch)

ground elev ASL fitted, ground elev. AGL = LandSlopeEquations(BaseAltitude, heading)

Calculate latitude/longitude of top/virtual top of image

Find coefficients for line of sight from camera that intersects with the ground

line of sight = numpy.zeros (4)

Find slope of the line associated with line of sight which is negative because
theta top is negative

line of sight[2] = math.tan(theta top rads)

Find altitude of the TANAB2 from the ground.

This is the y—intercept of the line of sight with respect to origin located at ground
level

line of sight[3] = Altitude AGL

Create equations and detrend the data

Create a numeric sequence starting at 0, ending at 30,000,

the number of indices to use is equal to the length of ground elev_ AGL
(as calculated in LandSlopeEquations function) (given information ,

the numerical difference between each value is calculated by the function
x_test represents distance in meters away from the TANAB2 launch site

x _test = numpy.linspace (0, 30000, len(ground elev. AGL))

Make a polyfit of the x test distance away from TANAB2 launch site with

respect to the detrended land surface elevation

Return the coefficients for a 3rd order polynomial of the detrended

surface elevation with respect to distance away from the TANAB2 launch site

land _elevation_equation_AGL = numpy. polyfit (x_test,ground_elev_AGL,3)

Find the roots and select the smallest positive value to be the horizontal

distance away from the TANAB2 launch site

coefficients of intersection = land elevation equation AGL — line of sight

RootsTop = numpy.roots(coefficients of intersection)

print (’The_roots_are:_’ + str (Roots Top))

print (’The_altitude_of_the_balloon_above_grade_level_is:_ +str(line of sight[3]))
(

print (’The_Tilt_angle_is:_ '+str (math.degrees(theta top degrees)))

Create an array for the roots that are real numbers (not complex)
real roots top = numpy.empty(3)

real roots top[:] = numpy.nan
Check for roots that are not complex numbers and write real roots to array

for i in range(0, len(Roots Top)):
if numpy.iscomplex (Roots Top|[i]) = False:

117

real roots top|[i] = Roots Top|i]
print (’The_Real_Roots_for_the_Top_Center_are:_’+str(real roots top))

Initialize a variable that counts the number of non real roots

root counter = 0

Identify the number of non real roots
for non real root in range(0, len(Roots Top)):
if real roots top|non_real root| < 0 or numpy.isnan(real roots top[non_ real root])
— True:
root counter += 1

If no real roots exist, then continue to the next image
if root_counter == len (Roots_Top):

continue

Choose the root that is the smallest real positive solution to be the distance away
from the TANAB2 launch location to

the top of the projected image on the land surface

d top = min(i for i in real roots top if i > 0)

Convert d_top to km

d top km = d_top/1000

Get the latitude/longitude for the top, center and bottom of each image via the
variation of the Haversine Formula

Formulas for latitude/longitude are from:

https://www.movable—type.co.uk/scripts/latlong.html, as of Aug.17/2018, completed a
test to

ensure that these formulas are correct

Calculate latitude/longitude (lat2/lon2) for top center pixel of the image

Note: Ensure all angles are in radians before using a trigonometric function
lat2 top = asin(sin(Latitude rads)*cos(d_top km/Radius Earth)+
cos(Latitude rads)*sin(d_top km/Radius Earth)xcos(Yaw_rads))

lon2 top = Longitude rads + atan2(sin(Yaw_ rads)xsin(d_top km/Radius_ Earth)=cos(
Latitude rads),
cos(d_top km/Radius Earth)—sin(Latitude rads)*sin(lat2 top))

Convert coordinates to decimal degrees

lat2 top = math.degrees(lat2 top)
lon2 top = math.degrees(lon2_ top)

#

Calculate latitude/longitude for the center of the image

Find coefficients for line of sight from camera that intersects with the ground
line of sight = numpy.zeros (4)

line of sight[2] = math.tan(theta center rads)

line _of_sight [3] Altitude AGL

118

Create equations and detrend the data

Create a numeric sequence starting at 0, ending at 30,000,

the number of indices to use is equal to the length of ground elev. AGL

(as calculated in LandSlopeEquations function)

(given information, the numerical difference between each value is calculated by the
function

x _test represents distance in meters away from the TANAB2 launch

x_test = numpy.linspace (0, 30000, len(ground elev. AGL))

Make a polyfit of the x test distance away from TANAB2 launch site with

respect to the detrended land surface elevation

Return the coefficients for a 3rd order polynomial of the detrended

surface elevation with respect to distance away from the TANAB2 launch site

land _elevation _equation AGL = numpy. polyfit (x_test, ground elev_AGL, 3)

Find the roots and select the smallest positive value to be the horizontal
distance away from the TANAB2 launch site

coefficients _of _intersection = land_elevation_equation_AGL — line_of_sight
Roots Center = numpy.roots(coefficients of intersection)

(’The_roots_are:_’ + str(Roots Center))

print (’The_altitude_of_the_balloon_is:_’ + str(line_ of sight[3]))

print (’The_Tilt_angle_is:_’ + str(math.degrees(theta center rads)))

print

Create an array for the roots that are real numbers (not complex)

real roots center = numpy.empty(3)
real roots center [:] = numpy.nan
for i in range(0, len(Roots Center)):
if numpy.iscomplex (Roots Center[i]) = False:
real roots_center[i] = Roots_Center|[i|

Initialize a variable that counts the number of non real roots

root _counter = 0

Identify the number of non real roots
for non real root in range(0, len(Roots Center)):
if real_roots_center [non_real root] <= 0 or numpy.isnan(real_ roots_center |
non_real_root]) == True:

root counter += 1

If no real roots exist, then continue to the next image
if root counter = len(Roots Center):

continue

Choose the root that is the smallest real positive solution to be the distance
away from the TANAB2 launch location to the center of the projected image on the land
surface

d center = min(i for i in real roots center if i > 0)

Convert d_center to km
d_center_km = d_center / 1000

119

Formulas for latitude/longitude are from:

https://www.movable—type.co.uk/scripts/latlong.html, as of Aug.17/2018, completed a
test to

ensure that these formulas are correct

Calculate latitude/longitude (lat2/lon2) for the middle center of the image

Note: Ensure all angles are in radians before using a trig function
lat2 center = asin(sin(Latitude rads)xcos(d_center km/Radius Earth)+
cos (Latitude rads)xsin(d_center km/Radius Earth)=xcos(Yaw rads))

lon2 center = Longitude rads + atan2(sin(Yaw_ rads)xsin(d_center km/Radius_ Earth)xcos(
Latitude rads),
cos(d_center km/Radius Earth)—sin (Latitude rads)=xsin (
lat2 center))

Convert back to decimal degrees

lat2 center = math.degrees(lat2 center)
lon2 center = math.degrees(lon2 center)
#

Calculate latitude/longitude for the center of the image

Find coefficients for line of sight from camera that intersects with the ground
line of sight = numpy.zeros (4)

line of sight[2] = math.tan(theta bottom rads)

line of sight [3] = Altitude AGL

Create equations and detrend the data

Create a numeric sequence starting at 0, ending at 30,000,

the number of indices to use is equal to the length of ground elev_ AGL

(as calculated in LandSlopeEquations function)

(given information, the numerical difference between each value is calculated by the
function

x_test represents distance in meters away from the TANAB2 launch site

X _test = numpy.linspace (0, 30000, len(ground elev_ AGL))

Make a polyfit of the x test distance away from TANAB2 launch site with

respect to the detrended land surface elevation

Return the coefficients for a 3rd order polynomial of the detrended

surface elevation with respect to distance away from the TANAB2 launch site

land elevation equation AGL = numpy.polyfit(x test, ground elev_ AGL, 3)

Find the roots and select the smallest positive value to be the horizontal
distance away from the TANAB2 launch site
coefficients of intersection = land elevation equation AGL — line of sight

Roots_Bottom = numpy.roots(coefficients of intersection)
print (’The_roots_are:_’ + str (Roots Bottom))

print (’The_altitude_of_the_balloon_is:_’ + str(line of sight[3]))
print (’The_Tilt_angle_is:_’ + str(math.degrees(theta bottom rads)))

120

Create an array for the roots that are real numbers (not complex)

real_roots_bottom = numpy.empty (3)
real roots bottom [:] = numpy.nan
for i in range(0, len(Roots Bottom)):
if numpy.iscomplex (Roots Bottom|[i]|) = False:
real roots bottom|[i]| = Roots Bottom]|1i]

]

Initialize a variable that counts the number of non real roots

root counter = 0

Identify the number of non real roots
for non real root in range(0, len(Roots Bottom)):
if real roots_bottom [non_ real root] < 0 or numpy.isnan (real roots_ bottom |
non_real root]) = True:

root counter += 1

If no real roots exist, then continue to the next image
if root_counter = len (Roots_Bottom):

continue

Choose the root that is the smallest real positive solution to be the distance

from the TANAB2 launch location to the bottom of the projected image on the land
surface

d bottom = min(i for i in real roots bottom if i > 0)

Convert d_bottom to km

d_bottom km = d_bottom / 1000

Formulas for latitude/longitude are from: https://www.movable—type.co.uk/scripts/
latlong . html)
Calculate latitude/longitude (lat2/lon2) for the center bottom pixel of the image
Note: Ensure all angles are in radians before using a trigonometric function
lat2 bottom = asin(sin(Latitude rads)*cos(d_bottom km/Radius Earth)+
cos(Latitude rads)*sin(d_bottom km/Radius Earth)xcos(Yaw_rads))

lon2 bottom = Longitude rads + atan2(sin(Yaw_rads)s*sin(d_bottom km/Radius Earth)sxcos (
Latitude rads),
cos(d_bottom km/Radius Earth)—sin (Latitude rads)=xsin (
lat2 bottom))

Convert back to decimal degrees
lat2 bottom = math.degrees (lat2 bottom)
lon2 bottom = math.degrees(lon2 bottom)

Print Results

print (’The_Altitude_of_the_balloon_with_respect_to_grade_level_is:_’+str (Altitude AGL)+’
\n")

print (’The_Origin_lat_is:_’+str(Latitude))

print (’The_Origin_lon_is:_’'+str (Longitude)+’\n")

print (’The_lat top_is:_’ + str(lat2 top))

print (’The_lon top_is:_’ + str(lon2 top) + ’'\n’)

print (’The_lat2 center_is:_ " + str(lat2 center))

wn

121

)

print (’The_lon2 center_is:_ str(lon2 center) + ’\n’)

+ (
print (’The_lat2 bottom_is:_ " + str(lat2 bottom))
+ (

(
(tr
print (’The_lon2 bottom_is:_ "’ str(lon2 bottom) + ’\n’)
print (’The_d center_is:_’+str(d_center))
print (’The_d bottom_is:_’+str (d_ bottom))
print (’The_d top_is:_’+str(d _top))
4

Calculate GPS coordinates for pixels along the edge/corners of the image

Find the top right and top left latitude/longitude for each image

Find the geographic distance in km for both the top right and left of each image
d_geographic _top km = d_top km/cos(math.radians (FoVH / 2))

For pixels on the left edge of the image
Yaw left rads = math.radians(heading — (FoVH / 2))

Ensure this angle is strictly positive
if Yaw_left_rads < O:
Yaw left rads = Yaw left rads + 2 x numpy. pi
For pixels on the right edge of the image
Yaw right rads = math.radians(heading + (FoVH / 2))

Ensure this angle is strictly less than 360 degrees
if Yaw right rads > 2 % numpy.pi:
Yaw right rads = Yaw_ right rads — 2 % numpy. pi

Find the latitude/longitude for the top left pixel of the image
lat2 top left rads = asin(sin(Latitude rads) * cos(d_geographic top km / Radius_ Earth) +
cos(Latitude rads) * sin(d_geographic top km / Radius Earth) =x
cos(Yaw_left rads))

lon2 top left rads = Longitude rads + atan2(sin(Yaw_left rads)
% sin (d_geographic_top km / Radius_ Earth) =
cos(Latitude rads), cos(d _ geographic top km
/ Radius Earth)
— sin(Latitude rads) * sin(
lat2 top left rads))

Convert back to decimal degrees
lat2 top left = math.degrees(lat2 top left rads)
lon2 top left = math.degrees(lon2 top left rads)

Find the latitude/longitude for the top right pixel of the image
lat2 top right rads = asin(sin(Latitude rads) = cos(d_geographic top km / Radius Earth)
+ cos(Latitude rads)
* sin (d_geographic_top_km / Radius_Earth) x cos(
Yaw right rads))

122

lon2 top right rads = Longitude rads + atan2(sin(Yaw right rads)
x sin (d_geographic_top km / Radius_ Earth) =x
cos(Latitude rads),
cos(d_geographic_top km / Radius Earth)
— sin(Latitude rads) * sin(
lat2 top right rads))

Convert back to decimal degrees
lat2 top right = math.degrees(lat2 top right rads)

lon2 top right = math.degrees(lon2 top right rads)

#*

Find the geographic distance in km for both the center right and left of each image

d geographic_center km = d_center _km / cos(math.radians(FoVH / 2))

Find the latitude/longitude for the center left pixel of the image
lat2 center left rads = asin(sin(Latitude rads) % cos(d_geographic_ center km /
Radius_Earth) + cos(Latitude rads)
* sin(d_geographic_center _km / Radius_Earth) x cos(
Yaw left rads))

lon2 center left rads = Longitude rads + atan2(sin(Yaw_left rads)
* sin(d_geographic center km /
Radius Earth) * cos(Latitude rads),
cos(d_geographic center _km / Radius_ Earth
)
— sin(Latitude rads) * sin(
lat2 center left rads))

Convert back to decimal degrees
lat2 center left = math.degrees(lat2 center left rads)

lon2 center left = math.degrees(lon2 center left rads)

Find the latitude/longitude for the center right pixel of the image
lat2 center right rads = asin(sin(Latitude rads) * cos(d_geographic_ center km /
Radius_ Earth) 4 cos(Latitude rads)
* sin (d_geographic_center _km / Radius_Earth) * cos(
Yaw right rads))

lon2 center right rads = Longitude rads + atan2(sin(Yaw right rads)
% sin (d_geographic center km /
Radius Earth) * cos(Latitude rads),
cos (d_geographic_center _km /
Radius_Earth)
— sin(Latitude rads) * sin(

lat2 center right rads))
Convert back to decimal degrees

lat2 center right = math.degrees(lat2 center right rads)

lon2 center right = math.degrees(lon2 center right rads)

123

:;t

Find the geographic distance in km for both the bottom right and left of each image
d_geographic_bottom km = d_bottom km / cos(math.radians(FoVH / 2))

Find the latitude/longitude for the bottom left pixel of the image
lat2 bottom left rads = asin(sin(Latitude rads) * cos(d_geographic bottom km /
Radius _Earth) + cos(Latitude rads)
* sin (d_geographic_bottom km / Radius Earth) x cos(
Yaw left rads))

lon2 bottom left rads = Longitude rads + atan2(sin(Yaw_left rads)
% sin (d_geographic_bottom km /
Radius Earth) * cos(Latitude rads),
cos (d_geographic_bottom _km / Radius_Earth
)
— sin(Latitude rads) * sin(
lat2 bottom left rads))

Convert back to decimal degrees
lat2 bottom left = math.degrees(lat2 bottom left rads)
lon2 bottom left = math.degrees(lon2 bottom left rads)

Find the latitude/longitude for the bottom right pixel of the image
lat2 bottom right rads = asin(sin(Latitude rads) = cos(d_geographic bottom km /
Radius Earth) + cos(Latitude rads)
% sin (d_geographic_bottom km / Radius_Earth) % cos(
Yaw right rads))

lon2 bottom right rads = Longitude rads + atan2(sin(Yaw_right rads)
% sin (d_geographic_bottom km /
Radius Earth) * cos(Latitude rads),
cos(d_geographic_bottom km /
Radius Earth)
— sin(Latitude rads) * sin(
lat2 bottom right rads))

Convert back to decimal degrees
lat2 bottom right = math.degrees(lat2 bottom right rads)
lon2 bottom right = math.degrees(lon2 bottom right rads)

Print calculated geographic coordinates

print (’The_lat2 top left_is:_’ + str(lat2_ top left))

print (’The_lon2 top left_is:_.’ + str(lon2 top left) + ’\n’)
r

print (’The_lat2 top right_is:_ ’ + str(lat2 top right))
print (’The_lon2 top right_is:_’ + str(lon2 top right) + ’\n’)

)

print (’The_lat2 center left_is:_ (lat2 center left))
print (’The_lon2 center left_is:_’ str(lon2 center left) + ’\n’)
r (

print (’The_lat2 center right_is:_’ + str(lat2 center right))

print (’The_lon2 center right_is:_’ + str(lon2 center right) + ’'\n’)

print
print
print
print

"The_lat2 bottom left_is:_’ + str(lat2 bottom left))
"The_lon2 bottom left_is:_’ + str(lon2 bottom left) + ’\n’)
"The_lat2 bottom right_is:_’ + str(lat2 bottom right))
"The_lon2 bottom right_is:_’ + str(lon2 bottom right) + ’'\n’)

—~ o~~~

Ik

Maximum pixel width and height of each image based on the DJI 19 mm lens Zenmuse XT
x_pixel range = 640
y_pixel range = 512

If the tilt angle for the top of the image is greater than zero and an assumed top
tilt angle was assigned,
Calculate the new pixel top row, only if the top tilt angle is > or to —1 deg
if tilt top >= —1:
Get relation between trigonometric angles and pixels
See created figures in thesis for visual reference
The following variables are all in degrees
Note: d_top was already calculated by assuming a new top which looked down
—1 degrees below the horizon
gamma = math.degrees (math.atan(d_top/Altitude AGL))
beta = 90 — abs(Pitch) 4+ (FoVV/2) — gamma
kappa = 90—(FoVV/2)
eta = 90— (FoVV/2)+beta

y_pixel top = int (((y_pixel range/2)*sin(radians(beta)))/(sin(radians(FoVV/2))x*sin (
radians (180—eta))))

print (’The_top_of_the_image_is_located_at:_'+str(y pixel top))

The value to divide the horizontal and vertical pixel resolution by
Used to calculate the maximum pixel step for the horizontal direction
delta_x_pixel = 10

delta _y pixel = 8

Returns a maximum pixel step of 64 columns/rows based on

the 19mmZenmuse XT image horizontal and vertical resolution
x_max_step = int(x_pixel range/delta x pixel)

y_max_step = int(y pixel range/delta y pixel)

Initialize matrix for singular image for pixels.
Including: x/y pixel coordinates
Nan

, latitude , longitude, temperature, and set values to

Note: The amount of data retreived per image should be less than the full image
as a result, the size of image matrix could likely be optimized
image matrix = numpy.zeros ((x_pixel range, y pixel range, 11))

image matrix [:] = numpy.nan

125

Create an array for the filename for the corresponding pixel retrieved from each image
This is required as this script does not process images from ’Rawlmages’ in
chronological order
filename image = numpy.chararray ((x_pixel range, y pixel range,l), itemsize=12)
Initialize matrix to save data from all pictures (and a separate variable for
filenames)
Check if variable exists in locals (do only for the first image)
if ’all pixel data multi image’ not in locals():
all pixel data multi_ image = numpy.zeros ((x_max_stepxy max_ stepxnumFiles, 11))
all pixel data multi_ image [:] = numpy.nan
filenames total = numpy.chararray ((x_max_ stepxy max_stepxnumPFiles, 1), itemsize=12)

Create variables to save known coordinates to
Size will depend on the number of files in the folder (numkFiles)
These variables are to contain the data for the center and edges of each image
This section of code is only executed for the 1st image processed
if ’file names array’ not in globals():

filenames

file names array = numpy.chararray (numFiles*1, itemsize=12)

file names_array[:] = b’

TANAB2 launch location

lat TANAB_ array = numpy. zeros ((numFiles, 1))
lon TANAB array = numpy. zeros ((numFiles, 1))

Top left of image

Create arrays for the latitude, longitude, and pixel locations for the top left

corner of the image
tLeft lat array = numpy.zeros ((numPFiles, 1))

tLeft lon array = numpy.zeros ((numPFiles, 1))

=

))

tLeft y pixel array = numpy.zeros ((numPFiles, 1))

tLeft x pixel array = numpy.zeros ((numFiles,

Top center of image

Create arrays for the latitude , longitude, and pixel locations for the top middle

of the image
tCenter lat array = numpy.zeros ((numPFiles, 1))
tCenter lon array = numpy.zeros ((numFiles, 1))
tCenter x pixel array = numpy.zeros ((numFiles, 1))
tCenter y pixel array = numpy.zeros ((numFiles, 1))

Top right of image

Create arrays for the latitude, longitude, and pixel locations for the top right

corner of the image
tRight lat array = numpy.zeros ((numPFiles, 1))
tRight lon array = numpy.zeros ((numFiles, 1))
tRight x pixel array = numpy.zeros ((numFiles, 1))
tRight y pixel array = numpy.zeros ((numFiles, 1))

Center left of image

126

Create arrays for the latitude, longitude, and pixel locations for the center left

edge of the image

cLeft lat array = numpy.zeros ((numFiles, 1))
cLeft lon array = numpy.zeros ((numPFiles, 1))
cLeft x pixel array = numpy.zeros ((numPFiles, 1))
cLeft y pixel array = numpy.zeros ((numPFiles, 1))

Center of image
Create arrays for the latitude , longitude, and pixel locations for the middle (

center) of the image

center lat array = numpy.zeros ((numPFiles, 1))
center lon array = numpy.zeros ((numFiles, 1))
center x pixel array = numpy.zeros ((numFiles, 1))
center y pixel array = numpy.zeros ((numFiles, 1))

Center right of image

Create arrays for the latitude, longitude, and pixel locations for the center
right edge of the image

cRight lat array = numpy.zeros ((numPFiles, 1))

cRight lon array = numpy.zeros ((numFiles, 1))

cRight x pixel array = numpy.zeros ((numFiles, 1))

cRight y pixel array = numpy.zeros ((numFiles, 1))

Bottom left of image

Create arrays for the latitude, longitude, and pixel locations for the bottom left
corner of the image

bLeft lat array = numpy.zeros ((numPFiles, 1))

bLeft lon array = numpy.zeros ((numPFiles, 1))

bLeft x pixel array = numpy.zeros ((numFiles, 1))

bLeft y pixel array = numpy.zeros ((numFiles, 1))

Bottom center image
Create arrays for the latitude, longitude, and pixel locations for the bottom

center of the image

bCenter lat array = numpy.zeros ((numPFiles, 1))
bCenter lon array = numpy.zeros ((numFiles, 1))
bCenter x pixel array = numpy.zeros ((numFiles, 1))
bCenter y pixel array = numpy.zeros ((numFiles, 1))

Bottom right of image

Create arrays for the latitude, longitude, and pixel locations for the bottom
right corner of the image

bRight lat array = numpy.zeros ((numFiles, 1))

bRight lon array = numpy.zeros ((numFiles, 1))

bRight x pixel array = numpy.zeros ((numFiles, 1))

bRight y pixel array = numpy.zeros ((numFiles, 1))

Write filenames to array. Used in kml (Google Earth) save

for j in range(0, numFiles):
if file names array[j| = ’’:

file names array|[j]| = filename

break

127

Check if the top pixel is not at the top of the image

If the gimbal pitch angle for the top of the image based on the recorded pitch plus

half of the FoVV is > 0 degrees, use the calculated new top pixel row as the "top" of
the image

if tilt top >= —1:
v_pixel top = y_ pixel top

else:

v_pixel top =0

Calculate and implement geometric step to determine how many vertical pixels to skip
over when calculating ST

The goal is to have higher resolution for steps at the top of the image

as pixel rows at the top of the image would result in a larger geographic distance

away from the TANAB2 as compared to pixel rows near the bottom of the image.

Data associated with pixels at the top of the image should return ST maps further away
from

the TANAB2 launch sites and result in a more even and possibly consist spatial ST map

Initialize the pixel step array

y_pixel step = numpy.zeros ((10, 1))

Identify the coefficient to use in the geometric pixel step formula
aStepGeometric = 18

Identify the constant to use in the geometric pixel step calculation
rStepGeometric = 1.41

Start at the top of the image (Row 0), if a new "top" is chosen,
a filtering loop below skips over any pixels in
y_pixel step that are out of the calculated vertical pixel range.

y _pixel step[0] = 0

The second index in the geometric step function was selected to be row 18.
y _pixel step[l] = aStepGeometric
for GeometricStep in range(2, 10):
Calculate the geometric pixel step for the 8 remaining pixels and save to the
appropriate array

y_pixel step|GeometricStep] = int(aStepGeometric % ((rStepGeometric) s**

GeometricStep))

print (’The_virtual_pixel_top_is:_’+str(v_pixel top))
print (’The_y pixel step_is_as_follows:_’+str(y pixel step))

#

This nested loop chooses pixels based on the predetermined horizontal
pixel step and the calculated geometric pixels step
Within the loop, each pixel is georeferenced with the derived

mathematical formulas between pixels and geographic distance

128

ST is calculated based on recorded pixel signal values
The outer loop represents the horizontal (column) pixel step
for i in range(0, x_pixel_range, x_max_step):
print (*The_pixel_column_number_being_processed_now_is:_’+str(i))
Initialize a counter variable to be used to correspond to the geometric step

matrix index

Count must be —1 as y pixel step[0] = 0

(if count = 0, y pixel step[1l] = 18 and if a new "top" is NOT used, j MUST equal
0!

count = —1

The inner loop represents the vertical (row) pixel step
for j in y pixel step:
Add one to the counter variable
count +=1
Check to see if the chosen geometric pixel step value is less than the virtual
pixel top,
if it is, continue to next y pixel step value
if y pixel step[count]| < v_pixel top:

continue
print (’The_pixel_row_number_being_processed _now_is:_ +str(j))

Need to convert data type of pixel step to int
j = int(j)

Print pixel location in image matrix
print (’x_Pixel_Location:_’+str(i))
print (’y_Pixel_Location:_’+str(j)+’\n’)

Pixel to Geographic distance relationship

Find Slope for line of sight for each specific pixel coordinate from the
camera to the ground

Need Beta new (tilt angle of camera given known y pixel coordinate)

Must correlate pixels to latitude/longitude ... need to calculate new beta
given pixel coordinates

From Sine Law solve for beta, Where kappa = 90—FoVV/2

Refer to diagrams of TANAB2 camera with respect to

image projection on the Earth’s surface for further clarification

kappa = 90—FoVV/2

Go from pixels to distance, Using the sine law, rearrange for Beta.
beta new rads = —lxatan (((0.5%y pixel range—j)=
sin (math.radians (0.5%xFoVV))) /(0.5%y pixel rangesxsin (
math.radians (kappa))))\
+(math.radians (0.5*FoVV))

Convert beta_new to degrees

beta _new = math.degrees(beta new rads)
Next get gamma new. This is the angle away from the horizontal axis (zero

degrees)

corresponding to the current pixel

129

gamma_ new = 90—abs(Pitch)+(FoVV/2)—beta new

gamma _new_rads = math.radians (gamma new)

Calculate the slope for line of sight through the current pixel from the
camera .

slope = (1/tan(gamma new rads))*—1

Call LandSlopeEquations Function
ground elev ASL fitted, ground elev. AGL = LandSlopeEquations(BaseAltitude ,
heading)

print (*The_slope_for_the_line_of_sight_from_the_camera_to_the_ground’
’_on_the_current_pixel_is:_ +str(slope))

Find coefficients for line of sight from camera that intersects with the
ground

line of sight pixel = numpy.zeros (4)

line of sight pixel[2] = slope

line_of sight_pixel[3] = Altitude_AGL

Create equations and detrend the data

Create a numeric sequence starting at 0, ending at 30,000,

the number of indices to use is equal to the length of ground elev_ AGL

(as calculated in LandSlopeEquations function)

(given information, the numerical difference between each value is calculated
by the function

x _test represents distance in meters away from the TANAB2 launch site

x _test pixel = numpy.linspace (0, 30000, len (ground elev. AGL))

Make a polyfit of the x test distance away from TANAB2 launch site

with respect to the detrended land surface elevation

Return the coefficients for a 3rd order polynomial of the detrended

surface elevation with respect to distance away from the TANAB2 launch site

land _elevation _equation_pixel AGL = numpy. polyfit (x_test_pixel, ground_elev_AGL,
3)

Find the roots and select the smallest positive value to be the horizontal
distance away from the TANAB2 launch site
intersections pixel = land elevation equation pixel AGL — line of sight pixel

Roots _new = numpy.roots(intersections pixel)

print (’The_roots_are:_’ + str (Roots new))

Create an array for the roots that are real numbers (not complex)
real roots new = numpy.empty (3)
real _roots_new [:] = numpy.nan
for m in range(0, len(Roots new)):
if numpy.iscomplex (Roots new[m]) = False:

real roots mnew [m] = Roots new [m]

Initialize a variable that counts the number of non real roots

130

root_counter_new = 0

Identify the number of non real roots
for non real root new in range(0, len(Roots new)):
if real roots_mnew [non_real root_new| < 0 or numpy.isnan(real roots_new|
non_real_root_new|) = True:

root counter new += 1

If no real roots exist, then continue to the next image
if root_ counter new = len (Roots new):
continue

else:

Choose the root that is the smallest real positive solution to be the

distance
from the TANAB2 launch location
d pixel proj ctr = min(n for n in real roots new if n > 0)

Convert d_center to km

d_pixel_proj_ctr_km = d_pixel proj_ctr / 1000

Put check in for d_ pixel. If > 100 km (too far), continue on to next y
pixel
if d_pixel_proj_ctr_km > 100:
continue
else:
print (’The_horizontal_geographic_pixel_distance_as’
’_projected _on_the_center_of_the_image_is:_’+str(
d_pixel proj ctr km))

Get the alpha angle. The angle away from the geographic distance away

from the TANAB2 and parallel to the camera line of sight

The alpha value is used to calculate the geographic distance away

from the TANAB2 for pixels that are not parallel to the camera line
of sight

Find the angle from the center line of the image given index i for the

current pixel
This will change the "effective" yaw angle
if i =— 0:
alpha = — FoVH/2
alpha rads = math.radians (alpha)
elif (i > 0) and (i < x_pixel range/2):
alpha = — (x_pixel range/2—i) x FoVH / (x_pixel range)
alpha rads = math.radians (alpha)
elif i = x_pixel range/2:
alpha rads = 0
elif (i > x_pixel range/2) and (i < x_pixel range):
alpha = (i — x_pixel range / 2) % FoVH / (x_pixel range)
alpha rads = math.radians (alpha)
elif i =— x_pixel range:
alpha = FoVH/2
alpha rads = math.radians (alpha)

131

print ("alpha rads_is_equal_to:_" + str(alpha rads))
print ("Yaw_rads_is_equal_to:_" + str(Yaw_ rads))

Find the d_hyp distance in km for each respective pixel
d pixel km = d_pixel proj ctr km/(cos(alpha rads))

Ensure this angle is strictly positive and less than 2xpi radians
if Yaw_ rads + alpha_ rads < O:
Yaw _ rads adjusted = Yaw_ rads + alpha rads + 2 x numpy. pi

elif Yaw right rads + alpha rads > 2 * numpy.pi:
Yaw rads_ adjusted = Yaw_rads + alpha rads — 2 * numpy. pi

else:

Yaw rads adjusted = Yaw_rads + alpha rads

print ("Yaw rads adjusted_is_equal_to:_" 4 str(Yaw rads adjusted))

Find the geographic coordinates for each specific pixel coordinate,
must add the calculated alpha to the Yaw value so we use
Yaw rads adjusted
lat2 pixel = asin(sin(Latitude rads) % cos(d_pixel km / Radius Earth) +
cos(Latitude rads)
* sin (d_pixel km / Radius Earth) * cos(
Yaw rads adjusted))
lon2 pixel = Longitude rads + atan2(sin(Yaw_ rads adjusted) = sin(
d pixel km / Radius_ Earth)
x cos(Latitude rads), cos(d_pixel km
/ Radius Earth)
— sin(Latitude rads) =* sin(
lat2 pixel))

Convert back to decimal degrees
lat2 pixel = math.degrees(lat2 pixel)

lon2 pixel = math.degrees(lon2 pixel)

print (’The_lat2 pixel_is:_ '+str(lat2 pixel)+’,_given_a_x_pixel_of:_ "+
str(i))

print (’The_lon2_pixel_is:_’+str(lon2 pixel)+’,_given_a_y_pixel_of:_ "+
str(j)+'\n")

Temperature Calculation

Some reference source on temperatures:

http://91.143.108.245/Downloads/Flir /Dokumentation/
T559498%a461 Manual . pdf

Temperature formula reference:

https://graftek.biz/system/files /137/

original /FLIR AX5 GenlCam ICD Guide 052013.pdf?1376925336

Radiance relation to A/D counts reference: http:// flir.custhelp.com/ci
/fattach/get /1667/

132

Useful reference from FLIR for thermal imaging and
A/D counts/Signals generated from Thermal cameras:
http://www. hoskin.ca/wp—content /uploads /2016/10/

flir thermal camera guide for research professionals.pdf

Extract the RAW total signal value contained with the specific pixel
as denoted by i and j
Return the value to a variable
RAW total = subprocess.Popen(["exiftool _—b_—RawThermallmage_" +
directory + "/" + filename -+
"_2>/dev/zero_|_magick_—_—crop_1X1+" +
str(i) + "+" + str(j) +
"_—colorspace_gray_—format_’%[mean]|’_info:
."], shell=True,
stdout=subprocess .PIPE) .communicate () [0]

Need to decode RAW as its a bytes object to data type string
RAW _total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

#

Calculate temperature for each specific pixel in in K and degC when
emissivity < 1.0

Call in Emis 29, Emis 31, Emis 32 and

apply Wang et al 2005 BroadBand Emissivity (BBE) formula

See the following for more inofrmation: https://doi.org/10.1029/2004
JD005566

Check if BBE variables are in locals (do this for the first image only

)

if ’emis filename’ not in locals():

Emissivity values are derived from the MODIS MODIS11B3 monthly
land surface emissivity file

MODIS image and a grid of coorinates at 500m resolution were
overlayed on each other in QGIS

Using the point extract tool, emissivity data and the

corresponding geographic coordinates were extracted and saved to
both a CSV and text file

emis filename = ’/export/home/users/username/Documents/DG Temp/
Mining Facility 2018 /MODIS/’ \

’Emissivty /QGIS/MODIS Lat Lon Emissivity. txt’

Call in emissivity data

emis data = numpy.genfromtxt(emis filename, delimiter=’,",

skip header=1)

Latitude of Emissivity values

133

emis_lat = emis_data[:, 0]

Longitude of Emissivity Values

emis lon = emis data|:, 1]

MODIS Band 32 Emissivity Values
emis 32 uncorrected = emis_data[:, 2]
MODIS Band 29 Emissivity Values
emis 29 uncorrected = emis data[:, 3]
MODIS Band 31 Emissivity Values
emis 31 uncorrected = emis data[:, 4]

Initialize corrected emissivity variables

emis 32 corrected = numpy.zeros ((len(emis 32 uncorrected), 1))
emis 29 corrected = numpy.zeros ((len(emis 32 uncorrected), 1))
emis 31 corrected = numpy.zeros ((len(emis 32 uncorrected), 1))

Convert all emissivity values i.e. multiply by scale factor and
add offset as per

MODIS documentation: https://Ipdaac.usgs.gov/sites/

default/files /public/product documentation/modll user guide.pdf

emis scale = 0.002

emis offset = 0.49

Calculate the true emissivity values for each band by applying the
appropriate
scale factor and additive offset for each index of each array
for k in range(0, len(emis lat)):
Apply Emissivity scale/offset factors to Band 29
emis 29 corrected [k] = (emis 29 uncorrected [k]*emis scale)+
emis_offset
Apply Emissivity scale/offset factors to Band 31
emis 31 corrected[k] = (emis 31 uncorrected[k]*emis scale)+
emis offset
Apply Emissivity scale/offset factors to Band 32
emis 32 corrected[k] = (emis_ 32 uncorrected|[k]|*emis scale)+

emis offset

Create new array for BroadBand Emissivity (BBE), BBE is used to
calculation ST

BBEmissivity = numpy.zeros ((len(emis lat), 1))

Initialize coefficients for BBE formula as per Wang et al 2005 pg
7 of 12 Table 2

BBE_constant 29 = 0.2122

BBE_constant_31 = 0.3859

BBE_constant_32 = 0.4029

Calculate BBE for each index

Haversine Distance Formula from: https://stackoverflow.com/
questions /19412462/

getting —distance —between—two—points—based—on—latitude —longitude

for k in range(0, len(emis lat)):

134

BBEmissivity [k] = (BBE_constant 29xemis 29 corrected|[k]) +\
(BBE_constant 31xemis 31 corrected[k]) +\
(BBE_constant 32xemis 32 corrected|k])

Initialize Haversine distance array

This array is used to calculate the geographic distance between
the

BBE values and the specific pixel location

The BBE index with the smallest distance between the two
geographic coordinates

will be used as the emissivity value in the ST calculation

haversine d numpy . empty ((len (emis lat), 1))
Initialize haversine formula variable to be used in the
HaversinePixelCalc function

haversine d|[:] = numpy.nan

Run following function in parallel with @jit compiler
Haversine Distance Formula from:
https://stackoverflow.com/questions /19412462/
getting —distance —between—two—points—based—on—latitude —longitude
As of Feb.5/2019, tested the stackoverflow example above and the
haversine
distance formula works when tested with Google Earth
haversine d = HaversinePixelCalc(emis lat, lat2 pixel, emis lon,
lon2 pixel, Radius_ Earth, haversine d)

Find minimum index of the output of the haversine formula with the
smallest distance

This will be the index that has the surface emissivity

wvalue that will be used in the temperature calculation for the
specific pixel

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to
1
Source: Usamentiaga et al. doi: https://doi.org/10.3390/s140712305

Reflected Apparent Temperature as per FLIR manual
(http://www. cctvcentersl.es/upload/Manuales/A3xxx A6xxx manual eng.
pdf)

and image metadata (use ExifTool in Linux terminal)

NOTE: For other remote sensing applications
(e.g. thermal plumes in waterbodies), this value may change.
Return the reflected apparent temperature (degrees C) from the
image metadata with the Linux terminal and ExifTool
The reflected apparent temperature is set as a constant by the
manufacturer
and is not changed during the temperature calculation
refl temp degC = subprocess.Popen (["exiftool_—b_—
Reflected ApparentTemperature_" + directory

135

+ "/" + filename|, shell=True,

stdout=subprocess .PIPE) . communicate ()

(0]

Decode the value and convert it’s data type to a float
refl temp degC = refl temp degC.decode("utf—8")
refl temp degC = float (refl temp degC)

Convert reflected apparent temp from degC to K
refl temp K = pytemperature.c2k(refl temp degC)

Get Raw reflected apparent temperature signal value

See the FLIR Manual: http://www.cctvcentersl.es/upload/Manuales/
A3xxx_A6xxx_ manual eng. pdf

RAWrefl remains the same for all pixels as it is a function

of the constant apparent reflected temperature

RAWrefl = (R1/(R2%(math.exp(B/(refl temp K))—F))—planck O)

Get RAW object signal value
RAWobj = (RAW _total—(1-BBEmissivity [min_idx|) *RAWrefl) /BBEmissivity |

min_idx |

Rearrange the RAW object signal value to calculate the object
temperature (LST) of each pixel in degC and K

Consider the case for when emissivity is not equivalent to 1
LST kelvin = (B/numpy.log(R1/(R2*(RAWobjt+planck O))+F))

LST degree = (B/numpy.log(R1/(R2*(RAWobjtplanck O))+F) —273.15)

Save data to matrix for the specific image

The data in this matrix is then saved to a master matrix which will
include all

LST data for pixels from each file in the directory

Save the filename for each corresponding pixel location, not used in
data analysis ,

only used as a check as the files are not processed chronologically

filename image[i|[j]|[0] = filename

Save the year for each corresponding pixel location for when the image

was recorded

image matrix[i]|[j][0] = yr

Save the month for each corresponding pixel location for when the
image was recorded

image matrix[i][j][1] = mnth

Save the day for each corresponding pixel location for when the image
was recorded

image matrix[i]|[j][2] = day

Save the hour for each corresponding pixel location for when the image
was recorded

image matrix[i]|[j][3] = hr

Save the minute for each corresponding pixel location for when the
image was recorded

image matrix[i][j][4] = minute

136

Save the calculated latitude for each corresponding pixel location

image matrix[i]|[j][5] = lat2 pixel

Save the calculated longitude for each corresponding pixel location

image matrix[i]|[j][6] = lon2 pixel

Save the horizontal pixel coordinate that was processed to obtain LST

image matrix[i]|[j][7] = i

Save the vertical pixel coordinate that was processed to obtain LST

image matrix[i][j][8] = j

Save the LST in kelvin of each corresponding pixel location where
emissivity does not equal 1

image matrix[i][j][9] = LST_kelvin

Save the LST in degC of each corresponding pixel location where
emissivity does not equal 1

image matrix[i]|[j]|[10] = LST _ degree

Save known latitude , longitude, x, and y pixels to arrays
TANAB2 launch location
for origin in range(0, numFiles):
if int(lat_ TANAB array|[origin]) = 0:
lat TANAB array|origin] = Latitude
lon TANAB array|[origin]| = Longitude
break

Save known location for the top left pixel

Initialize variables identifying top left pixel in terms of horizontal/vertical pixel
row/column location

horiz _pixel = 0

vert pixel = v_pixel top

Extract the RAW total value for the top left pixel through the terminal with ExifTool
and ImageMagcick
RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero_|_magick_—_—crop_1XI14+" + str(horiz_ pixel) +
"+" + str(vert pixel) +
"_—colorspace_gray_—format_ %|mean|’_info:_"], shell=True,

stdout=subprocess.PIPE) . communicate () [0]

Need to decode RAW total as it’s a bytes object to a data type string
RAW _total = RAW _total.decode ("utf—8")

Convert RAW total from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:]| = numpy.nan

Calculate Haversine distance for the top left pixel to identify the emissivity value

to use in the ST calculation

137

haversine_d = HaversinePixelCalc_top _left (emis_lat, lat2_ top_left, emis_lon,
lon2_top_left , Radius_Earth, haversine_d)

Find the index with the smallest distance between the 2 geographic coordinates

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1
Source: Usamentiaga et al. doi: https://doi.org/10.3390/s140712305

Calculate RAW object signal value, RAWrefl does not change as the apparent
reflective temperature is constant

RAWobj = (RAW _ total — (1 — BBEmissivity [min_idx|) % RAWrefl) / BBEmissivity [min_idx]
Calculate temperature of each pixel in kelvin and degC respectively

LST kelvin = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F))

LST degree = (B / numpy.log(R1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|horiz pixel|[vert pixel]|[0] = filename
image matrix|[horiz pixel|[vert pixel][0] = yr

image matrix|[horiz_pixel|[vert pixel]|[1l] = mnth

image matrix|[horiz pixel|[vert pixel][2] = day

image matrix|[horiz pixel|[vert pixel][3] = hr

image matrix|[horiz pixel|[vert pixel][4] = minute

image matrix|[horiz pixel|[vert pixel][5] = lat2 top left
image matrix|[horiz pixel|[vert pixel][6] = lon2 top left
image matrix[horiz pixel|[vert pixel|[7] = horiz_ pixel
image matrix[horiz _pixel|[vert pixel|[8] = vert_pixel
image matrix[horiz_pixel|[vert pixel|[9] = LST_kelvin

image matrix|[horiz pixel][vert pixel]|[10] = LST degree

Save latitude , longitude, x, and y pixel values to arrays
for i in range(0, numFiles):
if int(tLeft lat array|[i]) = O:
tLeft lat array[i] = lat2 top left
tLeft lon_ array[i] = lon2 top left

tLeft x pixel array[i] = horiz_pixel
tLeft y pixel array|[i] = vert pixel
break

Save known location for the top center pixel

Initialize variables identifying top center pixel in terms of horizontal/vertical
pixel row/column location

horiz pixel = int(x_pixel range/2)

vert pixel = v_pixel top
Extract the RAW total value for the top center pixel through the terminal with

ExifTool and ImageMagcick
RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +

138

filename +
"_2>/dev/zero_|_magick_—_—crop_1XI14+" + str(horiz_pixel) +
"+" + str(vert pixel) +
"_—colorspace_gray_—format_’%|mean]|’_info:_"], shell=True,

stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a data type string
RAW total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:]| = numpy.nan

Call Haversine top center pixel function to identify the emissivity value to use in
the ST calculation

haversine_d = HaversinePixelCalc_top_center(emis_lat, lat2_top, emis_lon, lon2_top,
Radius_Earth, haversine d)

Find the index with the smallest distance between the 2 geographic coordinates
min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1

Source: Usamentiaga et al. doi: https://doi.org/10.3390/s140712305

Calculate RAW object signal value, RAWrefl does not change as the apparent reflective
temperature is constant

RAWobj = (RAW _total — (1 — BBEmissivity [min_idx]|) % RAWrefl) / BBEmissivity [min_idx]
Calculate temperature of each pixel in kelvin and degC respectively

LST kelvin = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F))

LST degree = (B / numpy.log(R1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|horiz pixel|[vert pixel]|[0] = filename
image matrix|[horiz pixel|[vert pixel|[0] = yr

image matrix|[horiz pixel|[vert pixel|[1] = mnth

image matrix|[horiz pixel|[vert pixel][2] = day

image matrix|[horiz pixel|[vert pixel][3] = hr

image matrix|[horiz pixel|[vert pixel][4] = minute
image matrix|[horiz_pixel|[vert pixel|[5] = lat2 top
image matrix|[horiz pixel|[vert pixel][6] = lon2 top
image matrix|[horiz pixel][vert pixel|[7] = horiz pixel
image matrix|[horiz pixel][vert pixel]|[8] = vert pixel
image matrix|[horiz pixel][vert pixel][9] = LST kelvin

image matrix|[horiz pixel]|[vert pixel][10] = LST degree
Save latitude , longitude, x, and y pixel values to arrays

for i in range(0, numkFiles):
if int(tCenter lat array[i]|) = O0:

139

tCenter_lat_array[i] = lat2_top

tCenter _lon_array[i] = lon2_top
tCenter _x_pixel array[i] = horiz_pixel
tCenter y pixel array[i] = vert pixel
break

Save known coordinates for the top right pixel

Initialize variables identifying top right pixel in terms of horizontal/vertical pixel
row/column location

horiz _pixel = x_pixel range—1

vert pixel = v_pixel top

Extract the RAW total value for the top right pixel through the terminal with ExifTool
and ImageMagcick

RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +

"_2>/dev/zero_|_magick_—_—crop_1XI14+" + str (horiz_ pixel) +

"+" + str(vert pixel) +
"_—colorspace_gray_—format_ %|mean|’_info:_"], shell=True,
stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a data type string
RAW _total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:] = numpy.nan

Call Haversine top right pixel function to identify the emissivity value to use in the
ST calculation
haversine_d = HaversinePixelCalc_top_right(emis_lat, lat2_ top_right, emis_lon,
lon2 top right,
Radius_Earth, haversine d)

Find the index with the smallest distance between the 2 geographic coordinates

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1

Source: Usamentiaga et al. doi: https://doi.org/10.3390/s140712305

Calculate RAW object signal value, RAWrefl does not change as the apparent reflective
temperature is constant

RAWobj = (RAW _total — (1 — BBEmissivity [min_idx]|) % RAWrefl) / BBEmissivity [min_idx]
Calculate temperature of each pixel in kelvin and degC respectively

LST kelvin = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F))
LST degree = (B / numpy.log (Rl / (R2 * (RAWobj + planck O)) + F) — 273.15)

140

Save data to matrix for specific image

filename image|horiz pixel|[vert pixel]|[0] = filename
image matrix|[horiz_pixel|[vert pixel][0] = yr

image matrix|[horiz_pixel|[vert pixel]|[1] = mnth

image matrix|[horiz pixel|[vert pixel][2] = day

image matrix|[horiz pixel|[vert pixel][3] = hr

image matrix|[horiz pixel|[vert pixel][4] = minute

image matrix|[horiz_pixel |[vert pixel][5] = lat2 top_ right
image matrix|[horiz_pixel|[vert pixel][6] = lon2 top right
image matrix[horiz _pixel|[vert pixel|[7] = horiz_pixel
image matrix[horiz _pixel|[vert pixel|[8] = vert_pixel

image matrix|[horiz pixel][vert pixel][9] = LST kelvin
image matrix|[horiz pixel]|[vert pixel][10] = LST degree

Save latitude , longitude, x, and y pixel values to arrays
for i in range(0, numFiles):
if int (tRight lat_ array|[i]) = O:

tRight lat array[i] = lat2 top right
tRight lon array[i] = lon2 top right
tRight x pixel array[i] = horiz_pixel
tRight y pixel array[i] = vert pixel
break

For the center left pixel

Initialize variables identifying the center left pixel in terms of horizontal/vertical
pixel row/column location

horiz _pixel = 0

vert pixel = int(y pixel range / 2)

Extract the RAW total value for the center left pixel through the terminal with
ExifTool and ImageMagcick
RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero_|_magick_—_—crop_1XI14+" + str(horiz pixel) +
"+" + str(vert pixel) +
"_—colorspace_gray_—format_ %|mean|’_info:_"], shell=True,

stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a data type string
RAW total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:]| = numpy.nan

Call Haversine center left pixel function to identify the emissivity value to use in

141

the ST calculation
haversine_d = HaversinePixelCalc_center_left (emis_lat, lat2_ center_left, emis_lon,

lon2 center left, Radius Earth, haversine d

)

Find the index with the smallest distance between the 2 geographic coordinates
min_idx = numpy.argmin (haversine d)
For the temperature calculation assume that transmissivity is close to 1

Source: Usamentiaga et al. doi: https://doi.org/10.3390/s140712305

Calculate RAW object signal value, RAWrefl does not change as the apparent reflective
temperature is constant

RAWobj = (RAW _ total — (1 — BBEmissivity [min_idx|) % RAWrefl) / BBEmissivity [min_idx]
Calculate temperature of each pixel in kelvin and degC respectively

LST kelvin = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F))

LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|horiz pixel]|[vert pixel][0] = filename
image matrix|[horiz pixel|[vert pixel][0] = yr

image matrix|[horiz pixel|[vert pixel|[1] = mnth

image matrix|[horiz pixel|[vert pixel][2] = day

image matrix|[horiz pixel|[vert pixel][3] = hr

image matrix|[horiz_pixel|[vert pixel][4] = minute

image matrix[horiz pixel|[vert pixel|[5] = lat2 center left

image matrix[horiz _pixel|[vert pixel|[6]

lon2 center left

image matrix[horiz_pixel|[vert pixel |[T7]

horiz _pixel

image matrix|[horiz pixel][vert pixel][8] vert pixel
image matrix|[horiz pixel|[vert pixel]|[9] = LST kelvin

image matrix|[horiz pixel]|[vert pixel][10] = LST degree

Save latitude , longitude, x, and y pixel values to arrays
for i in range(0, numFiles):
if int(cLeft lat array[i]) = O0:
cLeft lat array|[i] = lat2 center left

cLeft lon_array|[i] = lon2 center left
cLeft x pixel array[i] = horiz pixel
cLeft y pixel array|[i] = vert pixel
break

For the center pixel

Initialize variables identifying the center pixel in terms of horizontal/vertical
pixel row/column location

horiz pixel = int(x_pixel range/2)

vert pixel = int(y_ pixel range/2)

Extract the RAW total value for the center pixel through the terminal with ExifTool

142

and ImageMagcick
RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero_|_magick_—_—crop_1XI14+" + str (horiz_ pixel) +
"+" + str(vert pixel) +
"_—colorspace_gray_—format_’%|mean]|’_info:_"], shell=True,

stdout=subprocess.PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a data type string
RAW total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:] = numpy.nan

Call Haversine center pixel function to identify the emissivity value to use in the ST
calculation

haversine d = HaversinePixelCalc center(emis lat, lat2 center, emis lon, lon2 center,
Radius_Earth, haversine d)

Find minimum distance index

min_ idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1
Source: Usamentiaga et al. doi: https://doi.org/10.3390/s140712305

Calculate RAW object signal value
temperature is constant

RAWobj = (RAW _total — (1 — BBEmissivity [min_idx]|) % RAWrefl) / BBEmissivity [min_idx]

, RAWrefl does not change as the apparent reflective

Calculate temperature of each pixel in degC
LST kelvin = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F))
LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|horiz pixel|[vert pixel]|[0] = filename
image matrix|[horiz pixel|[vert pixel][0] = yr

image matrix|[horiz_ pixel|[vert pixel|[1l] = mnth

image matrix|[horiz pixel|[vert pixel][2] = day

image matrix|[horiz_pixel|[vert_ pixel][3] = hr

image matrix|[horiz_ pixel|[vert pixel][4] = minute
image matrix|[horiz pixel][vert pixel|[5] = lat2 center
image matrix|[horiz pixel][vert pixel][6] = lon2 center
image matrix|[horiz pixel][vert pixel|[7] = horiz pixel
image matrix|[horiz pixel]|[vert pixel]|[8] = vert pixel

image matrix|[horiz pixel|[vert pixel]|[9] = LST kelvin

image matrix|[horiz pixel]|[vert pixel][10] = LST _ degree

Save latitude , longitude, x, and y pixel values to arrays

143

for i in range(0, numFiles):

if int(center lat array|[i]) = O:
center lat array[i]| = lat2 center
center lon array[i] = lon2 center

center x_pixel array|[i] = horiz pixel
center y pixel array][i]

break

vert pixel

For the center right pixel

Initialize variables identifying the center right pixel in terms of horizontal/
vertical pixel row/column location

horiz pixel = x_pixel range—1

vert pixel = int(y_ pixel range/2)

Extract the RAW total value for the center right pixel through the terminal with
ExifTool and ImageMagcick
RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero_|_magick_—_—crop_1XI14+" + str (horiz pixel) +
"+" + str(vert pixel) +
"_—colorspace_gray_—format_ %|mean|’_info:_"], shell=True,
stdout=subprocess.PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a data type string
RAW total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:]| = numpy.nan

Call Haversine center right pixel function to identify the emissivity value to use in
the ST calculation
haversine d = HaversinePixelCalc center right(emis lat, lat2 center right, emis lon,
lon2 center right, Radius FEarth,
haversine d)

Find minimum distance index

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1
Source: Usamentiaga et al. doi: https://doi.org/10.3390/s140712305

Calculate RAW object signal value, RAWrefl does not change as the apparent reflective
temperature is constant

RAWobj = (RAW _total — (1 — BBEmissivity [min_idx]|) % RAWrefl) / BBEmissivity [min_idx]

Calculate temperature of each pixel in Kelvin and degC respectively

144

LST kelvin = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F))
LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|horiz pixel|[vert pixel|[0] = filename

image matrix|[horiz pixel|[vert pixel][0] = yr

image matrix|[horiz_ pixel|[vert pixel]|[1] = mnth

image matrix|[horiz pixel|[vert pixel][2] = day

image matrix|[horiz_pixel|[vert pixel][3] = hr

image matrix|[horiz pixel|[vert pixel][4] = minute

image matrix|[horiz pixel][vert pixel|[5] = lat2 center right
image matrix|[horiz pixel][vert pixel][6] = lon2 center right
image matrix|[horiz pixel][vert pixel|[7] = horiz pixel

image matrix|[horiz pixel]|[vert pixel][8] = vert pixel

image matrix|[horiz pixel|[vert pixel|[9] = LST kelvin

image matrix|[horiz pixel]|[vert pixel][10] = LST _ degree

Save latitude , longitude, x, and y pixel values to arrays
for i in range(0, numkFiles):
if int(cRight lat array[i]|) = O:

cRight lat array[i] = lat2 center right
cRight lon_ array[i] = lon2 center right
cRight x pixel array[i] = horiz pixel
cRight y pixel array[i] = vert pixel
break

For the bottom left pixel

Initialize variables identifying the bottom left pixel in terms of horizontal/vertical

pixel row/column location
horiz_pixel = 0

vert pixel = y pixel range-—1

Extract the RAW total value for the bottom left pixel through the terminal

ExifTool and ImageMagcick

with

RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +

filename +

"_2>/dev/zero_|_magick_—_—crop_1X1+" + str (horiz pixel) +

"+" 4+ str(vert pixel) +

"_—colorspace_gray_—format_’%|mean|’_info:_"],

stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a data type string
RAW _total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

145

shell=True,

haversine d[:]| = numpy.nan

Call Haversine bottom left pixel function to identify the emissivity value to use in
the ST calculation
haversine d = HaversinePixelCalc bottom left(emis lat, lat2 bottom left, emis lon,
lon2 bottom left, Radius FEarth, haversine d

)

Find minimum distance index

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1
Source: Usamentiaga et al. doi: https://doi.org/10.3390/s140712305

Calculate RAW object signal value, RAWrefl does not change as the apparent reflective
temperature is constant
RAWobj = (RAW _total — (1 — BBEmissivity [min_idx]|) % RAWrefl) / BBEmissivity [min_idx]

Calculate temperature of each pixel in kelvin and degC respectively
LST kelvin = (B / numpy.log (Rl / (R2 * (RAWobj + planck O)) + F))
LST degree = (B / numpy.log (Rl / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|horiz pixel]|[vert pixel][0] = filename
image matrix|[horiz pixel|[vert pixel][0] = yr

image matrix|[horiz_pixel|[vert pixel|[1] = mnth

image matrix[horiz pixel|[vert pixel|[2] = day

image matrix[horiz _pixel|[vert pixel|[3] = hr

image matrix[horiz _pixel|[vert pixel|[4] = minute

image matrix|[horiz pixel][vert pixel][5] lat2 bottom left
lon2 bottom left

horiz pixel

image matrix|[horiz pixel|[vert pixel][6]

image matrix|[horiz pixel|[vert pixel|[7]

image matrix|[horiz pixel|[vert pixel]|[8]

vert pixel
image matrix|[horiz pixel|[vert pixel]|[9] = LST kelvin

image matrix|[horiz pixel|[vert pixel][10] = LST degree

Save latitude , longitude, x, and y pixel values to arrays
for i in range(0, numFiles):
if int(bLeft lat array[i]|) = O0:
bLeft lat array|[i] = lat2 bottom left
bLeft lon array[i] = lon2 bottom left

bLeft x pixel array[i] = horiz_pixel
bLeft y pixel array|[i] = vert_ pixel
break
#
For the bottom center pixel
Initialize variables identifying the bottom center pixel in terms of horizontal/
vertical pixel row/column location
horiz pixel = int(x_pixel range/2)

146

vert pixel

y_pixel range-—1

#*

Extract the RAW total
ExifTool and ImageMagcick

value for the bottom center pixel through the terminal with

RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +

"_2>/dev/zero_|_magick_—_—crop_1X1+" + str(horiz pixel) +
"+" + str(vert pixel) +

"_—colorspace_gray_—format_’%|mean|’_info:_"],

shell=True,
stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a data type

RAW _total = RAW _total.decode ("utf—8")

string

Convert RAW from string to float
RAW _total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:]| = numpy.nan

4L

s

Call

calculation

Haversine bottom pixel function to identify the emissivity value to use in the ST

haversine d = HaversinePixelCalc bottom (emis lat, lat2 bottom, emis lon, lon2 bottom,

Radius Earth, haversine d)

Find minimum distance index

min_idx = numpy.argmin (haversine d)

For the temperature calc. assume that transmissivity

doi:

is approx 1

Source: Usamentiaga et al. https://doi.org/10.3390/s140712305
Calculate RAW object
temp constant

RAWobj = (RAW _total — (1 — BBEmissivity [min_idx])

signal value, RAWrefl does not change as the apparent reflective

is

* RAWrefl) / BBEmissivity [min_idx]

Calculate temperature of each pixel in kelvin and degC respectively

LST kelvin = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F))

LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F) — 273.15)
Save data to matrix for specific image

filename image|horiz pixel]|[vert pixel][0] = filename

image matrix|[horiz_pixel|[vert pixel][0] = yr

image matrix|[horiz pixel|[vert pixel][1] mnth

image matrix|[horiz pixel]|[vert pixel][2] = day

image matrix|[horiz pixel][vert pixel|[3] = hr

image matrix|[horiz pixel][vert pixel]|[4] minute

image matrix|[horiz pixel][vert pixel][5] lat2 bottom

image matrix|[horiz pixel|[vert pixel][6] lon2 bottom

image matrix|[horiz pixel|[vert pixel|[7]

horiz pixel

image matrix|[horiz pixel|[vert pixel][8]

image matrix|[horiz pixel|[vert pixel][9]

vert pixel
= LST kelvin

147

image matrix|[horiz pixel|[vert pixel][10] = LST degree

Save latitude , longitude, x, and y pixel values to arrays

for i in range(0, numFiles):

if int(bCenter lat array[i]) == O0:
bCenter lat array[i]| = lat2 bottom
bCenter lon array[i| = lon2 bottom
bCenter x pixel array[i] = horiz pixel
bCenter y pixel array[i] = vert pixel
break

For the bottom right pixel

Initialize variables identifying the bottom right pixel in terms of horizontal/
vertical pixel row/column location

horiz pixel = x_pixel range-—1

vert pixel = y pixel range-—1

Extract the RAW total value for the bottom right pixel through the terminal with
ExifTool and ImageMagcick
RAW _total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero_|_magick_—_—crop_1X1+" + str(horiz pixel) +
"+" 4+ str(vert pixel) +
"_—colorspace_gray_—format_’'%|mean]|’_info:_"], shell=True,

stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a data type string
RAW _total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:] = numpy.nan

Call Haversine bottom right pixel function
haversine d = HaversinePixelCalc bottom right(emis lat, lat2 bottom right, emis lon,
lon2 bottom right, Radius Earth,
haversine d)

Find minimum distance index

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1
Source: Usamentiaga et al. doi: https://doi.org/10.3390/s140712305

Calculate RAW object signal value, RAWrefl does not change as the apparent reflective

temperature is constant
RAWobj = (RAW _total — (1 — BBEmissivity [min_idx]|) % RAWrefl) / BBEmissivity [min_idx]

148

Calculate temperature of each pixel in kelvin and degC respectively
LST kelvin = (B / numpy.log (Rl / (R2 * (RAWobj + planck O)) + F))
LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|horiz pixel][vert pixel][0] = filename
image matrix|[horiz pixel|[vert pixel][0] = yr

image matrix|[horiz_pixel|[vert pixel|[1] = mnth

image matrix[horiz_pixel|[vert pixel][2] = day

image matrix[horiz _pixel|[vert pixel|[3] = hr

image matrix[horiz _pixel|[vert pixel|[4] = minute

image matrix|[horiz pixel][vert pixel]|[5] lat2 bottom right

lon2 bottom right

image matrix|[horiz pixel][vert pixel][6]

image matrix|[horiz pixel|[vert pixel|[7] horiz pixel

image matrix|[horiz pixel][vert pixel][8]

vert pixel
image matrix|[horiz pixel|[vert pixel]|[9] = LST kelvin

image matrix|[horiz pixel]|[vert pixel][10] = LST degree

Save latitude , longitude, x, and y pixel values to arrays
for i in range(0, numFiles):

if int(bRight lat array[i]) == O:
bRight lat array[i]| = lat2 bottom right
bRight lon array[i] = lon2 bottom right

bRight x pixel array[i] = horiz pixel
bRight y pixel array[i] = vert_ pixel

break
#
Save image matrix data to master matrix
all_pixel data_multi_image = SaveMasterMatrix (x_pixel range, v_pixel top,

y_pixel range, image matrix,
all pixel data multi_ image,

filename image, filenames total)

The number of elements is equivalent to the total length of the all pixel
data_ multi image array (the total length is the maximum number
of data points that could be extracted from each image

num_elements = int ((numFiles*x max stepxy max step)—1)

Variable corresponding to the row where the Nan values start

row_nan = 0

Find the index where the Nan rows start (do this so Nan values are not written to the file
)

This variable will be used when saving the data to omit any Nan data values from the
Processed data text file

for i in range(0, num_elements):

if numpy.isnan(all pixel data multi image[i][5]) == True:

149

row_nan = i

break

Today’s date is
today date = datetime.date.today().strftime ("%B %d %Y")

Write Geographic, ST and Image Pixel Data to File

XXXMEDIA refers to the naming convention of the DJI Zenmuse XT, where XXX starts at 100
and increases by 1

¥

for every new folder. Up to 999 images can be stored in each folder. Replace XXX with the
image folder number

that is currently being processed

outputFileName = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
Processed Data/’ \

"XXXMEDIA temperature. txt’

outputFile = open(outputFileName, ’'w’)

outputFile. write ("#_Date,_Time, _Lat,_Long_and_Temp_for_each_image_\n")

outputFile. write ("#By: _Ryan_Byerlay_\n")

outputFile. write ("#Created _on_"+today date+"_\n")

outputFile. write ("#Recorded _Time_is_Local_Time_(MDT)_\n")

outputFile. write ("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day_\t_#4:Hour_\t_#5:

Minute"
"_\t_o#6:_Latitude_\t_#7:_Longitude_\t_#8:_X_Pixel_Coordinate_\t_#9:_Y_Pixel
Coordinate\t"

"_#12:_Temperature_(K)_(Emis_!=_1)_\t_#13:_Temperature_(C)_(Emis_!=_1)_\n")

Save data to file
for i in range(0, row nan):
outputFile. write ("%s \t %1\t %1\t %1\t %1 o\t %0 D\t L f L\t E U\t %1 L\t %1 L\t L %f L\t L%
\n" %
(filenames total[i]|[0], int(all pixel data multi image[i][0]) ,
int (all pixel data multi_ image[i]|[1]),
Li112]) ,
int (all_pixel data_multi_image[i][3]), int(all_pixel data_multi_image
[i114]) ,
all pixel data multi image[i]|[5], all pixel data multi image[i][6],
int (all pixel data multi image[i]|[7]), int(all pixel data multi image
Li118])

all pixel data multi image[i]|[9], all pixel data multi image[i][10]))

nt (all pixel data multi image

outputFile. close ()

Function to populate known latitude/longitude coordinates for each image
def determineFileName (filenames total , file names array):
for w in range(0, numFiles):
if filenames total[k|[0] == file names array|[w]:
NOTE x latitudes[0] and y longitudes|[0] correspond to the TANAB2 location
For every new filename , populate the known latitude , longitude,
x pixel, and y pixel arrays
x_Latitudes = [lat_ TANAB_array[w], tLeft lat_ array[w]|, tCenter_ lat_array[w],
tRight _lat_array [w],

4

cLeft lat array|w], center lat array|w], cRight lat array|[w],
bLeft lat array|[w],

150

bCenter lat array|[w], bRight lat array|[w]]|
y_Longitudes = [lon_TANAB_array[w], tLeft_lon_array[w], tCenter_lon_array[w],
tRight lon array|w],
cLeft lon array|w]|, center lon array|w]|, cRight lon array|w],
bLeft lon array|[w],
bCenter lon array|w]|, bRight lon array[w]]
x_pixels = [tLeft x pixel array|w], tCenter x pixel array|[w],
tRight x pixel array[w],
cLeft x pixel array|[w], center x pixel array|w],
cRight x pixel array[w],
bLeft x pixel array|[w], bCenter x pixel array|w],
bRight x pixel array|[w]]
y _pixels = [tLeft y pixel array|[w]|, tCenter y pixel array|w],
tRight y pixel array[w],
cLeft y pixel array[w], center y pixel array][w],
cRight _y_ pixel array[w],
bLeft _y pixel array[w], bCenter_y _ pixel array[w],
bRight y pixel array[w]]
break

return x Latitudes, y Longitudes, x pixels, y pixels

Save kml (Google Earth) file
Save edge coordinates as red markers and inner image coordinates as yellow markers

kml = simplekml.Kml(open=1)

pt_label = [’Balloon’, ’Top_Left’, ’Top_Center’, ’'Top_Right’, ’Center_Left’, ’Center’, ’
Center_Right’,
"Bottom_Left >, ’'Bottom_Center’, ’Bottom_Right’]

Loop through all rows of final save matrix

for k in range(0, row_nan):

Find indices where the index and index+1 has mismatched file names
If file names are not equal, then save kml file for the specific image file
if filenames total [k][0] != filenames total[k+1][0]:
Initialize wvariables
consider edge coordinates and TANAB2 location for latitudes and longitudes
x_ Latitudes = numpy.zeros (10)
y_Longitudes = numpy.zeros (10)

Only consider pixel coordinates for the specific image

x _pixels = numpy.zeros (9)

y _pixels = numpy.zeros (9)

Concatenate latitudes, longitudes, and pixel arrays accordingly and return
x_Latitudes, y Longitudes, x_ pixels, y pixels = determineFileName (filenames total,

file_names_array)

Save edge coordinate points to kml file
Set original counter value
i=0
while i <= 9:
known pnts = kml.newpoint (name=str (pt_ label[i]), coords=[(float(y Longitudes|[i])

151

, float (x_Latitudes[i]))])
known pnts.style.iconstyle.color = simplekml. Color.red
Increase counter by 1
i4+=1

Save existing kml file , update XXX to match the folder with the images that you
are processing
kml.save("/export /home/users/username/Documents /DG Temp/Mining Facility 2018/
Google Earth Projections/"
"XXXMEDIA/ GPS visualize "
+ str(filenames total[k][0])+" OCT_15 2019 test.kml")

Delete old kml file variables including kml, known pnts, x coordinates,

:#_t

y _coordinates then continue to the next image file
kml

known pnts

x_Latitudes

y_Longitudes

a
o

a
o

a
o

a
o

Create new kml file
if ’kml’ not in locals():
kml = simplekml.Kml(open=1)
Save specific coordinate to existing kml file
else:
pnt = kml.newpoint (name="P(’+str (all pixel data multi image[k][7])+","
+str(all_pixel data multi image|k]|[8])+’) ,coords =
[(all _pixel data multi image|k]|[6], all pixel data multi image[k][5])])

Get ending run time

end = time.time ()

/

Print script run time in seconds

print (’The_total_run_time_of_this_script_is:_’+str(end—start)+’_s’)

A.2.5 Data Separation for Diurnal Temperature Mapping

import numpy
from numba import jit

Current as of October 16, 2019
Previously completed: Manually concatenated all processed image text

file containing surface temperatures for individual pixels

SRS

Import the combined file into script, manually combined all XXXMEDIA temperature.txt files

into one.
filename = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/’ \
>Processed _Data/May 2018 Mine_compiled temperature. txt’
data = numpy.genfromtxt (filename , skip header=6)
Separate data

filename = data|:,0]

152

year = data|:,1]

month = data[:,2]

day = data|:,3]

hour = data[:,4]

min = data[:,5]

lat = data[:,6]

lon = data[:,7]

xpix = data|:,8]

ypix = data[:,9]

tempk emis = data[:,10]
tempc _emis = data[:,11]

len year = int(len(year))

Create new arrays for data (six four—hour intervals)
zero_four array = numpy.zeros ((14, len year))

four eight array = numpy.zeros((14, len year))

eight twelve array = numpy.zeros((14, len year))
twelve sixteen array = numpy.zeros ((14, len year))
sixteen twenty array = numpy.zeros ((14, len year))

twenty twentyfour array = numpy.zeros ((14, len year))

Process function in parallel to find indices with hours corresponding to the six
four—hour time intervals delineated above
@jit (nopython=True, parallel=True)
def FindHour(year, month, day, hour, min, lat, lon, xpix, ypix, tempk emis, tempc emis,
zero four array,
four eight array, eight twelve array, twelve sixteen array,
sixteen twenty array, twentyitwentyfouriarray) :

for i in range(0, len(year)):

print (i)
if (int(hour[i]) < 0):

print (’There_is_a_problem_with_the_hour_in_index:_’'+str(i))

00:00 to 04:00 Check

if ((int(hour[i]) >= 0) and (int(hour[i] <= 3))) or int(hour[i]) — 24:
for j in range(0, len(year)):
if zero four array|[l][j] = O:
zero four array[1l]|[j]| = year|[i]
zero four array[2][j] = month[i]
zero _four array [3][j] = day][i]
zero four array[4][j] = hour[i]
zero_four array [5][j] = min][i|

zero _four array [6][j] = lat[i]

zero_four array[7]|[j] = lon|i]
zero_ four array[8][j] = xpix|[i]
zero_four array[9][j] = ypix|[i]

zero_four array[10][j] tempk emis|[1i]
zero_four array[11][j]

break

tempc _emis|[1i]

04:00 to 08:00 check

153

elif (int(hour[i]) >= 4 and int (hour[i]) <= 7):
for j in range(0, len(year)):
if four eight array|[1][j] = O:
four eight array[1]|[j] = year|[i]
four eight array[2]|[j] = month]|i]
four eight array[3]|[j] = day|[i]
hour [i |

min] i

four eight array [4][j]

four eight array [5][j]
four eight array[6][j] = lat[i]

lon[i]
xpix[1i]
four eight array[9][j] = ypix|[i]

four eight array[7][j]

four eight array [8][j]

four eight array[10][j] tempk emis[i]

four eight array[11][j]
break

tempc _emis|[1i|]

08:00 to 12:00 check
elif (int(hour[i]) >= 8 and int (hour[i]) <= 11)
for j in range(0, len(year)):

if eight twelve array|[1][j] = O0:
eight twelve array|[1]|[j] = year][i]
eight twelve array|[2]|[j] = month][i]
eight twelve array |[3][j] = day][i]
eight twelve array[4][j] = hour][i]
eight twelve array [5][j] = min][i]
eight twelve array[6][j] = lat[i]
eight twelve array [7]|[j] = lon|[i]
eight twelve array [8][j] = xpix|[i]
eight twelve array[9][j] = ypix|[i]
eight twelve array[10][j] = tempk emis|[i]
eight twelve array[11][j] = tempc emis|[i]

break

12:00 to 16:00 check
elif (int(hour[i]) >= 12 and int (hour[i]) <= 15)
for j in range(0, len(year)):

if twelve sixteen array|[1][j] = O0:
twelve sixteen array|[1]|[j] = year[i]
twelve sixteen array|[2]|[j] = month[i]
twelve sixteen array [3]|[]j] = day|[i]
twelve sixteen array [4]|[j] = hour[i]
twelve sixteen array [5][j] = min[i]
twelve sixteen array |[6][j] = lat[i]
twelve sixteen array |[7][j] = lon[i]
twelve sixteen array [8][j] = xpix|[1i]
twelve sixteen array|[9][j] = ypix[i]
twelve sixteen array[10][j] = tempk emis[i]
twelve sixteen array[11][j] = tempc emis|[i]
break

16:00 to 20:00 check
elif (int(hour[i]) >= 16 and int (hour[i]) <= 19):

154

for j in range(0, len(year)):
if

sixteen twenty array|[1l][j] = O:
sixteen twenty array|[l]|[j] = year[i]
sixteen twenty array|[2]|[j] = month[i]
sixteen twenty array [3]|[j] = day][i]
sixteen twenty array|[4]|[j] = hour[i]
sixteen twenty array [5]|[j] = min]i]
sixteen twenty array |[6]|[]j] = lat[i]
sixteen twenty array |[7][j] = lon[i]
sixteen twenty array [8]|[j] = xpix[1i]
sixteen twenty array|[9][j] = ypix[i]
sixteen twenty array[10][j] = tempk emis|[i]
sixteen twenty array[11][j] = tempc emis|[i]

break

20:00 to 24:00 check
elif (int(hour[i]) >= 20 and int (hour[i]) <= 23):
for j in range(0, len(year)):
if twenty twentyfour array[1l][j] = O:
twenty twentyfour array[1][j] = year][i]
month [1]

twenty twentyfour array[3][j] = day|[i]

twenty twentyfour array[2][]]

twenty twentyfour array[4][j] = hour|[i]
twenty twentyfour array [5][j] = min]i]
twenty twentyfour array [6][j] = lat[i]
twenty twentyfour array [7][j] = lon|[i]
twenty twentyfour array[8][j] = xpix|[i]

twenty twentyfour array [9]|[]j] = ypix[i]

twenty twentyfour array [10][]] tempk emis[i]

twenty twentyfour array [11][]]
break

tempc _emis|[1i|]

return zero four array, eight twelve array, twelve sixteen array, sixteen twenty array,

twenty twentyfour array

Call function to separate hours and create six four—hour arrays with the appropriate data
FindHour (year , month, day, hour, min, lat, lon, xpix, ypix, tempk emis, tempc emis,
zero four array,
four eight array, eight twelve array, twelve sixteen array, sixteen twenty array,

twenty twentyfour array)

Save arrays to text files
Declare file names
filename zero four =’/export/home/users/username/Documents/DG Temp/Mining Facility 2018/
Processed Data/’ \
’Separated Hours/Manufacturer Calibrated/Zero_ Four_Data_Processed. txt’
filename four eight = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
Processed Data/’ \
’Separated Hours/Manufacturer Calibrated /Four Eight Data Processed. txt

155

)

filename eight twelve = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
Processed Data/’ \

"Separated Hours/Manufacturer Calibrated /Eight Twelve Data Processed
Stxt’
filename twelve sixteen = ’/export/home/users/username/Documents/DG Temp/
Mining Facility 2018 /Processed Data/’ \
’Separated Hours/Manufacturer Calibrated/
Twelve Sixteen Data Processed.txt’
filename sixteen twenty = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Processed Data/’ \
’Separated Hours/Manufacturer Calibrated/
Sixteen Twenty Data_ Processed.txt’
filename twenty twentyfour = ’/export/home/users/username/Documents/DG_Temp/
Mining _Facility 2018 /Processed Data/’ \
>Separated _Hours/Manufacturer Calibrated/
Twenty Twentyfour Data Processed.txt’

Zero four (0000—0400) data
outputFile zero four = open(filename zero four, ’w’)
outputFile zero four.write("#_Date,_Time,_Lat,_Long_and_Temp_for_each_image_from_00:00_to_
03:59_\n")
outputFile zero four.write("#By:_Ryan_Byerlay_\n")
outputFile zero four.write("#Recorded_Time_is_Local_Time_(MDT)_\n")
outputFile zero four.write("#Note:_Under_column_#6_time_with_a_single_digit_representing_the
_.minutes_is_=_to_0X"
"_where_X_is_the_number_in_the_column_so_at_the_top_of_the_hr_
only O_would_be_present_\n")
outputFile zero four.write("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day_\t_#4:
Hour_\t_#5:Minute"
"_\t_#6:_Latitude_\t_#7:_Longitude_\t_#38:_X_Pixel_Coordinate_\t_
#9: Y_Pixel_Coordinate"
"_\t_o#10:_Temperature_ (K)_(Emis_!=_1) _\t_#11:_Temperature_(C)_(
Emis_!=_1)_\n")

Save data to file
for i in range(0, len year):
if zero four array|[1l][i] != 0:
outputFile zero four.write ("%s_\t %1\t %1\t %1\t %1\t J%i \t"
TRt L\ LT L\t %01 L\t %1 L\ LR L\t % L \n" %
(zero_ four array[0][i], int(zero_ four array[1][i]), int(
zero four array|[2][i]),
int (zero four array[3][i]), int(zero four array[4][i]),
int (zero_ four array [5][i]),
zero_four array[6][i], zero four array[7]|[i], int(
zero_four array|[8][i]),
int (zero four array [9][i]), zero four array[10][i],
zero four array[11][i]))

outputFile zero four.close ()

156

Four eight (0400—0800) data
outputFile four eight = open(filename four eight,

W)
outputFile four eight.write("#_Date,_Time,_Lat,_Long_and_Temp_for_each_image_from_04:00_to_
07:59_\n")
outputFile four eight.write("#By:_Ryan_Byerlay_\n")
outputFile four eight.write("#Recorded_Time_is_Local_Time_(MDT)_\n")
outputFile four eight.write ("#NOTE:_Under_column_#6_time_with_a_single_digit_representing._
the_minutes_is_=_to_0X"
"_where_X_is_the_number_in_the_column_so_at_the_top_of_the_hr_
only _O_would_be_present_\n")
outputFile four eight.write("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day_\t_#4:
Hour_\t_#5:Minute"
"_\t_#6:_Latitude_\t_#7:_Longitude_\t_#8:_X_Pixel_Coordinate_\t_
#9: Y_Pixel_Coordinate"
"_\t_o#10:_Temperature_ (K)_(Emis_!=_1)_\t_#11:_Temperature_(C)_(
Emis_!=_1)_\n")

Save data to file

for i in range(0, len year):

if four eight array[1][i] != O:
outputFile four eight.write ("%s_\t.%i.\t %i \t %1\t %1\t %1\t %f \t %\t %1\t %
i\t %\t _%E_\n"

% (four eight array [0]|[i], int(four eight array|[1][i]),
int (four eight array[2]|[i]), int(four eight array [3]]

i]) ’
int (four eight array[4][i]), int(four eight array [5]]

i]) ’

four eight array[6][i], four eight array|[7][i], int(

four eight array [8][i]),
int (four eight array [9][i]), four eight array[10][i],
four eight array[11][i]))
outputFile four eight.close ()

71

Eight twelve (0800—-1200) data
outputFile eight twelve = open(filename eight twelve,

W)
outputFile eight twelve.write ("#_Date,_Time,_Lat,_Long_and_Temp_for _each_image_from_08:00_to
11:59\n")
outputFile eight twelve.write ("#By:_Ryan_Byerlay_\n")
outputFile eight twelve.write ("#Recorded_Time_is_Local_Time_(MDT)_\n")
outputFile eight twelve.write ("#NOTE: _Under_column_#6_time_with_a_single_digit_representing_
the_minutes_is"
"_=_to_0X_where_X_is_the_number_in_the_column_so_at_the_top_of
_the_hr_only_0"
"_would_be_present_\n")
outputFile eight twelve.write ("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day_\t_
#4:Hour_\t"

157

"_#5:Minute_\t_#6:_Latitude_\t_#7:_Longitude_\t_#8: X_Pixel_
Coordinate"

"Nto#9:.Y_Pixel_Coordinate_\t__#10:_Temperature_ (K)_(Emis_!=_
1) \t"

"_#11:_Temperature_(C)_(Emis_!=_1)_\n")

Save data to file
for i in range(0, len year):
if eight twelve array[1][i] != O:
outputFile eight twelve.write ("%s_\t_%i_\t %1\t %1 o\t %1\t %1\t L\t f o\t %1\t
01 L\t %f U\t %f L \n" %
(eight twelve array [0][i], int(eight twelve array|[1][i
])’
int (eight twelve array|[2][i]), int(eight twelve array
[3][1]),
int (eight twelve array[4][i]), int(eight twelve array
[51[11]) .
eight twelve array|[6][i], eight twelve array|[7][i],
int (eight twelve array [8][i]), int(eight twelve array
[9111]),
eight twelve array[10][i], eight twelve array[11][i])

)

outputFile eight twelve.close ()

Twelve sixteen (1200—1600) data
outputFile twelve sixteen = open(filename twelve sixteen, ’'w’)
outputFile twelve sixteen.write ("#_Date,_Time, _Lat,_Long_and_Temp_for_each_image_from_12:00_
to_15:59_\n")
outputFile twelve sixteen.write ("#By:_Ryan_Byerlay_\n")
outputFile twelve sixteen.write ("#Recorded_Time_is_Local_Time_(MDT)_\n")
outputFile twelve sixteen.write ("#NOTE:_Under_column_#6_time_with_a_single_digit._
representing __the_minutes_is_="
"_to_0X_where_X_is_the_number_in_the_column_so_at_the_top_of
_the_hr_only_0"
"_would_be_present_\n")
outputFile twelve sixteen.write ("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day_\t
#4:Hour\t _#5:Minute"
" \t_#6:_Latitude_\t_#7:_Longitude_\t_#38:_X_Pixel_Coordinate
At
"_#9: Y_Pixel_Coordinate_\t_#10:_.Temperature_(K)_(Emis_!=_1)

n

" \to#11:_Temperature_(C)_(Emis_!=_1)_\n")

Save data to file
for i in range(0, len year):
if twelve sixteen array|[1][i] != O0:
outputFile twelve sixteen.write ("%s_\t_ %i_\t %1i_\t %1 \t_ %i.\t %i.\t Jf_ \t_ %f_\t_%i_
A\t %1 U\t %E L\t L%E L \n" %

(twelve sixteen array [0][i], int(

158

twelve sixteen array|[1][i]),
int (twelve sixteen array [2][i]), int(
twelve sixteen array[3][i]),
int (twelve sixteen array [4][i]), int(
twelve sixteen array|[5][i]),
twelve sixteen array|[6][i]|, twelve sixteen array
17111,

int (twelve sixteen array[8][i]), int(

twelve sixteen array|[9][i]),
twelve sixteen array|[10][i]|, twelve sixteen array
[11][i]))

outputFile twelve sixteen.close ()

Sixteen twenty (1600—2000) data

outputFile sixteen twenty = open(filename sixteen twenty,

outputFile sixteen twenty.write ("#_Date,_Time, _Lat,_Long_and_Temp_for_each_image_from_16:00_
to_19:59_\n")

outputFile sixteen twenty.write ("#By:_Ryan_Byerlay_\n")

outputFile sixteen twenty.write ("#Recorded_Time_is_Local_Time_(MDT)_\n")

outputFile sixteen twenty.write ("#ANOTE:_Under_column_#6_time_with_a_single_digit_

7w7)

representing _the_minutes_is_="
"_to_0X_where_X_is_the_number_in_the_column_so_at_the_top_of
_the_hr_only_0"
"_would_be_present_\n")
outputFile sixteen twenty.write ("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day_\t
#4:Hour\t _#5:Minute"
" \t_#6:_Latitude_\t_#7:_Longitude_\t_#8:_X_Pixel_Coordinate
n
"\Nto#9:.Y_Pixel_Coordinate_\t_#10:_Temperature_(K)_(Emis_!=
oL
"_\t_#11:_Temperature_(C)_(Emis_!=_1)_\n")

Save data to file
for i in range(0, len year):
if sixteen twenty array|[1][i]| != O0:
outputFile sixteen twenty.write ("%s_\t_%i_\t %i_\t %1 \t_ %1 \t %i.\t Jf_\t_%f_\t_%i_
N\t %1 L\t L%f L\t L %f\n" %
(sixteen twenty array [0][i], int(

sixteen twenty array|[1][i]),

.
o+
—~

int (sixteen twenty array[2][i]),
sixteen twenty array|[3][i]),

int (sixteen twenty array[4][i]), int(
sixteen twenty array|[5][i]),

sixteen _twenty array [6][i], sixteen_twenty array
71131,

int (sixteen twenty array [8][i]), int(

sixteen twenty array|[9][i]),

sixteen twenty array|[10][i]|, sixteen twenty array

[(111[i]))

159

outputFile sixteen twenty.close ()

F

Twenty twenty—four (2000-—-2400) data
outputFile twenty twentyfour = open(filename twenty twentyfour, ’w’)
outputFile twenty twentyfour.write("#_Date,_Time,_Lat,_Long_and_Temp_for_each_image_from_
20:00_t0.23:59_\n")
outputFile twenty twentyfour.write("#By:_Ryan_Byerlay_\n")
outputFile twenty twentyfour.write("#Recorded_Time_is_Local_Time_(MDT)_\n")
outputFile twenty twentyfour.write ("#NOTE: _Under_column_#6_time_with_a_single_digit._
representing _the_minutes_is_="
"_to_0X_where_X_is_the_number_in_the_column_so_at_the_top
_of_the_hr_only_0"
"_would_be_present_\n")
outputFile twenty twentyfour.write("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day
A\ to#4:Hour \t"
"_#5:Minute_\t_#6:_Latitude_\t_#7:_Longitude_\t_#8:_X_
Pixel_Coordinate"
" A\Nto#9:.Y_Pixel_Coordinate_\t_#10:_Temperature_ (K)_(Emis
=21
"_\t_o#11l:_Temperature_(C)_(Emis_!=_1)_\n")

Save data to file
for i in range(0, len year):
if twenty twentyfour array[1][i] != 0:
outputFile twenty twentyfour.write ("%s_\t %1.\t %1 \t %1 \t %1 \t %1\t f o\t %l \to
P01\t %01 N\t RN\t \n" %
(twenty twentyfour array[0][i], int(
twenty twentyfour array[1][i]),

int (twenty twentyfour array[2][i]), int(
twenty twentyfour array[3][i]),

int (twenty twentyfour array[4][i]), int(
twenty twentyfour array[5][i]),

twenty twentyfour array[6][i],
twenty twentyfour array[7][i],

int (twenty twentyfour array [8][i]), int(

twenty twentyfour array[9][i]),
twenty twentyfour array[10][i],
twenty twentyfour array[11][i]))
outputFile twenty twentyfour.close ()

A.2.6 Applying Thermal Camera Calibration Constants to Land

Surface Temperatures

import numpy

Current as of October 18, 2019

Apply thermal camera calibration constants to calculated surface temperatures based on

160

land surface material and geographic position

State original FLIR factory Planck constants
R1_ flir = 17096.453

R2 flir = 0.046642166

R _flir = R1_flir/R2 flir

B flir = 1428

O flir =-342

F_flir =1

Soil FLIR constants
R _soil = 549800
B_soil = 1510

O _soil = —171

F_soil 1.5

Developed land (Concrete) FLIR Constants
R_concrete = 247614

B_concrete = 1322

O concrete = —513

F_concrete = 1.5

Water FLIR Constants
R water = 549789

B water = 1507
O_water = —171

F_ water = 1.5

Load data for 00:00 to 04:00
zero four filename = ’/export/home/users/username/Documents/DG Temp/Mining Facility 2018/
Processed Data/’ \
’Separated _Hours/Manufacturer Calibrated/Zero_Four_Data_Processed. txt’

zero _four data = numpy.genfromtxt(zero four filename, usecols=[6,7,10])

Consider emissivity does not equal 1

zero four lat pre filter = zero four data[:,0]
zero four lon pre filter = zero four data[:,1]
zero four tempK pre filter = zero four data[:,2]

Filter the data based on known geographic coordinates and correct temperature accordingly

Initialize new arrays to be equal to Nan

zero _four lat = numpy.zeros ((len(zero four lat pre filter)))
zero_four lat[:] = numpy.nan

zero_four lon = numpy.zeros ((len(zero four lat pre filter)))
zero_four lon [:] = numpy.nan

zero_four tempK = numpy.zeros ((len(zero four lat pre filter)))
zero_four tempK [:|] = numpy.nan

161

Filter out geographic coordinates for the heat maps
for point in range(0, len(zero_ four lat)):
print (zero four lon pre filter [point])
print (zero four lat pre filter [point])
if zero_four_lon_pre_filter [point] >= —XXX.XXXXXX:
continue
elif ((zero four lon pre filter[point] >= XXX.XXXXXX and zero four lon_ pre filter[point
| <= XXX XXXXXX)
and (zero four lat pre filter[point] >= XX.XXXXXX and zero four lat pre filter|
point | <= XX.XXXXXX)) :
continue
elif ((zero_four lon_ pre_ filter[point] >= XXX.XXXXXX and zero_ four_ lon_pre_filter [point
] <= —XXX.XXXXXX)
and (zero_four lat pre_ filter [point] >= XX.XXXXXX and zero_four lat_ pre_filter |
point] <= XX.XXXXXX)) :
continue
elif ((zero_four_ lon_pre_filter[point] >= XXX.XXXXXX and zero_four_lon_pre_filter [point
] <= —XXX.XXXXX)
and (zero_four_lat_pre_filter [point] >= XX.XXXXXX and zero_four_lat_pre_filter |
point] <= XX.XXXXXX)) :
continue
else:
for index in range(0, len(zero four lat)):

Check if index is Nan

if numpy.isnan(zero four lat[index]) = True:
zero four lat[index| = zero four lat pre filter[point]
zero _four lon[index| = zero_ four lon_ pre filter[point]
zero four tempK|[index| = zero four tempK pre filter[point]
break

Identify index where Nan starts

for nan_ index in range(0, len(zero four lat)):

if numpy.isnan(zero four lat[nan index]) = True:
Remove Nan values from arrays
zero four lat = zero four lat[0:nan_index|
zero four lon = zero four lon|[0:nan index|
zero_four tempK = zero four tempK[0:nan index]
break

F=

Apply Temperature Correction Constants
Calculate Upixel using Horny, 2003 formula:
https://www.sciencedirect .com/science/article /pii/S13504495020018347 via%3Dihub

* ¥ 3

Initialize Upixel

Upixel zero four = numpy.zeros ((len(zero_ four lat)))

Initialize new corrected temperature array

corrected temp zero four = numpy.zeros ((len(zero four lon)))

162

Calculate pixel coordinate A/D Counts for each latitude/longitude pair

for i in range(0, len(zero four lat)):
Upixel zero four[i]| = (R_flir /(numpy.exp (B _flir/zero four tempK|[i]|)—F flir))—O flir

Apply land use camera parameters filter and calculate corrected temperature
for i in range(0, len(zero four tempK)):
If longitude is greater than —XXX.XXXX or longitude is less than —-XXX.XXXX, use soil
parameters
(except the points that overlay the solid waste carbon/water areas).
The tailings pond corresponds to developed land parameters
if (zero four lon[i] >= XXX.XXXX) or (zero_ four lon[i] <= -XXX.XXXX) :
Solid waste carbon coordinates, use developed land constants
if ((zero_four lon[i]| >= XXX.XXXXXX and zero_ four lon[i] <= -XXX.XXXXXX) and
(zero_four lat[i] >= XX.XXXXXX and zero four lat[i] <= XX.XXXXXX))\
or ((zero four lon[i] >= XXX.XXXXXX and zero four lon[i] <= —XXX.XXXXXX)
and (zero_ four lat[i]| >= XX.XXXXXX and zero four lat[i] <= XX.XXXXXX)) :
Developed Land (concrete)
= R_concrete

B _concrete

O _concrete

o O W X
Il

F_concrete

Water body near the camp, use the water parameters
elif ((zero four lon[i] >= -XXX.XXXXXX and zero four lon[i] <= —XXX.XXXXXX) and
(zero four lat[i] >= XX.XXXXXXX and zero four lat[i] <= XX.XXXXXX)) :

Water

R = R_water
B = B_water
O = O_water
F = F_water

For the following area, including the Berm, west of the mine, and east of the open

water , use soil constants
elif ((zero four lon[i] >= -XXX.XXXXXX and zero four lon[i] <= —XXXX.XXXXXXX)
and (zero four lat[i] >= XX.XXXXXX and zero four lat[i] <= XX.XXXXXX)):

Soil

R = R_soil

B = B_soil

O = O _soil

F = F_ soil
For all other areas, use developed land constants
else:

Developed land (concrete)

R = R_concrete

B = B_concrete

O = O_concrete

F = F_concrete

Tailings Pond, use developed land (concrete) constants

else:
Developed land (concrete)

R = R_concrete

163

B = B_concrete
O

F = F_concrete

O _concrete

Calculate corrected temperature

corrected temp zero four[i| = B / (numpy.log(R / (Upixel zero four[i| + O) + F))

F=

Save To file
outputFileName zero four = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Processed Data’ \
’/Separated Hours/Campus_Calibrated/Zero_ four data_calibrated.txt

)

outputFile zero four = open(outputFileName zero four, ’'w’)
outputFile zero four.write("#0: Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_Corrected _Temp._
[K].An")

Save data to file
for i in range(0, len(zero four lat)):
outputFile zero four.write ("%f_\t_%f_\t_%f_\n" % (zero four lon[i]|, zero four lat[i],
corrected temp zero four[i]))

outputFile zero four.close ()

/
7

Load data for 04:00 to 08:00
four eight filename = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
Processed Data/’ \
’Separated _Hours/Manufacturer Calibrated /Four Eight Data_Processed. txt’

four _eight data = numpy.genfromtxt (four_eight_filename, usecols=[6, 7, 10])

Consider emissivity does not equal 1

four eight lat pre filter = four eight data[:, 0]
four eight lon pre filter = four eight data|:, 1]
four eight tempK pre filter = four eight data|:, 2]

Filter the data based on known geographic coordinates and correct temperature accordingly
Initialize new arrays to be equal to Nan

four eight lat = numpy.zeros ((len(four eight lat pre filter)))

four eight lat [:] = numpy.nan

four eight lon = numpy.zeros ((len(four eight lat pre_ filter)))

four eight lon [:] = numpy.nan

four eight tempK = numpy.zeros ((len(four eight lat pre filter)))

four eight tempK [:] = numpy.nan
Filter out geographic coordinates for the heat maps

for point in range(0, len(four eight lat)):
print (four eight lon pre filter [point])

164

print (four eight lat pre filter [point])
if four_eight_lon_pre_filter [point] >= —XXX.XXXXXX:
continue
elif ((four_eight_lon_pre_filter [point]| >= —XXX.XXXXXX and four_eight_lon_pre_filter|
point] <= —XXX.XXXXXX) and
(four _eight _lat_pre_filter [point] >= XX.XXXXXX and four_eight_lat_pre_filter[point
] <= XX.XXXXXX)) :
continue
elif ((four eight lon pre filter[point] >= XXX.XXXXXX and four eight lon pre filter|
point] <= XXX.XXXXXX) and
(four eight lat pre filter [point] >= XX.XXXXXX and four eight lat pre filter[point
] <= XX.XXXXXX)) :
continue
elif ((four_eight_lon_pre_filter [point] >= XXX .XXXXXX and four_eight_lon_pre_filter|
point] <= —XXX.XXXXXX) and
(four eight _lat_pre_ filter [point] >= XX.XXXXXX and four_eight lat_ pre_filter[point
] <= XX.XXXXXX)) :
continue
else:
for index in range(0, len(four eight lat)):
Check if index is Nan
if numpy.isnan (four eight lat[index]) == True:
four eight lat[index]| = four eight lat pre filter[point]
four eight lon[index] = four eight lon pre filter[point]
four eight tempK|[index| = four eight tempK pre filter[point]
break

Identify index where Nan starts

for nan index in range(0, len(four eight lat)):

if numpy.isnan(four eight lat[nan index]|) = True:
Remove Nan values from arrays
four eight lat = four_eight_lat[0:nan_index]
four _eight_lon = four_eight_lon[0:nan_index]

four_eight tempK = four_eight tempK|[0:nan_index]
break

H*

Apply Temperature Correction Constants
Calculate Upixel using Horny, 2003 formula
https://www.sciencedirect .com/science/article /pii/S13504495020018347via%3Dihub

* #* #*

Initialize Upixel

Upixel four eight = numpy.zeros ((le

(four eight lat)))

Initialize new corrected temperature array

corrected temp four eight = numpy.zeros ((len(four eight lon)))
Calculate Pixel coordinate A/D Counts for each latitude/longitude pair

for i in range(0, len(four eight lat)):
Upixel four eight[i] = (R _flir / (numpy.exp(B flir / four eight tempK|[i]|) — F _flir)) —

165

O _flir

Apply land use camera parameters filter and calculate corrected temperature

for i in range(0, len(four eight tempK)):
If Longitude is greater than —XXX.XXXX or longitude is less than —-XXX.XXXX, use soil

parameters
(except the points that overlay the solid waste carbon/water areas).

The

waterbodies correspond to developed land parameters

if (four eight lon[i] >= XXX.XXXX) or (four eight lon[i] <= XXX.XXXX) :

Solid waste carbon coordinates, use developed land constants

if

((four eight lon[i] >= XXX.XXXXXX and four eight lon[i] <= XXX.XXXXXX) and
(four eight_lat[i] >= XX.XXXXXX and four_ eight lat[i]| <= XX.XXXXXX)) or)\
((four _eight lon[i] >= -XXX.XXXXXX and four eight lon[i] <= XXX.XXXXXX) and
(four eight lat[i] >= XX.XXXXXX and four eight lat[i] <= XX.XXXXXX)) :
Developed land (concrete)
= R _concrete

B _concrete

O _concrete

o O W Tk
I

= F _concrete

Water body near the camp, use the water parameters

elif ((four eight lon[i] >= XXX.XXXXXX and four eight lon[i] <= —XXX.XXXXXX) and

(four eight lat[i] >= XX.XXXXXX and four eight lat[i] <= XX.XXXXXX)) :

Water

R = R_water
B = B_water
O = O_water
F = F_ water

For the following area, including the Berm, west of the mine, and east of the open

water, use soil constants

elif ((four eight lon[i] >= -XXX.XXXXXX and four eight lon[i] <= —XXX.XXXXXX) and

(four eight lat[i] >= XX.XXXXXX and four eight lat[i] <= XX.XXXXXXX)) :

4 Soil

R = R_soil
B = B_soil
O = O _soil
F = F_ soil

For all other areas, use developed land constants

Developed land (concrete)

= R_concrete

4
R

B = B_concrete
O = O_concrete
F

= F_concrete

Tailings Pond, use developed land constants

else:
/'/‘r/
R
B

o

Developed land (concrete)
= R_concrete
= B_concrete

= O_concrete

166

F = F_concrete

Calculate corrected temperature
corrected temp four eight[i|] = B / (numpy.log(R / (Upixel four eight[i] + O) + F))

*

Save To file
outputFileName four eight = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Processed Data’ \
’/Separated Hours/Campus_Calibrated /Four eight data calibrated.
txt’
outputFile four eight = open(outputFileName four eight, ’w’)
outputFile four eight.write("#0:_Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_Corrected_Temp
K] _\n")

Save data to file
for i in range(0, len(four eight lat)):
outputFile four eight.write("%f_\t_ %f_\t_%f_\n" % (four eight lon|[i],
four eight lat[i],
corrected temp four eight[i]))
outputFile four eight.close ()

i

Load data for 08:00 to 12:00
eight twelve filename = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
Processed Data/’ \
’Separated _Hours/Manufacturer Calibrated /Eight _Twelve Data_Processed.
txt’

eight twelve data = numpy.genfromtxt(eight twelve filename, usecols=[6, 7, 10])

Consider emissivity does not equal 1

eight twelve lat pre filter = eight twelve data[:, 0]
eight twelve lon pre filter = eight twelve data[:, 1]
eight twelve tempK pre filter = eight twelve datal:, 2]

Filter the data based on known geographic coordinates and correct temperature accordingly
Initialize new arrays to be equal to Nan

eight twelve lat = numpy.zeros ((len(eight twelve lat pre filter)))

eight twelve lat[:] = numpy.nan

eight twelve lon = numpy.zeros ((len(eight twelve lat pre_ filter)))

eight twelve lon [:] = numpy.nan

eight twelve tempK = numpy.zeros ((len(eight twelve lat pre filter)))

eight twelve tempK [:] = numpy.nan
Filter out geographic coordinates for the heat maps

for point in range(0, len(eight twelve lat)):
print (eight twelve lon pre filter|[point])

167

print (eight twelve lat pre filter [point])
if eight_twelve lon_pre_filter [point] >= —XXX.XXXXXX:
continue
elif ((eight_twelve_lon_pre_filter [point]| >= —XXX.XXXXXX and eight_twelve_lon_pre_filter
[point] <= —XXX.XXXXXX)
and (eight_twelve_lat_pre_filter [point]| >= XX.XXXXXX and
eight twelve lat pre filter[point] <= XX.XXXXXXX)) :
continue
elif ((eight twelve lon pre filter[point| >= —XXX.XXXXXXX and
eight twelve lon pre_ filter[point]| <= —XXX.XXXXXX)
and (eight twelve lat pre filter [point]| >= XX.XXXXXX and
eight twelve lat pre filter [point] <= XX.XXXXXX)) :
continue
elif ((eight twelve lon pre filter|[point]| >= —XXX.XXXXXXX and
eight twelve lon pre filter[point]| <= —XXX.XXXXXX)
and (eight twelve lat pre filter|[point] >= XX.XXXXXXX and
eight _twelve _lat_pre_filter [point] <= XX.XXXXXX)) :
continue
else:
for index in range(0, len(eight twelve lat)):
Check if index is Nan
if numpy.isnan (eight twelve lat|[index|) == True:
eight twelve lat[index] = eight twelve lat pre filter|[point|
eight twelve lon|[index] = eight twelve lon pre filter|[point |
eight twelve tempK[index] = eight twelve tempK pre filter|[point|
break

Identify index where Nan starts
for nan index in range(0, len(eight twelve lat)):
if numpy.isnan(eight twelve lat[nan index|) = True:
Remove Nan values from arrays
eight _twelve_ lat = eight_ twelve_ lat[0:nan_index]
eight _twelve_lon = eight_twelve_lon[0:nan_index]

eight _twelve tempK = eight_twelve tempK |[0:nan_index|

break
Apply Temperature Correction Constants
Calculate Upixel using Horny, 2003 formula
https://www.sciencedirect.com/science/article/pii/S13504495020018347via%3Dihub

Initialize Upixel
Upixel eight twelve = numpy.zeros ((len(eight twelve lat)))

Initialize new corrected temperature array

11

corrected temp eight twelve = numpy.zeros ((len(eight twelve lon)))
Calculate Pixel coordinate A/D Counts for each latitude/longitude pair

for i in range(0, len(eight twelve lat)):
Upixel eight twelve[i] = (R _flir / (numpy.exp(B _flir / eight twelve tempK|[i]) — F _flir))

168

— O _flir

Apply land use camera parameters filter and calculate corrected temperature
for i in range(0, len(eight twelve tempK)):
If longitude is greater than —XXX.XXXX or longitude is less than —-XXX.XXXX, use soil
parameters
(except the points that overlay the solid waste carbon/water areas).
The waterbodies correspond to developed land parameters
if (eight twelve lon[i] >= XXX.XXXXX) or (eight twelve lon[i] <= —XXX.XXXX) :
Solid waste carbon coordinates, use developed land
if ((eight twelve lon[i] >= XXX.XXXXXX and eight twelve lon[i] <= XXX.XXXXXX) and
(eight _twelve lat[i] >= XX.XXXXXX and eight twelve lat[i] <= XX.XXXXXX)) or)\
((eight _twelve lon[i] >= XXX.XXXXXX and eight twelve lon[i]| <= —XXX.XXXXXX)
and
(eight twelve lat[i] >= XX.XXXXXX and eight twelve lat[i] <= XX.XXXXXX)) :
Developed land (concrete)

= R_ concrete

R

B = B_concrete
O = O_concrete
F

= F_concrete

Water body near the camp

elif ((eight_twelve lon[i] >= XXX.XXXXXX and eight_twelve lon[i] <= —XXX.XXXXXX)
and

(eight _twelve lat[i] >= XX.XXXXXXX and eight twelve lat[i] <= XX.XXXXXX)) :

Water

= R_water

= B_water

= O_water

H O W =W Ik

= F_water

For the following area, including the Berm, west of the mine, and east of the open

water , use soil constants
elif ((eight twelve lon[i]| >= -XXX.XXXXXX and eight twelve lon[i] <= —XXX.XXXXXX)

and
(eight twelve lat[i] >= XX.XXXXXXX and eight twelve lat[i] <= XX.XXXXXXXX)) :
4 Soil
R = R_soil
B = B_soil
0= 0 soil
F = F_soil

For all other areas, use developed land constants

Developed land (concrete)

= R _concrete

#*
R
B = B_concrete
O = O_concrete
F

= F _concrete

Tailings Pond, use developed land (concrete)

else:

169

Developed land (concrete)
= R_concrete

B _concrete

O _concrete

o O W -
Il

F_concrete

Calculate corrected temperature
corrected temp eight twelve[i|] = B / (numpy.log(R / (Upixel eight twelve[i] + O) + F))

¥

Save To file
outputFileName eight twelve = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Processed _Data’ \
’/Separated Hours/Campus_Calibrated/Eight _twelve data_calibrated.
txt’
outputFile eight twelve = open(outputFileName eight twelve, ’w’)
outputFile eight twelve.write ("#0:_Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_Corrected_
Temp_ [K] .\n")

)

Save data to file
for i in range(0, len(eight twelve lat)):
outputFile eight twelve.write ("%f_\t_%f_\t_%f_\n" % (eight twelve lon[i],
eight twelve lat[i],
corrected temp eight twelve[i]))
outputFile eight twelve.close ()

Load data for 12:00 to 16:00
twelve sixteen filename = ’/export/home/users/username/Documents/DG_ Temp/
Mining _Facility 2018 /Processed_Data/’ \
’Separated Hours/Manufacturer Calibrated /Twelve Sixteen Data Processed.
txt’

twelve sixteen data = numpy.genfromtxt(twelve sixteen filename, usecols=[6, 7, 10])

Consider emissivity does not equal 1

twelve sixteen lat pre filter = twelve sixteen data[:, 0]
twelve sixteen lon pre filter = twelve sixteen data[:, 1]
twelve sixteen tempK pre filter = twelve sixteen data[:, 2]

Filter the data based on known geographic coordinates and correct temperature accordingly

Initialize new arrays to be equal to Nan

twelve sixteen lat = numpy.zeros((len(twelve sixteen lat pre filter)))
twelve sixteen lat[:] = numpy.nan

twelve sixteen lon = numpy.zeros((len(twelve sixteen lat pre filter)))
twelve sixteen lon [:] = numpy.nan

twelve sixteen tempK = numpy.zeros ((len(twelve sixteen lat pre filter)))
twelve sixteen tempK [:] = numpy.nan

170

Filter out geographic coordinates for the heat maps
for

point in range(0, len(twelve sixteen lat)):
print (twelve sixteen lon pre filter|[point])
print (twelve sixteen lat pre filter|[point])
if twelve sixteen lon pre filter[point] >= —XXX.XXXXXX:
continue
elif ((twelve sixteen lon pre filter|[point]| >= XXX .XXXXXXX and
twelve sixteen lon pre filter[point]| <= —XXX.XXXXXXX) and
(twelve sixteen lat pre filter [point] >= XX.XXXXX and
twelve sixteen lat pre filter [point]| <= XX.XXXXXX)) :
continue
elif ((twelve sixteen lon pre filter[point]| >= —XXX.XXXXXX and
twelve sixteen lon pre filter[point]| <= —XXX.XXXXXX)
and (twelve sixteen lat pre filter[point] >= XX.XXXXXX and
twelve sixteen lat pre filter[point| <= XX.XXXXXX)):
continue
elif ((twelve sixteen lon pre filter[point]| >= —XXX.XXXXXX and
twelve sixteen lon pre filter[point]| <= —XXX.XXXXXX)
and (twelve_sixteen_lat_pre_filter[point]| >= XX.XXXXXXX and
twelve _sixteen_lat_pre_filter [point]| <= XX.XXXXXX)):
continue
else:
for index in range(0, len(twelve sixteen lat)):

Check if index is Nan

if numpy.isnan(twelve sixteen lat|[index|) = True:
twelve sixteen lat[index] = twelve sixteen lat pre filter [point]
twelve sixteen lon[index] = twelve sixteen lon pre_ filter [point]
twelve sixteen tempK|[index| = twelve sixteen tempK pre filter|[point]|
break

Identify index where Nan starts
r

'
fo

nan_index in range(0, len(twelve sixteen lat)):
if numpy.isnan(twelve sixteen lat[nan index|) = True:

Remove Nan values from arrays

twelve sixteen lat = twelve sixteen lat[0:nan_index]|
twelve sixteen lon = twelve sixteen lon[0O:nan_index]|
twelve sixteen tempK = twelve sixteen tempK |[0:nan index]
break

Apply Temperature Correction Constants

+*

Calculate Upixel using Horny, 2003 formula
https://www.sciencedirect .com/science/article /pii/S13504495020018347 via%3Dihub

%

Initialize Upixel

Upixel twelve sixteen = numpy.zeros ((len(twelve sixteen lat)))

Initialize new corrected temperature array

corrected temp twelve sixteen = numpy.zeros ((le

(twelve sixteen lon)))

171

Calculate Pixel coordinate A/D Counts for each latitude/longitude pair
for i in range(0, len(twelve sixteen lat)):
Upixel twelve sixteen[i] = (R _flir / (numpy.exp(B _flir / twelve sixteen tempK|[i]) —
F_ flir)) — O _flir
Apply land use camera parameters filter and calculate corrected temperature
for i in range(0, len(twelve sixteen tempK)):
If Longitude is greater than —XXX.XXXX or longitude is less than —-XXX.XXXX, use soil
parameters
(except the points that overlay the solid carbon waste/water areas).

The waterbodies correspond to developed land (concrete) parameters

if (twelve_ sixteen lon[i] >= XXX.XXXX) or (twelve sixteen lon[i]| <= —XXX.XXXX):
Solid waste carbon coordinates , use developed land parameters
if ((twelve sixteen lon[i] >= XXX.XXXXXX and twelve sixteen lon[i] <= —XXX.XXXXXX)
and
(twelve sixteen lat[i] >= XX.XXXXXX and twelve sixteen lat[i] <= XX.XXXXXX)) or)\
((twelve sixteen lon[i] >= XXX.XXXXXX and twelve sixteen lon[i] <= —XXX.
XXXXXX) and
(twelve sixteen lat[i]| >= XX.XXXXXX and twelve sixteen lat[i] <= XX.XXXXXXX
)
Developed land (concrete)

= R__concrete

B concrete

#
R
B
O = O_concrete
F

= F _concrete
Water body near the camp

elif ((twelve sixteen lon[i] >= XXX.XXXXXX and twelve sixteen lon[i] <= —XXX.XXXXXX

) and
(twelve sixteen lat[i] >= XX.XXXXXXX and twelve sixteen lat[i] <= XX.XXXXXXX))

Water

#

R = R_water
B = B_ water
O = O_ water
F = F_water

For the following area, including the Berm, west of the mine, and east of the open

water , use soil constants

elif ((twelve sixteen lon[i] >= XXX.XXXXXX and twelve sixteen lon[i] <= —XXX.XXXXXX

) and
(twelve sixteen lat[i]| >= XX.XXXXXXX and twelve sixteen lat[i] <= XX.XXXXXXX))

Soil

#*

R = R_soil
B = B_soil
O = O_soil
F = F_soil

For all other areas, use developed land constants

else:

172

Developed land (concrete)
= R_concrete

B _concrete

O _concrete

o O w X
Il

F_concrete

Tailings Pond, use developed land constants
e

Ise:

Developed land (concrete)

= R_concrete

”
R
B B _concrete
O = O_concrete
F = F_concrete
Calculate corrected temperature

corrected temp twelve sixteen|[i] = B / (numpy.log(R / (Upixel twelve sixteen[i] + O) + F

))

Save To file
outputFileName twelve sixteen = ’/export/home/users/username/Documents/DG Temp/
Mining Facility 2018/Processed Data’ \
’/Separated Hours/Campus_Calibrated/
Twelve sixteen data calibrated.txt’
outputFile twelve sixteen = open(outputFileName twelve sixteen, ’'w’)
outputFile twelve sixteen.write ("#0:_Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_Corrected_

Temp_ [K] .\n")

Save data to file
for i in range(0, len(twelve sixteen lat)):
outputFile twelve sixteen.write ("%f_\t_ %f_\t_%f_\n" % (twelve sixteen lon|[i],

twelve sixteen lat[i],
corrected temp twelve sixteen[i])

)

outputFile twelve sixteen.close ()

#

Load data for 16:00 to 20:00
sixteen twenty filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Processed Data/’ \
’Separated Hours/Manufacturer Calibrated/Sixteen Twenty Data Processed.
txt’

sixteen twenty data = numpy.genfromtxt(sixteen twenty filename, usecols=[6, 7, 10])

Consider emissivity does not equal 1

sixteen twenty lat pre filter = sixteen twenty data[:, O]

sixteen twenty lon pre filter = sixteen twenty data[:, 1]

173

sixteen twenty tempK pre filter = sixteen twenty data[:, 2]

Filter the data based on known geographic coordinates and correct temperature accordingly

Initialize new arrays to be equal to Nan

sixteen twenty lat = numpy.zeros ((len(sixteen twenty lat pre filter)))
sixteen twenty lat[:] = numpy.nan
sixteen twenty lon = numpy.zeros ((len(sixteen twenty lat pre filter)))
sixteen twenty lon[:] = numpy.nan

sixteen twenty tempK = numpy.zeros ((len(sixteen twenty lat pre filter)))

sixteen twenty tempK [:] = numpy.nan

Filter out geographic coordinates for the heat maps
for point in range(0, len(sixteen twenty lat)):
print (sixteen twenty lon pre filter|[point])
print (sixteen twenty lat pre filter[point])
if sixteen twenty lon pre filter[point] >= —XXX.XXXXXX:
continue
elif ((sixteen twenty lon pre filter[point]| >= —XXX.XXXXXX and
sixteen twenty lon pre filter[point]| <= —XXX.XXXXXX)
and (sixteen_twenty_ lat_pre_filter[point]| >= XX.XXXXXXX and
sixteen_twenty _lat_pre_filter [point]| <= XX.XXXXXXX)) :
continue
elif ((sixteen twenty lon pre filter|[point] >= —XXX.XXXXXXX and
sixteen twenty lon pre filter[point]| <= —XXX.XXXXXX)
and (sixteen twenty lat pre filter|[point]| >= XX.XXXXXX and
sixteen twenty lat pre filter[point| <= XX.XXXXXXX)) :
continue
elif ((sixteen twenty lon pre filter [point] >= —XXX.XXXXXX and
sixteen twenty lon_pre_filter [point]| <= —XXX.XXXXXX)
and (sixteen twenty lat pre filter[point]| >= XX.XXXXXX and
sixteen twenty lat pre filter[point]| <= XX.XXXXXX)):
continue
else:
for index in range(0, len(sixteen twenty lat)):

Check if index is Nan

if numpy.isnan(sixteen twenty lat[index|) = True:
sixteen twenty lat[index]| = sixteen twenty lat pre filter|[point]
sixteen twenty lon[index]| = sixteen twenty lon pre filter|[point]
sixteen twenty tempK|[index| = sixteen twenty tempK pre filter|[point]
break

Identify index where Nan starts

for nan_ index in range(0, len (sixteen twenty lat)):

if numpy.isnan(sixteen twenty lat[nan_ index]|) = True:
Remove Nan values from arrays
sixteen twenty lat = sixteen_ twenty lat[0:nan_index|
sixteen _twenty lon = sixteen twenty lon [0:nan_index|
sixteen _twenty tempK = sixteen_twenty tempK [0:nan_index]
break

174

Apply Temperature Correction Constants
Calculate Upixel using Horny, 2003 formula
https://www.sciencedirect.com/science/article/pii/S13504495020018347via%3Dihub

Initialize Upixel
Upixel sixteen twenty = numpy.zeros ((len(sixteen twenty lat)))

Initialize new corrected temperature array
corrected temp sixteen twenty = numpy.zeros ((len(sixteen twenty lon)))

Calculate Pixel coordinate A/D Counts for each latitude/longitude pair
for i in range(0, len(sixteen twenty lat)):
Upixel sixteen twenty[i] = (R _flir / (numpy.exp(B flir / sixteen twenty tempK|[i]) —
F_flir)) — O _flir

Apply land use camera parameters filter and calculate corrected temperature
for i in range(0, len(sixteen twenty tempK)):
If longitude is greater than —XXX.XXXX or longitude is less than —XXX.XXXX, use soil

ST

parameters
(except the points that overlay the solid waste carbon/water areas).
The waterbodies correspond to developed land (concrete) parameters
if (sixteen twenty lon[i] >= XXX.XXXX) or (sixteen twenty lon[i] <= —XXX.XXXX) :
Solid waste carbon coordinates, use developed land (concrete) parameters
if ((sixteen twenty lon[i] >= XXX.XXXXXX and sixteen twenty lon[i] <= —XXX.XXXXXX)
and
(sixteen twenty lat[i] >= XX.XXXXXX and sixteen twenty lat[i] <= XX.XXXXXX)) or\
((sixteen twenty lon[i] >= XXX.XXXXXX and sixteen twenty lon[i] <= —XXX.
XXXXXX) and
(sixteen twenty lat[i]| >= XX.XXXXXX and sixteen twenty lat[i] <= XX.XXXXXX)
):
Developed land (concrete)

= R_concrete

R

B = B_concrete
O = O_concrete
F

= F_concrete

Water body near the camp

elif ((sixteen twenty lon[i] >= XXX.XXXXXX and sixteen twenty lon[i] <= —XXX.XXXXXX
) and

(sixteen twenty lat[i] >= XX.XXXXXX and sixteen twenty lat[i] <= XX.XXXXXX)) :

Water

= R_ water

= B _water

= O_water

o O Wk

= F_water

For the following area, including the Berm, west of the mine, and east of the open

water, use soil constants
elif ((sixteen twenty lon[i] >= -XXX.XXXXXX and sixteen twenty lon[i] <= —XXX.XXXXXX

) and
(sixteen twenty lat[i] >= XX.XXXXXX and sixteen twenty lat[i] <= XX.XXXXXXX)):

175

Soil

R = R_soil
B = B_soil
O = O _soil
F = F_ soil

For all other areas, use developed land constants

Developed land (concrete)

= R_concrete

4
R

B = B_concrete
(@] O _concrete
F

= F_concrete

Tailings Pond, use developed land constants

else:
Developed land (concrete)
R = R_concrete
B = B_concrete
O = O_concrete
F = F_concrete

Calculate corrected temperature
corrected temp sixteen twenty[i] = B / (numpy.log(R / (Upixel sixteen twenty[i] + O) + F

Save To file
outputFileName sixteen twenty = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Processed _Data’ \
’/Separated Hours/Campus_Calibrated/
Sixteen _twenty_ data _calibrated.txt’
outputFile sixteen twenty = open(outputFileName sixteen twenty, ’w’)
outputFile sixteen twenty.write ("#0:_Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_Corrected_

Temp_ [K]_\n")

Save data to file
for i in range(0, len(sixteen twenty lat)):
outputFile sixteen twenty.write("%f_\t_%f_\t_%f_\n" % (sixteen twenty lon][i],
sixteen twenty lat[i],
corrected temp sixteen twenty[i])

)

outputFile sixteen twenty.close()

Load data for 20:00 to 24:00
twenty twentyfour filename = ’/export/home/users/username/Documents/DG_Temp/
Mining _Facility 2018 /Processed_Data/’ \
’Separated _Hours/Manufacturer Calibrated/

176

Twenty Twentyfour Data Processed.txt’

twenty twentyfour data = numpy.genfromtxt(twenty twentyfour filename,
Consider emissivity does not equal 1

twenty twentyfour lat pre filter = twenty twentyfour data[:, 0]
twenty twentyfour lon pre filter = twenty twentyfour data[:, 1]
twenty twentyfour tempK pre filter = twenty twentyfour data[:, 2]

4L

Filter the data based on known geographic coordinates and correct temperature

Initialize new arrays to be equal to Nan

twenty twentyfour lat = numpy.zeros ((len(twenty twentyfour lat pre filter)))
twenty twentyfour lat[:] = numpy.nan

twenty twentyfour lon = numpy.zeros ((len(twenty twentyfour lat pre filter)))
twenty twentyfour lon|[:] = numpy.nan

twenty twentyfour tempK = numpy.zeros ((len(twenty twentyfour lat pre filter)))

twenty twentyfour tempK [:] = numpy.nan

T

Filter out geographic coordinates for the heat maps

for point in range(0, len(twenty twentyfour lat)):

1

print (twenty twentyfour lon pre filter|[point])
print (twenty twentyfour lat pre filter|[point])

if twenty twentyfour lon pre filter|[point]| >= —XXX.XXXXXX:

continue
elif ((twenty twentyfour lon pre filter[point]
twenty twentyfour lon pre filter|point|
(twenty twentyfour lat pre filter[point]
twenty twentyfour lat pre filter |[point|
continue
elif ((twenty twentyfour lon pre filter[point|
twenty twentyfour lon pre filter|[point]
(twenty twentyfour lat pre filter|[point]
twenty twentyfour lat pre filter [point]
continue
elif ((twenty twentyfour lon pre filter[point|
twenty twentyfour lon pre filter|[point]
(twenty twentyfour lat pre filter|[point]
twenty twentyfour lat pre filter|point]
continue

else:

S= XXX XXXXXX and
<= —XXX.XXXXXX) and
S>— XX.XXXXXX and
<= XX.XXXXKXX)) :

S XXX XXXXXX and
<= —XXX.XXXXXX) and
= XX.XXXXXX and
<= XX.XXXXXX)) :

S XXX XXXXXX and
<= —XXX.XXXXXX) and
>= XX.XXXXXX and
<= XX.XXXXXX)) :

for index in range(0, len(twenty twentyfour lat)):

Check if index is Nan

usecols=[6, 7, 10])

accordingly

if numpy.isnan(twenty twentyfour lat[index]|) = True:
twenty twentyfour lat[index| = twenty twentyfour lat pre filter[point|
twenty twentyfour lon|index] = twenty twentyfour lon pre_ filter[point]
twenty twentyfour tempK|[index]| = twenty twentyfour tempK pre filter|[point]
break

Identify index where Nan starts

for nan_index in range(0, len(twenty twentyfour lat)):

if numpy.isnan(twenty twentyfour lat|[nan index|) = True:

Remove Nan values from good arrays

177

twenty twentyfour lat = twenty twentyfour lat[0:nan_index]

twenty twentyfour_lon = twenty_ twentyfour_ lon[0:nan_index]
twenty twentyfour tempK = twenty twentyfour tempK|[0O:nan index|
break

Apply Temperature Correction Constants
Calculate Upixel using Horny, 2003 formula
https://www.sciencedirect.com/science/article/pii/S13504495020018347via%3Dihub

Initialize Upixel
Upixel twenty twentyfour = numpy.zeros ((len(twenty twentyfour lat)))

Initialize new corrected temperature array

corrected temp twenty twentyfour = numpy.zeros ((len(twenty twentyfour lon)))

Calculate Pixel coordinate A/D Counts for each latitude/longitude pair
for i in range(0, len(twenty twentyfour lat)):
Upixel twenty twentyfour[i] = (R _flir / (numpy.exp(B _flir / twenty twentyfour tempK|[i])
— F_flir)) — O _flir

Apply land use camera parameters filter and calculate corrected temperature
for i in range(0, len(twenty twentyfour tempK)):
If Longitude is greater than —XXX.XXXX or longitude is less than —-XXX.XXXX, use soil
parameters
(except the points that overlay the solid waste carbon/water areas).
The waterbodies correspond to developed land (concrete) parameters
if (twenty twentyfour lon[i] >= XXX.XXXX) or (twenty twentyfour lon[i] <= —XXX.XXXX) :
Solid waste carbon coordinates, use developed land parameters (concrete)
if ((twenty twentyfour lon[i] >= XXX.XXXXXX and twenty twentyfour lon[i] <= —XXX.
XXXXXX) and
(twenty twentyfour lat[i] >= XX.XXXXXX and twenty twentyfour lat[i]| <= XX.XXXXXX
)) or\
((twenty twentyfour lon[i] >= -XXX.XXXXXX and twenty twentyfour lon[i] <= —
XXX . XXXXXX) and
(twenty twentyfour lat[i] >= XX.XXXXXX and twenty twentyfour lat[i] <= XX.
XXXXXXX)) :
Developed Land (concrete)

R _concrete

B _concrete

O _concrete

o O Wk

= F_concrete
Water body near the camp
elif ((twenty twentyfour lon[i] >= XXX.XXXXXX and twenty twentyfour lon[i] <= —XXX.
XXXXXX) and
(twenty twentyfour lat[i] >= XX.XXXXXX and twenty twentyfour lat|[i]| <= XX.
XXXXXX)) -
Water
R = R_water

178

B = B_water
O = O_ water
F = F_water

For the following area, including the Berm, west of the mine, and east of the open

water, use soil constants
elif ((twenty twentyfour lon[i] >= -XXX.XXXXXXX and twenty twentyfour lon[i] <= —XXX

XXXXXX) and
(twenty twentyfour lat[i] >= XX.XXXXXX and twenty twentyfour lat[i]| <= XX.
XXXXXX)) =

Soil

R = R_soil

B = B_soil

O = O _soil

F = F_soil
For all other areas, use developed land constants
else:

Developed land (concrete)

R = R_concrete

B = B_concrete

O = O_concrete

F = F_concrete

Tailings Pond, use developed land parameters (concrete)
e

Ise:

Concrete

= R _concrete

&
R

B = B_concrete
O = O_concrete
F

= F_concrete
Calculate corrected temperature

corrected temp twenty twentyfour[i] = B / (numpy.log(R / (Upixel twenty twentyfour[i] +
0) + F))

Save To file
outputFileName twenty twentyfour = ’/export/home/users/username/Documents/DG Temp/

Mining Facility 2018 /Processed Data’ \
’/Separated Hours/Campus_Calibrated/

Twenty twentyfour data calibrated.txt’
outputFile twenty twentyfour = open(outputFileName twenty twentyfour, ’'w’)
outputFile twenty twentyfour.write("#0:_Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_

Corrected _Temp_ [K]|_\n")

Save data to file
r i in range(0, len(twenty twentyfour lat)):
outputFile twenty twentyfour.write("%f_\t_%f_\t_%f_\n" % (twenty twentyfour lon|[i],

twenty twentyfour lat[i],

corrected temp twenty twentyfour

179

outputFile twenty twentyfour.close ()

H

Load data for May 24 FLIR/MODIS comparison
This data was created from TempExtract May 2018 Mine Campaign.py, where only images

F 3k

recorded
on May 24, 2018 were processed
May 24 SA FLIR filename = ’/export/home/users/username/Documents/DG_Temp’ \
’/Mining Facility 2018 /Processed Data/Separated Hours/
May24 Data_ Processed.txt’

May 24 SA FLIR_data = numpy.genfromtxt(May 24 SA_ FLIR_filename, usecols=[6, 7, 10])

Consider emissivity does not equal 1

May 24 SA_FLIR_lat_pre_filter = May 24 SA_FLIR_data[:, 0]
May 24 SA FLIR lon pre filter = May 24 SA FLIR data[:, 1]
May 24 SA FLIR_ tempK pre filter = May 24 SA FLIR data|:, 2]

Filter the data based on known geographic coordinates and correct temperature accordingly
Initialize new arrays to be equal to Nan
May 24 SA FLIR lat = numpy.zeros ((len(May 24 SA FLIR lat pre filter)))

May 24 SA FLIR lat[:| = numpy.nan
May 24 SA FLIR lon = numpy.zeros ((len(May 24 SA FLIR lat pre filter)))
May 24 SA FLIR lon[:] = numpy.nan

May 24 SA FLIR tempK = numpy.zeros ((len(May 24 SA FLIR lat_ pre filter)))
May 24 SA FLIR tempK|[:| = numpy.nan

Filter out geographic coordinates for the heat maps
for point in range(0, len(May 24 SA FLIR lat)):
print (May 24 _SA_FLIR_lon_pre_filter [point|)
print (May 24 SA_ FLIR_lat_pre_filter[point|])
if May 24 SA FLIR lon_ pre_ filter[point] >= —XXX.XXXXXX:
continue
elif ((May_24_SA_FLIR_lon_pre_filter [point] >= —XXX.XXXXXX and
May 24 _SA_FLIR_lon_pre_filter [point] <= —XXX.XXXXXX)
and (May_24_ SA_ FLIR_lat_pre_filter [point| >= XX.XXXXXX and
May 24 SA FLIR lat pre filter [point] <= XX.XXXXXX)) :
continue
elif ((May 24 SA FLIR lon pre filter[point] >= —XXX.XXXXXX and
May 24 SA FLIR lon_pre_filter|[point] <= —XXX.XXXXXX)
and (May 24 SA FLIR_lat_pre_filter[point| >= XX.XXXXXX and
May 24 SA_ FLIR lat pre_filter [point] <= XX.XXXXXX)) :
continue
elif ((May_ 24 SA_ FLIR_lon_pre_filter [point] >= —XXX.XXXXXX and
May 24 SA_ FLIR_lon_pre_filter [point] <= —XXX.XXXXXX)
and (May 24 SA FLIR_lat_pre_filter[point| >= XX.XXXXXX and
May 24 SA_FLIR_lat_pre_filter [point] <= XX.XXXXXX)) :
continue

else:

180

for index in range(0, len(May 24 SA FLIR lat)):
Check if index is Nan
if numpy.isnan(May_24 SA FLIR_ lat|[index]) = True:
May 24 SA FLIR lat[index]| = May 24 SA FLIR lat pre filter|point |
May 24 SA FLIR lon|[index| = May 24 SA FLIR lon_pre_filter|[point |
May 24 SA FLIR tempK|[index] = May 24 SA FLIR tempK pre filter|[point |
break

Identify index where Nan starts
for nan_index in range(0, len(May 24 SA FLIR lat)):
if numpy.isnan(May 24 SA FLIR lat[nan_ index]|) == True:

Remove Nan values from arrays
May 24 SA FLIR lat = May 24 SA FLIR lat[0:nan_index|
May 24 SA FLIR lon = May 24 SA FLIR lon[0:nan_index|
May 24 SA FLIR tempK = May 24 SA FLIR tempK[O:nan_index]
break

L L A L L L L

Apply Temperature Correction Constants
Calculate Upixel using Horny, 2003 formula
https://www.sciencedirect .com/science/article/pii/S13504495020018347via%3Dihub

Initialize Upixel

Upixel May 24 SA FLIR = numpy.zeros ((len(May 24 SA FLIR lat)))

Initialize new corrected temperature array

corrected_temp_ May 24 SA FLIR = numpy.zeros ((len(May 24 SA FLIR lon)))

Calculate Pixel coordinate A/D Counts for each latitude/longitude pair
for i in range(0, len(May 24 SA_ FLIR lat)):
Upixel May 24 SA_FLIR[i] = (R_flir / (numpy.exp(B_flir / May_ 24 SA FLIR_ tempK|[i]) —
F_flir)) — O _flir

Apply land use camera parameters filter and calculate corrected temperature
for i in range(0, len(May 24 SA FLIR tempK)):
If longitude is greater than —XXX.XXXX or longitude is less than —-XXX.XXXX, use soil
parameters
(except the points that overlay the solid waste carbon/water areas).
The waterbodies correspond to developed land (concrete) parameters
if (May 24 SA FLIR lon[i] >= XXX.XXXX) or (May 24 SA FLIR lon[i]| <= —XXX.XXXX) :
Solid waste carbon coordinates, use developed land (concrete) parameters
if ((May 24 SA FLIR lon[i]| >= XXX.XXXXXX and May 24 SA FLIR lon[i] <= —XXX.XXXXXX)
and

(May 24 SA_FLIR lat[i] >= XX.XXXXXX and May 24 SA FLIR lat[i] <= XX.XXXXXX)) or\
((May_24 SA_FLIR lon[i] >= —XXX.XXXXXX and May 24 SA FLIR lon[i] <= —XXX.
XXXXXX) and
(May 24 SA_FLIR lat[i] >— XX.XXXXXX and May 24 SA FLIR lat[i] <— XX.XXXXXX)
):
Developed Land (concrete)

R = R_concrete

181

TN IR IR NIRRT IR I Iy I I NIRRT IR IR TR R TNy
T A A A A A A A A A A A A A A A A

B = B_concrete
O = O_concrete

F = F _concrete

Water body near the camp
elif ((May_ 24 SA FLIR lon[i] >= XXX.XXXXXX and May 24 SA FLIR lon[i] <= —XXX.XXXXXX
) and
(May 24 SA FLIR lat[i]| >= XX.XXXXXX and May 24 SA FLIR lat|i] <= XX.XXXXXX)) :
Water
= R_water
B water
= O_water

g9 O W o
I

= F_water

For the following area, including the Berm, west of the mine, and east of the open

water, use soil constants
elif ((May 24 SA FLIR lon[i]| >= -XXX.XXXXXX and May 24 SA FLIR lon[i] <= —XXX.XXXXXX

) and
(May 24 SA FLIR lat[i]| >= XX.XXXXXX and May 24 SA FLIR lat[i] <= XX.XXXXXX)):
Soil
R = R_soil
B = B_soil
O = O _soil
F = F soil
For all other areas, use developed land constants
else:
Developed land (concrete)
R = R_concrete
B = B_concrete
O = O_concrete
F = F_concrete

Tailings Pond, use developed land (concrete) parameters

else:
Developed land (concrete)
R = R_concrete
B = B_concrete
O = O_concrete
F = F_concrete

Calculate corrected temperature
corrected _temp May 24 SA FLIR[i] = B / (numpy.log(R / (Upixel May 24 SA FLIR[i| + O) + F

Save To file
outputFileName May 24 SA FLIR = ’/export/home/users/rbyerlay /Documents/
Geoscientific_Information_Manoj_Paper/’ \
"GI_Review_CurveFit/May 24 FLIR_data_calibrated.txt’

outputFile_May 24 SA_FLIR = open(outputFileName May_ 24 SA_FLIR, ’w’)

182

outputFile_May 24 SA_FLIR.write ("#0:_Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_Corrected._
Temp. [K].\n")

Save data to file
for i in range(0, len(May 24 SA FLIR lat)):
outputFile_May_ 24 SA_ FLIR. write ("%f_\t _%f_\t %f_\n" % (May_24 SA_ FLIR lon[i],
May 24 SA_FLIR lat[i],
corrected _temp May 24 SA FLIR|[i])

)
outputFile May 24 SA FLIR. close ()

A.2.7 Surface Temperature Map and Boxplots

Current as of October 18, 2019
Plots Diurnal ST as Maps and Boxplots
Plots for May 24, 2018 (FLIR, MODIS and Percentage Error/Absolute error)

import numpy
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

/)
7

Load data for 00:00 to 04:00
zero four filename = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
Processed Data/’ \
’Separated Hours/Campus_Calibrated/Zero four data_calibrated.txt’

zero four data = numpy.genfromtxt(zero four filename)
zero_four_lon = zero_four_data[:,0]

zero four lat = zero_ four data|:,1]

zero_four tempK = zero four data[:,2]

Load in data for 04:00 to 08:00
four eight filename = ’/export/home/users/username/Documents/DG Temp/Mining Facility 2018/
Processed Data/’ \
>Separated Hours/Campus_Calibrated /Four eight data calibrated. txt’

four eight data = numpy.genfromtxt (four eight filename)
four eight_lon = four_ eight_data[:,0]
four eight lat = four eight data([:,1]

four eight tempK = four eight data[:,2]

#

Load in data for 08:00 to 12:00
eight twelve filename = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
Processed Data/’ \
’Separated Hours/Campus Calibrated/Eight twelve data calibrated.txt’

eight twelve data = numpy.genfromtxt(eight twelve filename)
eight twelve lon = eight twelve data[:,0]

eight twelve lat = eight twelve data[:,1]
eight twelve tempK = eight twelve data[:,2]

Load in data for 12:00 to 16:00
twelve sixteen filename = ’/export/home/users/username/Documents/DG_Temp/
Mining _Facility 2018 /Processed_Data/’ \
’Separated Hours/Campus_Calibrated/ Twelve sixteen data calibrated.txt’

twelve sixteen data = numpy.genfromtxt(twelve sixteen filename)
twelve sixteen lon = twelve sixteen data[:,0]

twelve sixteen lat = twelve sixteen data[:,1]

twelve sixteen tempK = twelve sixteen data[:,2]

#

Load in data for 16:00 to 20:00
sixteen twenty filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Processed Data/’ \
’Separated _Hours/Campus_Calibrated/Sixteen twenty data_calibrated.txt’

sixteen twenty data = numpy.genfromtxt(sixteen twenty filename)
sixteen twenty lon = sixteen twenty data[:,0]

sixteen twenty lat = sixteen twenty data[:,1]

sixteen twenty tempK = sixteen twenty data[:,2]

Load in data for 20:00 to 24:00
twenty twentyfour filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Processed Data/’ \
>Separated _Hours/Campus_Calibrated/ Twenty twentyfour data_calibrated.

txt’
twenty twentyfour data = numpy.genfromtxt(twenty twentyfour filename, delimiter=’,")
twenty twentyfour lon = twenty twentyfour data[:,0]

184

twenty twentyfour lat = twenty twentyfour data[:,1]
twenty twentyfour tempK = twenty twentyfour data[:,2]

#

For MODIS and Relative/Absolute error data

For Relative Error

May 24 SA MODIS filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Processed Data/

Separated Hours/Campus_Calibrated /May 24 MODIS data_calibrated. txt’

For Absolute Error

May 24 SA MODIS filename = ’/export/home/users/username/Documents/DG_Temp/
Mining Facility 2018 /Processed Data/’ \

’Separated _Hours/Campus_ Calibrated/
MODIS_LST_May_24_ Calibrated_Absolute_Error. txt’
May 24 SA_MODIS_data = numpy.genfromtxt (May_ 24 SA_ MODIS_ filename, delimiter=’,")

MODIS, FLIR, and Relative/Absolute error
May 24 SA MODIS lon = May 24 SA MODIS data|:,0]
May 24 SA MODIS lat = May 24 SA MODIS data|: ,1]

For FLIR
May 24 SA FLIR lat — May 24 SA MODIS lat
May 24 SA FLIR lon — May 24 SA MODIS lon
May 24 SA FLIR tempK — May 24 SA MODIS data|: ,2]

May 24 SA MODIS tempK = May 24 SA MODIS data|: ,4]
May 24 SA_PE = May 24 _SA_MODIS data[: ,5]

Temperature distribution boundaries
Jan.19/19 Newly chosen boundaries
Latmin = XX.XXXXXX

Latmax = XX.XXXXXX

Lonmax = —XXX.XXXXXX
Lonmin = —XXX.XXXXXX

Choose the number of horizontal and vertical "bins" to plot. These variables correspond to
horizontal

and spatial resolution respectively

For 2000 m (latitude) by 2500m (longitude) resolution

nLat 10

nLon 10

For 1000 m resolution

185

nLat = 20
nLon = 25

For 500m resolution
nLat = 40
nLon = 48

For 100m resolution
nLat = 200
nLon = 250

For 200m resolution
nLat = 100
nLon = 125

T HHEHEHE
Create temperature array for each time interval

00:00 to 04:00

TMatrix zero four = numpy.zeros (((nLat+1), (nLon+1), (len(zero four lat))))

TMatrix zero_ four[:| = numpy.nan

04:00 to 08:00
TMatrix four eight = numpy.zeros (((nLat+1), (nLon+1), (len(four eight lat))))
TMatrix four eight[:] = numpy.nan

08:00 to 12:00
TMatrix _eight twelve = numpy.zeros (((nLat+1), (nLon+1), (len(eight twelve lat))))
TMatrix _eight twelve[:] = numpy.nan

12:00 to 16:00
TMatrix twelve sixteen = numpy.zeros (((nLat+1), (nLon+1), (len(twelve sixteen lat))))

TMatrix twelve sixteen[:] = numpy.nan

16:00 to 20:00
TMatrix sixteen twenty = numpy.zeros (((nLat+1), (nLon+1), (len(sixteen twenty lat))))

TMatrix _sixteen twenty [:] = numpy.nan

20:00 to 24:00
TMatrix twenty twentyfour = numpy.zeros (((nLat+1), (nLon+1), (len(twenty twentyfour lat))))
TMatrix twenty twentyfour [:] = numpy.nan

For May 24 FLIR

TMatrix_May 24 SA FLIR = numpy.zeros (((nLat+1), (nLon+1), (len(May 24 SA FLIR lat))))
TMatrix_May 24 SA FLIR|[:] = numpy.nan

For May 24 MODIS

TMatrix_May 24 SA MODIS = numpy. zeros (((nLat+1), (nLon+1), (len(May 24 SA MODIS lat))))
TMatrix_May 24 SA_MODIS[:] = numpy.nan

For May 24 Percentage Error or Absolute Error

186

PE Matrix May 24 SA = numpy.zeros (((nLat+1), (nLon+1), (len(May 24 SA MODIS lat))))
PE_Matrix_May_24_SA[:] = numpy.nan

H

Create median temperature array for each interval
For 00:00 to 04:00
TMatrix zero four median = numpy.zeros (((nLat+1), (nLon+1)))

TMatrix _zero four median [:] = numpy.nan

For 04:00 to 08:00
TMatrix four eight median = numpy.zeros (((nLat+1), (nLon+1)))

TMatrix four eight median[:] = numpy.nan

4 For 08:00 to 12:00
TMatrix _eight twelve median = numpy.zeros (((nLat+1), (nLon+1)))

TMatrix eight twelve median [:] = numpy.nan

For 12:00 to 16:00
TMatrix twelve sixteen median = numpy.zeros (((nLat+1), (nLon+1)))

TMatrix twelve sixteen median[:| = numpy.nan

For 16:00 to 20:00
TMatrix sixteen twenty median = numpy.zeros (((nLat+1), (nLon-+1)))

TMatrix sixteen twenty median[:| = numpy.nan

For 20:00 to 24:00
TMatrix twenty twentyfour median = numpy.zeros (((nLat+1), (nLon+1)))
TMatrix _twenty twentyfour median [:] = numpy.nan

For May 24 FLIR
TMatrix May 24 SA FLIR Median = numpy. zeros (((nLat+1), (nLon+1)))
TMatrix_May 24 SA_FLIR_Median [:| = numpy.nan

For May 24 MODIS
TMatrix_May 24 SA MODIS Median = numpy. zeros (((nLat+1), (nLon+1)))
TMatrix May 24 SA MODIS Median|[:] = numpy.nan

For May 24 Percentage Error or Absolute Error
PE_Matrix_May 24 SA Median = numpy. zeros (((nLat+1), (nLon+1)))
PE_ Matrix May 24 SA Median[:] = numpy.nan

#

Initialize Boxplot arrays for Mine and Pond for each time interval
For 00:00 to 04:00

Boxplot mine temps zero four = numpy.zeros (len(zero four lat))
Boxplot mine temps zero four[:] = numpy.nan
Boxplot pond temps zero four = numpy.zeros(len(zero four lat))

187

Boxplot pond temps zero four|[:]| = numpy.nan

For 04:00 to 08:00

Boxplot _mine temps four eight = numpy.zeros (le

(four eight lat))

Boxplot mine temps four eight|[:] = numpy.nan

Boxplot pond temps four eight = numpy.zeros(len(four eight lat))
Boxplot pond temps four eight[:|] = numpy.nan

For 08:00 to 12:00
Boxplot mine temps eight twelve = numpy.zeros (len(eight twelve lat))
Boxplot mine temps eight twelve [:] = numpy.nan

Boxplot pond temps eight twelve = numpy.zeros (len(eight twelve lat))

Boxplot pond temps eight twelve [:] = numpy.nan

For 12:00 to 16:00

Boxplot mine temps twelve sixteen = numpy.zeros (len(twelve sixteen lat))
Boxplot mine temps twelve sixteen [:] = numpy.nan
Boxplot pond temps twelve sixteen = numpy.zeros (len(twelve sixteen lat))
Boxplot pond temps twelve sixteen [:] = numpy.nan

For 16:00 to 20:00
Boxplot mine temps sixteen twenty = numpy.zeros(len (sixteen twenty lat))

Boxplot mine temps sixteen twenty [:] = numpy.nan

Boxplot pond temps sixteen twenty = numpy.zeros (len(sixteen twenty lat))

Boxplot pond temps sixteen twenty [:] = numpy.nan

For 20:00 to 24:00

Boxplot mine temps twenty twentyfour = numpy.zeros (len(twenty twentyfour lat))
Boxplot mine temps twenty twentyfour[:] = numpy.nan
Boxplot pond temps twenty twentyfour = numpy.zeros(len(twenty twentyfour lat))
Boxplot pond temps twenty twentyfour|[:] = numpy.nan

4

Image
Mine boundaries
min_mine lat = XX.XXXXXX
max_mine_lat = XX.XXXXXX
min_mine lon = —XXX.XXXXXX
max_mine lon = —XXX.XXXXXX

Pond Boundaries
min_pond lat = XX.XXXXXX
max_pond lat = XX.XXXXXX
min_pond lon = —XXX.XXXXXX

188

Mine and Pond GPS boundaries (in decimal degree format), Based on May 2018 Landsat 8 OLI

max_pond lon = —XXX.XXXXXX

H

Compute binned data

¥ %

For hour averaging
From 00:00 to 04:00
for i in range(0, len(zero four lat)):

F=

print (zero four lat[i])

print (zero_four lon|[i])

print (’The_Max_lat_is:_’+str (Latmax)+’\n’)

print (*The_Min_lat _is:_’+str (Latmin)+’\n’)

print (’The_Max_lon_is:_’+str (Lonmax)+’\n’)

print (’The_Min_lon_is:_’+str (Lonmin)+’\n’)

if numpy.isnan(zero four lat[i]) == False or numpy.isnan(zero four lon|[i]) = False:
LatIndex zero four = int ((zero four lat[i] — Latmin) % nLat / (Latmax — Latmin))
LonIndex zero four = int ((zero four lon[i] — Lonmin) % nLon / (Lonmax — Lonmin))

Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the
latitude/longitude minimum
if zero four lat[i]| > Latmax or zero four lat[i] < Latmin or zero four lon[i] <
Lonmax or)\
zero four lon[i] > Lonmin:

continue

Manually crop temperatures outside of site boundary
elif (zero four lat[i] >= XX.XXXX and zero four lon[i] <= XXX.XXXX and
zero four lon[i] >= XXX.XXXX)\
or (zero four lat[i] >= XX.XXXX and zero four lon[i] <=XXX.XXXX and
zero_four lon[i] >= —XXX.XXXX) :
continue
elif (zero four lat[i] >= XX.XXXX and zero four lon|[i] <= -XXX.XXXX and
zero_four lon[i] >= XXX.XXXX)\
or (zero_ four lat[i] <= XX.XXXX and zero four lon|[i] <= -XXX.XXXX and
zero four lon[i] >= —XXX.XXXX) :
continue
elif (zero four lat[i] <= XX.XXXX and zero four lon|[i] <= -XXX.XXXX and
zero_four lon[i] >= —XXX.XXXX)\
or (zero four lat[i]| >= XX.XXXX and zero four lon[i]| <= —XXX.XXXX and
zero four lon[i] >= —XXX.XXXX) :
continue
elif (zero four lat[i] >= XX.XXXX and zero four lon[i] <= -XXX.XXXX and
zero four lon[i] >= —XXX.XXXX)\
or (zero_ four lat[i] <= XX.XXXX and zero four lon[i] <= -XXX.XXXX and
zero_four lon[i] >= —XXX.XXXX) :

continue

else:
TMatrix zero four|[LatIndex zero four||LonIndex zero four|[i] = zero four tempK]|i

]

189

+

£ Check if image is within mine or pond boundaries

7

RIS

Check mine latitude and longitude boundaries
if (zero_four_lat[i] >= min_mine_lat and zero_four_lat[i] <= max_mine_lat) and\
(zero_four_lon[i]| >= min_mine_lon and zero_four lon[i] <= max_mine_lon):

Boxplot mine temps zero four[i| = zero four tempK|i |

Check pond latitude and longitude boundaries

elif (zero four lat[i]| >= min pond lat and zero four lat[i] <= max_ pond lat) and\
(zero_four lon[i] >= min_ pond lon and zero four lon|[i] <= max_pond lon):

Boxplot pond temps zero four[i]| = zero four tempK]i |

else:

print (’Image_not_within_mine_or_pond_bounds’)

Calculate the median temperature for each bin
for i in range(0, nLat+1):
for j in range(0, nLon+1):
Check for Nan
for k in range(0, len(zero four lat)):

If a real number is encountered, a median can be calculated
if TMatrix zero_ four[i][j][k] != numpy.nan:
break
If at the last index and it is a Nan, assign TMatrix to be equal to Nan, otherwise
calculate the median

temperature excluding Nan values

if (k = len(zero_ four lat)) & (TMatrix zero four[i][j][k] == numpy.nan):
TMatrix _zero four median[i][j]| = numpy.nan

else:
TMatrix _zero_ four median[i|[j] = numpy.nanpercentile (TMatrix zero_four[i][]

I[:1,50)

AR AR

AR

HHFHTHH

FHEFHHH

S

7

From 04:00 to 08:00
for i in range(0, len(four eight lat)):

if numpy.isnan(four eight lat[i]) = False or numpy.isnan (four eight lon[i]) = False:
LatIndex four eight = int ((four eight lat[i] — Latmin) % nLat / (Latmax — Latmin))
LonIndex four eight = int ((four eight lon[i] — Lonmin) % nLon / (Lonmax — Lonmin))

Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the
latitude/longitude minimum
if four eight lat[i]| > Latmax or four eight lat[i] < Latmin or four eight lon[i] <
Lonmax or\
four eight lon[i] > Lonmin:

continue
Manually crop temperatures outside of the site boundary

elif (four eight lat[i] >= XX.XXXX and four eight lon[i] <= -XXX.XXXX and
four eight lon[i] >= XXX.XXXX)\

190

or (four eight lat[i] >= XX.XXXX and four eight lon|[i] <=XXX.XXXX and
four eight lon[i] >= —XXX.XXXX) :
continue
elif (four eight lat[i] >= XX.XXXX and four eight lon[i] <= -XXX.XXXX and
four eight lon[i] >= XXX.XXXX)\
or (four eight lat[i] <= XX.XXXX and four eight lon[i] <= -XXX.XXXX and
four eight lon[i]| >= —XXX.XXXX) :
continue
elif (four eight lat[i] <= XX.XXXX and four eight lon[i] <= XXX.XXXX and
four eight lon[i]| >= XXX.XXXX)\
or (four eight lat[i] >= XX.XXXX and four eight lon[i] <= -XXX.XXXX and
four eight lon[i] >= XXX.XXXX) :
continue
elif (four eight lat[i] >= XX.XXXX and four eight lon[i] <= XXX.XXXX and
four eight lon[i] >= XXX.XXXX)\
or (four eight lat[i] <= XX.XXXX and four eight lon[i] <= XXX.XXXX and
four eight lon[i] >= XXX.XXXX) :
continue
else:
TMatrix four eight[LatIndex four eight|[LonIndex four eight|[i] =
four eight tempK/|i]

Check if image is within mine or pond boundaries
Check mine latitude and longitude boundaries

if (four eight lat[i] >= min_ mine lat and four eight lat[i] <= max mine lat) and)\
(four eight lon|[i] >= min mine lon and four eight lon[i] <= max mine lon):

Boxplot mine temps four eight[i] = four eight tempK|i]

Check pond latitude and longitude boundaries
elif (four eight lat[i] >= min_ pond lat and four eight lat[i] <= max_ pond lat) and\
(four eight lon[i] >= min_ pond lon and four eight lon[i] <= max_ pond lon):
Boxplot pond temps four eight[i] = four eight tempK|i]
else:
print (’Image_not_within_mine_or_pond_bounds’)

Calculate the median temperature for each bin
for i in range(0, nLat+1):
for j in range(0, nLon-+1):
Check for Nan

for k in range(0, len(four eight lat)):
If a real number is encountered, a median can be calculated
if TMatrix four eight[i][j][k] !'= numpy.nan:
break
If at the last index and it is a Nan, assign TMatrix to be equal to Nan, otherwise
calculate the median

temperature excluding Nan values

if (k = len(four eight lat)) & (TMatrix four eight[i][j][k] == numpy.nan):
TMatrix four eight median|[i][j] = numpy.nan
else:
TMatrix four eight median|[i][j] = numpy.nanpercentile (TMatrix four eight[i][]
I[:1,50)

191

From 08:00 to 12:00
for i in range(0, len(eight twelve lat)):

if numpy.isnan(eight twelve lat[i]) = False or numpy.isnan (eight twelve lon[i]) =
False:
LatIndex eight twelve = int ((eight twelve lat[i] — Latmin) % nLat / (Latmax — Latmin
))
LonIndex eight twelve = int ((eight twelve lon[i]| — Lonmin) * nLon / (Lonmax — Lonmin

))

Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the
latitude/longitude minimum
if eight twelve lat[i] > Latmax or eight twelve lat[i] < Latmin or eight twelve lon]|
i] < Lonmax\
or eight_ twelve_ lon[i] > Lonmin:

continue

Manually crop temperatures outside of the site boundary
elif (eight twelve lat[i]| >= XX.XXXX and eight twelve lon[i] <= —XXX.XXXX and
eight twelve lon[i] >= —XXX.XXXX)\
or (eight_twelve lat[i] >= XX.XXXX and eight_twelve lon[i] <= —XXX.XXXX and
eight twelve lon[i] >= —XXX.XXXX) :
continue
elif (eight twelve lat[i] >= XX.XXXX and eight twelve lon[i] <= XXX.XXXX and
eight twelve lon[i] >= XXX.XXXX)\
or (eight twelve lat[i] <= XX.XXXX and eight twelve lon[i] <= XXX.XXXX and
eight twelve lon[i] >= —XXX.XXXX) :
continue
elif (eight twelve lat[i] <= XX.XXXX and eight twelve lon[i] <= XXX.XXXX and
eight twelve lon[i] >= —XXX.XXXX)\
or (eight twelve lat[i] >= XX.XXXX and eight twelve lon[i] <= XXX.XXXX and
eight twelve lon[i] >= —XXX.XXXX) :
continue
elif (eight twelve lat[i] >= XX.XXXX and eight twelve lon[i] <= —XXX.XXXX and
eight twelve lon[i] >= —XXX.XXXX)\
or (eight twelve lat[i]| <= XX.XXXX and eight twelve lon[i] <= XXX.XXXX and
eight twelve lon[i] >= —XXX.XXXX) :
continue
else:
TMatrix _eight twelve[LatIndex eight twelve||[LonIndex eight twelve|[i] =
eight twelve tempK|1i|]

Check if image is within mine or pond boundaries
Check mine latitude and longitude boundaries

if (eight twelve lat[i] >= min_ mine lat and eight twelve lat[i] <= max_ mine lat)

and)\
(eight twelve lon[i] >= min mine lon and eight twelve lon[i] <= max_ mine lon
):
Boxplot mine temps eight twelve[i] = eight twelve tempK|[1i]

192

Check pond latitude and longitude boundaries
elif (eight_twelve_ lat[i] >= min_pond_lat and eight_twelve_lat|[i] <= max_pond_lat)

and)\
(eight _twelve_lon[i] >= min_pond_lon and eight_ twelve lon[i] <= max_pond_lon
):
Boxplot _pond temps eight twelve[i] = eight twelve tempK]|i]
else:

print (’Image_not_within_mine_or_pond_bounds’)

Calculate the median temperature for each bin
for i in range(0, nLat+1):
for j in range(0, nLon+1):
Check for Nan
for k in range(0, len(eight twelve lat)):
If a real number is encountered, a median can be calculated
if TMatrix eight twelve[i]|[j]|[k] !'= numpy.nan:
break
If at the last index and it is a Nan, assign TMatrix to be equal to Nan, otherwise

calculate the median

temperature excluding Nan values

if (k = len(eight twelve lat)) & (TMatrix eight twelve[i]|[j]|[k] = numpy.nan):
TMatrix _eight twelve median[i][j] = numpy.nan
else:
TMatrix _eight twelve median[i][j] = numpy.nanpercentile (TMatrix eight twelve[i]]
ill:1,50)

From 12:00 to 16:00
for i in range(0, len(twelve sixteen lat)):

if numpy.isnan (twelve sixteen lat[i]) = False or numpy.isnan (twelve sixteen lon[i]) =—
False:
LatIndex twelve sixteen = int ((twelve sixteen lat|[i] — Latmin) % nLat / (Latmax —
Latmin))
LonIndex twelve sixteen = int ((twelve sixteen lon[i] — Lonmin) % nLon / (Lonmax —
Lonmin))

Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the
latitude/longitude minimum
if twelve sixteen lat[i] > Latmax or twelve sixteen lat[i] < Latmin or
twelve sixteen lon[i] < Lonmax\
or twelve sixteen lon[i| > Lonmin:

continue

Manually crop temperatures outside of site boundary
elif (twelve sixteen lat[i] >= XX.XXXX and twelve sixteen lon[i]| <= -XXX.XXXX and
twelve sixteen lon[i] >= XXX.XXXX) or (twelve sixteen lat[i] >= XX.XXXX and
twelve_sixteen_lon[i] <= —XXX.XXXX and

twelve sixteen lon[i] >= —XXX.XXXX) :

193

continue
elif (twelve sixteen lat[i]| >= XX.XXXX and twelve sixteen lon[i] <= -XXX.XXXX and
twelve sixteen lon[i] >= XXX.XXXX) or (twelve sixteen lat[i] <= XX.XXXX and
twelve_sixteen_lon[i] <= -XXX.XXXX and
twelve sixteen lon[i] >= —XXX.XXXX) :
continue
elif (twelve_sixteen_ lat[i] <= XX.XXXX and twelve_sixteen_ lon[i] <= -XXX.XXXX and
twelve sixteen lon[i] >= XXX.XXXX) or (twelve sixteen lat[i]| >= XX.XXXX and
twelve sixteen lon[i] <= -XXX.XXXX and
twelve sixteen lon[i] >= —XXX.XXXX) :
continue
elif (twelve sixteen lat[i]| >= XX.XXXX and twelve sixteen lon[i] <= —XXX.XXXX and
twelve sixteen lon[i] >= XXX.XXXX) or (twelve sixteen lat[i] <= XX.XXXX and
twelve sixteen lon[i] <= -XXX.XXXX and
twelve sixteen lon[i] >= —XXX.XXXX) :
continue
else:
TMatrix twelve sixteen|[LatIndex twelve sixteen]|[LonIndex twelve sixteen]|[i] =

twelve sixteen tempK][i]

Check if image is within mine or pond boundaries

F

Check mine latitude and longitude boundaries
if (twelve sixteen lat[i] >= min mine lat and twelve sixteen lat[i] <= max_ mine lat)
and\
(twelve sixteen lon[i] >= min mine lon and twelve sixteen lon[i]| <=
max _mine lon):
Boxplot mine temps twelve sixteen|[i] = twelve sixteen tempK|1i]

Check pond latitude and longitude boundaries
elif (twelve_ sixteen lat[i] >= min_pond_ lat and twelve sixteen lat[i] <=
max_pond lat) and)\
(twelve _sixteen_lon[i] >= min_pond_lon and twelve_ sixteen_ lon[i]| <=
max_pond lon):
Boxplot pond temps twelve sixteen|[i] = twelve sixteen tempK|i]
else:
print (’Image_not_within_mine_or_pond_bounds’)

Calculate the median temperature for each bin
for i in range(0, nLat+41):
for j in range(0, nLon+1):
Check for Nan
for k in range(0, len(twelve sixteen lat)):
If a real number is encountered, a median can be calculated
if TMatrix twelve sixteen[i]|[]j][k] !'= numpy.nan:
break
1If at the last index and it is a Nan, assign TMatrix to be equal to Nan, otherwise
calculate the median

temperature excluding Nan values

if (k = len(twelve sixteen lat)) & (TMatrix twelve sixteen[i]|[j]|[k] = numpy.nan):
TMatrix twelve sixteen median[i][j] = numpy.nan

else:
TMatrix twelve sixteen median[i][j] = numpy.nanpercentile (TMatrix twelve sixteen

194

[i]1J1l:],50)

H

From 16:00 to 20:00
for i in range(0, len(sixteen twenty lat)):

if numpy.isnan(sixteen twenty lat[i]) = False or numpy.isnan (sixteen twenty lon[i]) =
False:
LatIndex sixteen twenty = int ((sixteen twenty lat[i] — Latmin) * nLat / (Latmax —
Latmin))
LonIndex sixteen twenty = int ((sixteen twenty lon[i| — Lonmin) % nLon / (Lonmax —

Lonmin))

latitude /longitude values than the
the

latitude /longitude minimum

Ignore greater latitude /longitu

less than

rf r/’
7

de maximum or

if sixteen twenty lat[i] > Latmax or sixteen twenty lat[i] < Latmin or

sixteen twenty lon[i] < Lonmax\
or sixteen_ twenty_ lon[i] > Lonmin:
continue

T

Manually crop temperatures outside the site boundary
elif (sixteen twenty lat[i] >= XX.XXXX and sixteen twenty lon[i] <=
—XXX.XXXX) or (sixteen twenty lat[i]

sixteen twenty lon|[i|

sixteen twenty lon[i] >=

sixteen twenty lon|[i]
continue
>= XX.XXXX and sixteen_ twenty lon[i] <=
>= XXX.XXXX) or (sixteen twenty lat[i]

sixteen twenty lon|[i]

elif (sixteen twenty lat[i]

sixteen twenty lon|[i]

sixteen twenty lon|[i]
continue
<= XX.XXXX and sixteen_twenty lon[i] <=
>= —XXX.XXXX) or (sixteen twenty lat[i]

sixteen twenty lon|i]

elif (sixteen twenty lat[i]

sixteen twenty lon|[i]

sixteen twenty lon|i]
continue
>= XX.XXXX and sixteen_twenty lon[i] <=
>= XXX.XXXX) or (sixteen twenty lat[i]

sixteen twenty lon|[i|

elif (sixteen twenty lat]|i]

sixteen twenty lon|[i]

sixteen twenty lon|[i]
continue
else:
TMatrix _sixteen twenty|[LatIndex sixteen twenty|[LonIndex sixteen

sixteen twenty tempK|i]

if

Check mine

Check is within

rf r/’

image mine or pond boundaries
latitude and longitude boundaries
if (sixteen_twenty lat[i] >= min_mine_lat and sixteen_twenty lat[i]

and)\

—XXX.XXXX and
= XX.XXXX and
<= —XXX.XXXX and
S XXX XXXX)

_XXX.XXXX and
<= XX.XXXX and
<= “XXX.XXXX and
= XXX XXKX)

~XXX.XXXX and
= XX.XXXX and
<= —XXX.XXXX and
S= XXX, XXXX) :

—XXX.XXXX and
<= XX.XXXX and

<= —XXX.XXXX and
>= —XXX.XXXX) :

_twenty |[i] =

<= max_mine_lat)

(sixteen _twenty lon[i] >= min_mine_lon and sixteen_twenty lon[i] <=

195

max_mine lon):

Boxplot mine temps sixteen twenty[i] = sixteen twenty tempK]|i]

Check pond latitude and longitude boundaries
elif (sixteen_twenty lat[i] >= min_pond_lat and sixteen_ twenty lat[i] <=
max_pond lat) and)\
(sixteen twenty lon[i]| >= min_pond_lon and sixteen_twenty lon[i] <=
max_pond_lon):
Boxplot pond temps sixteen twenty[i] = sixteen twenty tempK][i |
else:

print (’Image_not_within_mine_or_pond_bounds’)

Calculate the median temperature for each bin

for i in range(0, nLat+1):

for j in range(0, nLon+1):
Check for Nan
for k in range(0, len(sixteen twenty lat)):
If a real number is encountered, a median can be calculated
if TMatrix sixteen twenty[i]|[j]|[k] != numpy.nan:
break
If at the last index and it is a Nan, assign TMatrix to be equal to Nan, otherwise
calculate the median

temperature excluding Nan values

if (k = len(sixteen twenty lat)) & (TMatrix sixteen twenty[i][j][k] == numpy.nan):
TMatrix sixteen twenty median|[i][j] = numpy.nan

else:
TMatrix _sixteen twenty median|[i][j] = numpy.nanpercentile(TMatrix sixteen twenty

[i1[31[:],50)

?Ft

TN TN NN N NN N N TN NN TN NI NIRRT YNNI N IR TR TN I NI TN T

From 20:00 to 24:00
for i in range(0, len(twenty twentyfour lat)):

if numpy.isnan(twenty twentyfour lat[i]) = False or numpy.isnan(twenty twentyfour lon|i
|) = False:
LatIndex twenty twentyfour = int ((twenty twentyfour lat[i] — Latmin) % nLat / (
Latmax — Latmin))
LonIndex twenty twentyfour = int ((twenty twentyfour lon[i] — Lonmin) % nLon / (
Lonmax — Lonmin))

Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the
latitude/longitude minimum
if twenty twentyfour lat[i] > Latmax or twenty twentyfour lat[i] < Latmin or
twenty twentyfour lon[i| < Lonmax\
or twenty twentyfour lon[i] > Lonmin:

continue

Manually crop temperatures outside of site boundary
elif (twenty twentyfour lat[i] >= XX.XXXX and twenty twentyfour lon|[i] <= —XXX.XXXX

196

and
twenty twentyfour lon[i]| >= -XXX.XXXX) or (twenty twentyfour lat[i] >= XX.XXXX

and
twenty twentyfour lon[i]| <= —
XXX.XXXX and
twenty twentyfour lon[i]| >= —
XXX, XXXX) :
continue
elif (twenty twentyfour lat[i] >= XX.XXXX and twenty twentyfour lon|[i] <= —XXX.XXXX
and
twenty twentyfour lon[i]| >= —XXX.XXXX) or (twenty twentyfour lat[i] <= XX.XXXX
and
twenty twentyfour lon[i] <= —XXX.
XXXX and
twenty twentyfour lon[i] >= —XXX.
XXXX) :
continue

elif (twenty twentyfour lat|[i] <= XX.XXXX and twenty twentyfour lon|[i] <= —XXX.XXXX

and
twenty twentyfour lon[i]| >= -XXX.XXXX) or (twenty twentyfour lat[i]| >= XX.XXXX
and
twenty twentyfour lon|[i]| <= -XXX.
XXXX and
twenty twentyfour lon[i] >= —XXX.
XXXX) :
continue

elif (twenty twentyfour lat[i] >= XX.XXXX and twenty twentyfour lon[i] <= —XXX.XXXX

and
twenty twentyfour lon[i]| >= -XXX.XXXX) or (twenty twentyfour lat[i] <= XX.XXXX
and
twenty twentyfour lon[i] <= —XXX.
XXXX and
twenty twentyfour lon[i] >= —XXX.
XXXX) :
continue
else:

TMatrix twenty twentyfour|LatIndex twenty twentyfour][LonIndex twenty twentyfour

[IRUAN

= twenty twentyfour tempK|[i]

Check if image is within mine or pond boundaries
Check mine latitude and longitude boundaries
if (twenty twentyfour lat[i]| >= min mine lat and twenty twentyfour lat|[i]| <=
max_mine lat) and\
(twenty twentyfour lon[i] >= min_ mine lon and twenty twentyfour lon[i] <=
max_mine lon):

Boxplot mine temps twenty twentyfour[i] = twenty twentyfour tempK]|i|

Check pond latitude and longitude boundaries
elif (twenty twentyfour lat[i] >= min_pond_lat and twenty_ twentyfour lat[i] <=
max_pond lat) and)\
(twenty twentyfour_ lon[i] >= min_pond_lon and twenty twentyfour lon[i] <=

197

max_pond_ lon) :
Boxplot pond temps twenty twentyfour[i] = twenty twentyfour tempK]|i |
else:
print (’Image_not_within_mine_or_pond_bounds’)

Calculate the median temperature for each bin
for i in range(0, nLat+1):
for j in range(0, nLon-+1):
Check for Nan
for k in range(0, len(twenty twentyfour lat)):
If a real number is encountered, a median can be calculated
if TMatrix twenty twentyfour[i][j]|[k] != numpy.nan:
break
If at the last index and it is a Nan, assign TMatrix to be equal to Nan, otherwise
calculate the median

temperature excluding Nan values

17

if (k = len(twenty twentyfour lat)) & (TMatrix twenty twentyfour[i][j][k] == numpy.
nan) :
TMatrix twenty twentyfour median[i][j] = numpy.nan
else:
TMatrix twenty twentyfour median|[i]|[j] = numpy.nanpercentile (
TMatrix twenty twentyfour|[i][]j][:],50)

F=

For May 24 FLIR temperatures
for i in range(0, len(May 24 SA FLIR lat)):

if numpy.isnan(May 24 SA FLIR lat[i]) = False or numpy.isnan(May 24 SA FLIR lon[i]) =
False:
LatIndex_May 24 SA FLIR = int ((May_ 24 SA FLIR lat[i] — Latmin) % nLat / (Latmax —
Latmin))
LonIndex_May 24 SA FLIR = int ((May_24 SA FLIR lon[i] — Lonmin) % nLon / (Lonmax —

Lonmin))

Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the
latitude/longitude minimum
if May 24 SA_ FLIR_lat[i] > Latmax or May_ 24 SA_ FLIR_lat[i] < Latmin or
May 24 SA FLIR lon[i] < Lonmax or\
May 24 SA FLIR lon[i] > Lonmin:

continue

Manually crop temperatures outside of site boundary
elif (May 24 SA FLIR lat[i]| >= XX.XXXX and May 24 SA FLIR lon|[i] <= —XXX.XXXX and
May 24 SA FLIR lon[i] >= XXX.XXXX) or (May 24 SA FLIR lat[i] >= XX.XXXX and
May 24 SA FLIR lon[i] <= —XXX.XXXX and
May 24 SA FLIR lon[i] >= —XXX.XXXX) :
continue
elif (May 24 SA FLIR lat[i]| >= XX.XXXX and May 24 SA FLIR lon[i] <= —XXX.XXXX and
May 24 SA FLIR lon|[i] >= XXX.XXXX) or (May 24 SA FLIR lat[i] <= XX.XXXX and
May 24 SA FLIR lon[i] <= —XXX.XXXX and

198

May 24 SA_FLIR lon[i] >= —XXX.XXXX) :
continue
elif (May 24 SA FLIR lat[i] <= XX.XXXX and May 24 SA FLIR lon[i] <= —XXX.XXXX and
May 24 SA FLIR lon[i] >= —XXX.XXXX) or (May 24 SA FLIR lat[i]| >= XX.XXXX and
May 24 SA FLIR lon|i] <= —XXX.XXXX and
May_ 24 SA_FLIR_lon[i] >= —XXX.XXXX) :
continue
elif (May 24 SA FLIR lat[i] >= XX.XXXX and May 24 SA FLIR lon|[i] <= -XXX.XXXX and
May 24 SA_ FLIR lon[i]| >= —XXX.XXXX) or (May 24 SA FLIR lat[i] <= XX.XXXX and
May 24 SA FLIR lon[i]| <= —XXX.XXXX and
May 24 SA_FLIR lon[i]| >= —XXX.XXXX):
continue
else:
TMatrix_May 24 SA FLIR[LatIndex May 24 SA FLIR][LonIndex May 24 SA FLIR|[i] =
May 24 SA_FLIR_tempK]| i]

Calculate the median temperature for each bin
for i in range(0, nLat+41):
for j in range(0, nLon+1):
Check for Nan
for k in range(0, len(May 24 SA FLIR lat)):
If a real number is encountered, a median can be calculated
if TMatrix May 24 SA FLIR[i]|[]j][k] !'= numpy.nan:
break
If at the last index and it is a Nan, assign TMatrix to be equal to Nan, otherwise
calculate the median

temperature excluding Nan values

if (k = len(May 24 SA FLIR lat)) & (TMatrix May 24 SA FLIR[i][j]|[k] == numpy.nan):
TMatrix_May 24 SA FLIR Median[i|[j] = numpy.nan
else:
TMatrix_May 24 SA FLIR_Median[i|[j] = numpy.nanpercentile (TMatrix_May 24 SA_ FLIR
115111 ,50)

For May 24 MODIS temperatures
for i in range(0, len(May 24 SA MODIS lat)):

if numpy.isnan(May 24 SA MODIS lat[i]) = False or numpy.isnan(May 24 SA MODIS lon[i])
= False:
LatIndex May 24 SA MODIS = int ((May 24 SA MODIS lat[i] — Latmin) % nLat / (Latmax —
Latmin))
LonIndex May 24 SA MODIS = int ((May 24 SA MODIS lon[i] — Lonmin) % nLon / (Lonmax —

Lonmin))

Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the
latitude/longitude minimum
if May 24 SA MODIS lat[i] > Latmax or May 24 SA MODIS lat[i] < Latmin or
May 24 SA_ MODIS lon[i] < Lonmax\
or May 24 SA MODIS lon[i] > Lonmin:

continue

199

Manually crop temperatures outside of site boundary
elif (May 24 SA MODIS lat|[i]| >= XX.XXXX and May 24 SA MODIS lon[i] <= -XXX.XXXX and
May 24 SA MODIS lon[i] >= —XXX.XXXX) or (May 24 SA MODIS lat|[i] >= XX.XXXX and
May_24 SA_MODIS lon[i] <= —XXX.XXXX
and
May 24 SA MODIS lon[i] >= —XXX.XXXX) :
continue
elif (May 24 SA MODIS lat|[i]| >= XX.XXXX and May 24 SA MODIS lon[i] <= —XXX.XXXX and
May 24 SA MODIS lon[i] >= —XXX.XXXX) or (May 24 SA MODIS lat[i] <= XX.XXXX and
May 24 SA MODIS lon|[i]| <= —XXX.XXXX
and
May 24 SA MODIS lon[i]| >= —XXX.XXXX) :
continue
elif (May 24 SA MODIS lat|[i]| <= XX.XXXX and May 24 SA MODIS lon[i] <= -XXX.XXXX and
May 24 SA MODIS lon[i] >= XXX.XXXX) or (May 24 SA MODIS lat[i] >= XX.XXXX and
May 24 SA_MODIS lon[i] <= —XXX.XXXX
and
May_24 SA_MODIS lon[i] >= —XXX.XXXX) :
continue
elif (May 24 SA MODIS lat|[i]| >= XX.XXXX and May 24 SA MODIS lon[i] <= -XXX.XXXX and
May 24 SA MODIS lon[i] >= —XXX.XXXX) or (May 24 SA MODIS lat|[i] <= XX.XXXX and
May 24 SA MODIS lon[i] <= —XXX.XXXX
and
May 24 SA MODIS lon[i] >= —XXX.XXXX) :
continue
else:
TMatrix_May 24 SA MODIS[LatIndex May 24 SA MODIS|[LonIndex May 24 SA MODIS|[i] =
May 24 SA MODIS_tempK]| i |

4

Calculate the median temperature for each bin
for i in range(0, nLat+41):
for j in range(0, nLon+1):
Check for Nan
for k in range(0, len(May 24 SA MODIS lat)):
If a real number is encountered, a median can be calculated
if TMatrix May 24 SA MODIS[i]|[j]|[k] !'= numpy.nan:
break

If at the last index and it is a Nan, assign TMatrix to be equal to Nan, otherwise

RS

calculate the median

temperature excluding Nan values

if (k = len(May 24 SA MODIS lat)) & (TMatrix May 24 SA MODIS[i|[j]|[k] == numpy.nan)
TMatrix May 24 SA MODIS Median[i|[j] = numpy.nan
else:
TMatrix_May 24 SA MODIS Median[i|[j] = numpy.nanpercentile (
TMatrix._May 24 SA_ MODIS[i][j][:],50)

For May 24 Percentage Error/Absolute Error

200

Note: latitudes and longitudes are the same as MODIS above

for i in range(0, len(May 24 SA MODIS lat)):
if numpy.isnan(May 24 SA MODIS lat|[i])

False or numpy.isnan(May 24 SA MODIS lon|i])

— False:

LatIndex May 24 SA PE = int ((May 24 SA MODIS lat[i]| — Latmin) * nLat / (Latmax —
Latmin))

LonIndex May 24 SA PE = int ((May 24 SA MODIS lon[i| — Lonmin) % nLon / (Lonmax —

Lonmin))

latitude /longitude values greater than the

than the

Ignore
less

4

latitude /longitude minimum

latitude /longitude maximum or

if May 24 SA MODIS lat[i] > Latmax or May 24 SA MODIS lat[i] < Latmin or

May 24 SA MODIS lon[i] < Lonmax\
or May 24 SA MODIS lon[i] > Lonmin:

continue

outside of site boundary
>= XX.XXXX and May_ 24 SA_MODIS lon[i] <=

Manually crop temperatures
elif (May 24 SA MODIS lat|i]

May 24 SA_MODIS lon[i] >= —XXX.XXXX) or (May_ 24 SA_ MODIS lat|i]
May 24 SA MODIS lon|i|
and
May 24 SA MODIS lon|i |
continue
elif (May 24 SA MODIS lat[i] >= XX.XXXX and May 24 SA MODIS lon|i] <=
May 24 SA MODIS lon[i] >= —XXX.XXXX) or (May 24 SA MODIS lat|i |
May 24 SA_MODIS lon|i]
and
May 24 SA_MODIS lon|i]
continue
elif (May 24 SA MODIS lat[i] <— XX.XXXX and May 24 SA MODIS lon[i] <=
May 24 SA MODIS lon[i] >= —XXX.XXXX) or (May 24 SA MODIS lat|i]
May 24 SA MODIS lon|i |
and
May 24 SA MODIS lon|i|
continue
elif (May 24 SA MODIS lat[i] >= XX.XXXX and May 24 SA MODIS lon[i] <=
May 24 SA_MODIS lon[i] >= —XXX.XXXX) or (May_24 SA_ MODIS lat|i]

May 24 SA MODIS lon|i |
and
May 24 SA MODIS lon]i |
continue

else:

PE_Matrix_May 24 SA[LatIndex May 24 SA PE]|[LonIndex May 24 SA PE]|[1i]

May 24 SA_PE[i]

Calculate the median temperature for each bin
for i in range(0, nLat+1):
for j in range(0, nLon+1):
Check for Nan
for k in range(0, len(May 24 SA MODIS lat)):

/)
71

If a real number is encountered, a median can be calculated

201

—XXX.XXXX and
>= XX.XXXX and
<= XXX XXXX

>= —XXX.XXXX) :
XXX . XXXX and
<= XX.XXXX and
<= XXX XXXX
>= —XXX.XXXX) :
—XXX.XXXX and

>= XX.XXXX and
<= XXX XXXX

—XXX.XXXX and
<= XX.XXXX and
—XXX . XXXX

—XXX . XXXX) :

if PE Matrix May 24 SA[i]|[j]|[k] !'= numpy.nan:
break

If at the last index and it is a Nan, assign TMatrix to be equal to Nan,

calculate the median

temperature excluding Nan values

otherwise

if (k = len(May 24 SA MODIS lat)) & (PE_Matrix May 24 SA[i|[]j][|k] == numpy.nan):
PE_ Matrix May 24 SA Median[i][j] = numpy.nan
else:
PE_ Matrix May 24 SA Median[i][j] = numpy.nanpercentile (PE_ Matrix May 24 SA[i][]
I1:1,50)

#

Color plotting

State maximum and minimum colour bar ranges for each respective
0—4

color bar min zero four = 260

color bar max zero four = 295

4-8

color bar min four eight = 265
color bar max four eight = 290

8—12

color bar min_ eight twelve = 275
color bar max eight twelve = 300
12-16

color _bar_min_twelve_ sixteen = 280
color _bar_ max_twelve_ sixteen = 320

16—20
color _bar_min_sixteen_twenty = 280
color _bar_max_sixteen_twenty = 310

4 20—24
color bar min_ twenty twentyfour = 275
color bar max twenty twentyfour = 300

May 24 surface temperature colour bar range
color _bar min_ May 24 SA = 295
color _bar max May 24 SA = 325

Figure size

7

figuresize = (10,6)
Font size

font _size = 16
title font_ size = 16

202

time

interval

X/Y distance and colour
tick size = 11

cbar tick size = 16

Figure parameters

For surface temperature
axes label fontsize = 36
axes ticks fontsize = 34

For boxplots
axes bxplt label fontsize

axes bxplt ticks fontsize =

For colour bars
axes clrbar label fontsize

axes clrbar ticks fontsize

bar tick sizes

maps

= 32
= 30

Position of x and y labels away from

x_labelpad = =5
y labelpad = =5
#

respective axes

in

points

For May 24 Plots
May 24 axes label fontsize
May 24 axes_ticks fontsize

= 18
= 17

May 24 axes_clrbar ticks fontsize = 17

FLIR ST Map Parameters

May_24 cbar_ FLIR_min = 295
May_ 24 cbar_FLIR_max = 325
May 24 cbar_FLIR_label = ~’
May_24 cbar_FLIR_fontsize

MODIS ST Map Parameters
May 24 cbar MODIS min = 29
May 24 cbar MODIS max = 32
May 24 cbar MODIS label =

TS_ [K]
= 18

5
5
$TS. K]

May 24 cbar MODIS fontsize = 18

Percentage Error Map Parameters

May 24 cbar PE min = 0
May 24 cbar PE max = 5

May 24 cbar_PE_label = "Relative error in percentage

May 24 cbar PE fontsize

Absolute Error in Kelvin
May_ 24 cbar_ PE_min = —15
May 24 cbar_ PE_max = 15

= 12

May 24 cbar PE label = ’Absolute_Error_|[K]|’

May 24 cbar PE fontsize =

18

203

Filename resolution

if nLat — 20:
filename res = ’lkm’
elif nLat — 40:
filename res = ’500m’
elif nLat = 100:
filename res = ’200m’
elif nLat = 10 and nLon =— 10:
filename res = ’2000m_x_2500m’
else:

print (’There_are_problems_with_the_resolution_size_in_the_outputted_filename’)

Import mining facility boundary coordinates ,
property bounds filename = ’/export/home/users/username/Documents/DG_ Temp/
Mining Facility 2018 /QGIS’ \
’/FacilityPerimeter May 2018.txt’

property bounds data = numpy.genfromtxt(property bounds filename, delimiter=",")

property bounds lon = property bounds data[:,0]
property bounds lat = property bounds data[:,1]

property bounds lon update = numpy.zeros (((property bounds lon) ,1))

len
property bounds lat update = numpy.zeros ((len(property bounds lon) ,1))
Import pond property boundaries, used Landsat 8 OLI May 17, 2018 image
pond boundary filename = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018
/QGIS® \
’/PondPerimeter May 2018.txt’

pond bounds data = numpy.genfromtxt(pond boundary filename, delimiter=’,")

pond bounds lon = pond bounds data[:,0]
pond bounds lat = pond bounds data[:,1]

Import mine boundary coordinates, used Landsat 8 OLI May 17, 2018 image
mine bounds filename = ’/export/home/users/username/Documents/DG_Temp/Mining Facility 2018/
QGIS’ \
’/MinePerimeter May 2018.txt’

mine bounds data = numpy.genfromtxt(mine bounds filename, delimiter=’,")
mine_bounds_lon = mine_bounds_data[:,0]
mine bounds lat = mine bounds data[:,1]

204

Declare TANAB2 launch locations (MFT, Berm, Mine)
base lon = [—XXX.XXXX, —XXX.XXXX, —XXX.XXXX]
base lat = [XX.XXXX, XX.XXXX, XX.XXXX]|

This is equal to 5km in decimal degrees (longitude only)
five km decimal deg = 0.083314

This is equal to 2km in decimal degrees (latitude only)
two_km decimal deg = 0.017384

Longitude locations for x ticks
xticks array = [Lonmax, Lonmax+(five km decimal deg), Lonmax+(five km decimal deg%2),
Lonmax+(five _km decimal deg%3), Lonmax+(five km decimal deg%4), Lonmin|

Latitude locations for y ticks
yticks array = [Latmin, Latmint+two km decimal deg, Latmin+(two km decimal deg#2), Latmin+(
two_km decimal degx3),
Latmin+(two km decimal degx4), Latmin+(two km decimal deg*5), Latmin+(

two_km decimal degx6), Latmax]

Longitude labels for x ticks
xticks label = [’07, ’5°, 10, ’15°, ’20’, ’'22.57]
xaxis label = ’X_[km]’

Latitude labels for y ticks
yticks label = [’07, ’2°, 47, ’6’, ’8’, 710, ’12’, ’13.77]
yaxis label = ’Y_[km]’

colour bar label
color _bar label = ’T_[K]’

TANAB2 dot size

launch_size = 25

Use latex font for labels
plt.rc(’text’, usetex=True)

plt.rc(’font’, family="serif’)

Directory to save images
direct save =’/export/home/users/username/Documents/DG Temp/’ \
’Mining Facility 2018 /Processed Data/Figures/’

H=

Create surface temperature maps and boxplots for each time interval and for FLIR, MODIS,
and Percentage

Error/Absolute Error data

At 00:00 to 04:00

Lataxis zero_ four = numpy.linspace (Latmin, Latmax,nLat+1)
Lonaxis zero_ four = numpy.linspace (Lonmin,Lonmax,nLon+1)
LonAxis zero four ,LatAxis zero four = numpy.meshgrid(Lonaxis zero four,6 Lataxis zero four)

205

fig _zero four, ax = plt.subplots(figsize=figuresize)
Tpcolor zero four=plt.pcolor (LonAxis zero four,LatAxis zero four,TMatrix zero four median,
vmin=color bar min_ zero four, vmax—=color bar max zero_ four)
cbar zero four = plt.colorbar (Tpcolor zero four)
cbar zero four.set label(color bar label, labelpad=—75,y=1.1,rotation=0,fontsize=
axes clrbar label fontsize)
cbar zero four.ax.tick params(labelsize=axes clrbar ticks fontsize)
plt.scatter (property bounds lon,property bounds lat, c='k’, s=4.5)
plt.scatter (pond bounds lon,pond bounds lat, c=’c’,s=3)

)

plt.scatter (base lon, base lat, c¢=’w’,s=launch size)

plt.scatter (mine_bounds lon,mine bounds lat, c='r’,s=3)

Verifed distances via https://www.nhc.noaa.gov/gccalc.shtml

plt.xticks (xticks array ,xticks label, fontsize=axes ticks fontsize)
plt.yticks (yticks array, yticks label, fontsize=axes ticks fontsize)
plt.xlabel (xaxis label ,fontsize=axes label fontsize, labelpad=x_labelpad)
plt.ylabel(yaxis label,fontsize=axes label fontsize, labelpad=y labelpad)
plt.gcf().subplots adjust(bottom=0.15)

plt.tight layout ()

fig zero four.show ()

fig zero four.savefig(direct save+’0000 0400 map.png’)
plt .show ()

Filter Nan for boxplot

Boxplot mine temps zero four filtered = Boxplot mine temps zero four| numpy.isnan (
Boxplot mine temps zero four) |

Boxplot pond temps zero four filtered = Boxplot pond temps zero four| numpy.isnan (

Boxplot pond temps zero four) |

Plot boxplot if data for either the pond OR the mine exist

if Boxplot mine temps zero four filtered != [] or Boxplot pond temps zero four filtered !=
[
Plot Boxplot with filtered Nan data
fig_bp_ zero four, ax = plt.subplots(figsize=figuresize)
bp = plt.boxplot ([Boxplot pond temps zero four filtered,

Boxplot mine temps zero four filtered],
labels=[’Tailings_Pond’, 'Mine’])

plt.ylabel(color bar label, fontsize=axes bxplt label fontsize)
plt.xticks (fontsize=axes bxplt ticks fontsize)
plt . yticks (fontsize=axes bxplt ticks fontsize)
plt.tight layout ()
fig _bp zero four.savefig(direct save+’0000 0400 boxplot.png’)
plt.show ()

Save the median temperature corresponding to the middle of each bin to a file
LatAxis median zero four = numpy.zeros ((nLat, 1))

LonAxis median_zero four = numpy.zeros ((nLon, 1))

LatAxisIndex zero four = numpy.empty ((nLat+1,1))

LatAxisIndex zero four[:] = numpy.nan

206

LonAxisIndex zero four = numpy.empty ((nLon+1,1))

LonAxisIndex zero four[:] = numpy.nan
Calculate average between each "bin" and save to new median array
for a in range(0, nLat):

LatAxis median zero four[a]| = ((Lataxis zero four|[a])+(Lataxis zero four|[(a+1)]))/2

for j in range(0, nLon):
LonAxis median_zero four[j] = (Lonaxis zero four[j]|+Lonaxis zero four[j+1])/2

Save latitude/longitude indices and median temperatures

output_zero_ four filename = direct save+’Figure Data/Zero Four MedianTemp ’+filename res+’.
txt’
outputFile zero four = open(output zero four filename, ’'w’)

outputFile zero four.write("#_Latitude ,_Longitude_indices ,_median_temperature_and_latitude/

longitude"

" _bounds_for_mining_facility ,_pond_and_mine_\n")

outputFile zero four.write("#By:_Ryan_Byerlay_\n")
outputFile zero four.write("#Recorded_Time_is_Local_Time_(MDT)_\n")
outputFile zero four.write(’The_nLat_is:_’+4str(nLat)+’,_The_nLon_is:_’+str (nLon)+’\n")
outputFile zero four.write(’The_Latmax_is:_’+str(Latmax)+’,_The_Latmin_is:_’+str (Latmin)+’,_

The_Lonmax_is :_’

+str (Lonmax)+’,_The_Lonmin_is :_’+str (Lonmin)+’\n")

outputFile zero four.write(’The_max_mine_lat_is:_’'+str(max mine lat)+’,_The_min_mine_lat_is:

_’+str(min_mine lat)+
>, _The_max_mine_lon_is:_ ’+st7r(max7mineilon)+’ ,.The_min_mine_lon_
is:.’
+str (min_ mine lon)+’\n’)
outputFile zero four.write(’The_max_pond_lat_is:_’+str(max pond_ lat)+’,_ The_min_pond_lat_is:
’+str(min pond lat)+
>, _The_max_pond_lon_is:_’+str (max pond lon)+’,_The_min_pond_lon_
is: ’
+str(min_pond lon)+’\n’)
outputFile zero_four.write ("#0:LatAxis_zero_four_\t_#1:LonAxis_zero_four_\t_"
"#2:MedianTemp zero four(K)_{lat ,lon}__\n")

Save data to file
for i in range(0, len(LatAxis zero four)—1):
for j in range(0, len(LonAxis zero four)-—1):

print (TMatrix zero four median[i][]j])
if numpy.isnan(TMatrix zero four median|[i][j]) = False:
outputFile zero four.write ("%f_\t_%f_\t_%f_\n" % (LatAxis median_ zero four[i],

LonAxis _median_zero four[j],

TMatrix _zero four median[i][]

1))

outputFile zero four.close ()

=

At 04:00 to 08:00

Lataxis four eight = numpy.linspace (Latmin, Latmax,nLat+1)

207

Lonaxis four eight = numpy.linspace (Lonmin,Lonmax,nLon+1)
LonAxis four eight,LatAxis four eight = numpy.meshgrid(Lonaxis four eight,Lataxis four eight

)

fig four eight, ax = plt.subplots(figsize=figuresize)
Tpcolor four eight=plt.pcolor(LonAxis four eight, LatAxis four eight,
TMatrix four eight median,
vmin=color bar min four eight, vmax=color bar max four eight)
cbar four eight = plt.colorbar(Tpcolor four eight)
cbar four eight.set label(color bar label,labelpad=-75,y=1.1,rotation=0,fontsize=
axes clrbar label fontsize)
cbar four eight.ax.tick params(labelsize=axes clrbar ticks fontsize)
plt.scatter (property bounds lon,property bounds lat, c='k’, s=4.5)
plt.scatter (pond bounds lon,pond bounds lat, c=’c’,s=3)

)

plt.scatter (base lon, base lat, c=’w’,s=launch_size)

plt.scatter (mine_bounds_lon,mine_bounds lat, c="r’,s=3)

Verifed distances via https://www.nhc.noaa.gov/gccalc.shtml
plt.xticks (xticks array ,xticks label, fontsize=axes ticks fontsize)
plt.yticks (yticks array, yticks label, fontsize=axes ticks fontsize)
plt.xlabel (xaxis label ,fontsize=axes label fontsize, labelpad=x_labelpad)
plt.ylabel (yaxis label,fontsize=axes label fontsize, labelpad=y labelpad)
plt.gcf().subplots adjust(bottom=0.15)
plt.tight layout ()
fig four eight.show ()
plt.savefig (direct save+’0400 0800 map.png’)
plt .show ()

Filter Nan for boxplot

Boxplot mine temps four eight filtered = Boxplot mine temps four eight[numpy.isnan (
Boxplot mine temps four eight)|

Boxplot pond temps four eight filtered = Boxplot pond temps four eight[numpy.isnan (
Boxplot pond temps four eight)]|

Plot boxplot if data for either the pond OR the mine exist
if Boxplot mine temps four eight filtered != [] or Boxplot pond_ temps four eight filtered !=
[
fig bp four eight, ax = plt.subplots(figsize=figuresize)
Plot Boxplot with filtered Nan data
plt.boxplot (| Boxplot pond temps four eight filtered,
Boxplot mine temps four eight filtered],
labels=[’Tailings_Pond’, ’'Mine’])

plt.ylabel(color bar label, fontsize=axes bxplt label fontsize)
plt.xticks(fontsize=axes bxplt ticks fontsize)
plt.yticks(fontsize=axes bxplt ticks fontsize)
plt.tight layout ()
plt.savefig(direct save+’0400 0800 boxplot.png’)
plt .show ()

Save the median temperature corresponding to the middle of each bin to a file

LatAxis median_four eight = numpy.zeros ((nLat, 1))

LonAxis median_ four eight = numpy.zeros ((nLon, 1))

208

LatAxisIndex four eight = numpy.empty ((nLat+1,1))

LatAxisIndex four eight[:] = numpy.nan

LonAxisIndex four eight = numpy.empty ((nLon+1,1))

LonAxisIndex four eight[:] = numpy.nan

Calculate average between each "bin" and save to new median array
for a in range(0, nLat):
LatAxis median_ four eight[a] = ((Lataxis four eight[a])+(Lataxis four eight[a+1]))/2

for j in range(0, nLon):
LonAxis median four eight[j| = (Lonaxis four eight[j|+Lonaxis four eight[]j+1])/2

Save latitude/longitude indices and median temperatures
output four eight filename = direct save+’'Figure Data/Four Eight MedianTemp +filename res+’.
txt’

)

outputFile four eight = open(output four eight filename, ’'w’)

outputFile four eight.write("#_Latitude,_Longitude_indices ,_median_temperature_and_latitude/
longitude_bounds_for"

"_the_mining_facility ,_pond_and_mine_\n")

"#By:_Ryan_Byerlay_\n")

"#Recorded_Time_is_Local_Time_ (MDT)_\n")

"The_nLat_is:_’+str(nLat)+’,_The_nLon_is:_’+str (nLon)+’\n"’)

>The_Latmax_is :_ +str (Latmax)+’,_The_Latmin_is:_’+str (Latmin)+’,

outputFile four eight.write
outputFile four eight.write
outputFile four eight.write

o~ o~ o~ —~

outputFile four eight.write
_The_Lonmax_is:_"’
+str (Lonmax)+’ ,_The_Lonmin_is :_ +str (Lonmin)+’\n")

outputFile four eight.write(’The_max_mine_lat_is:_’+str(max mine lat)+’,_The_min_mine_lat_is

)

+str (min_ mine lat)+’,_The_max_mine_lon_is:_’+str(max mine lon)+’

,.The_min_mine_lon_is ’

+str (min_ mine lon)+’\n’)
outputFile four eight.write(’The_max_pond_lat_is:_’+str(max pond lat)+’,_The_min_pond_lat_is
:.’+str(min_pond lat)+
>, _The_max_pond_lon_is:_’+str (max pond lon)+’,_ The_min_pond_lon_
is:_’+str (min_pond lon)+
“n)
outputFile four eight.write("#0:LatAxis four eight_\t_#1:LonAxis four eight"
"_\t_#2:MedianTemp four eight(K)_{lat ,lon}__\n")

Save data to file
for i in range(0, len(LatAxis four eight)—1):
for j in range(0, len(LonAxis four eight)—1):
print (TMatrix four eight median[i][]])
if numpy.isnan(TMatrix four eight median[i][j]) = False:
outputFile four eight.write("%f_\t_%f_\t %f_\n" % (LatAxis median_ four eight[i],
LonAxis median four eight[j],
TMatrix four eight median|[i]]
in)

outputFile four eight.close ()

209

At 08:00 to 12:00

Lataxis eight twelve = numpy.linspace (Latmin, Latmax,nLat+1)

Lonaxis eight twelve = numpy.linspace (Lonmin,Lonmax,nLon+1)

LonAxis eight twelve,LatAxis eight twelve = numpy.meshgrid (Lonaxis eight twelve,

Lataxis eight twelve)

fig eight twelve, ax = plt.subplots(figsize=figuresize)
Tpcolor eight twelve=plt.pcolor(LonAxis eight twelve,LatAxis eight twelve,
TMatrix _eight twelve median,
vmin=color bar_ min_ eight twelve, vmax=
color _bar_ max_eight twelve)
cbar eight twelve = plt.colorbar (Tpcolor eight twelve)
cbar eight twelve.set label(color_ bar label,labelpad=—75,y=1.1,rotation=0,fontsize=
axes_clrbar label fontsize)
cbar eight twelve.ax.tick params(labelsize=axes clrbar ticks fontsize)
plt.scatter (property bounds lon,property bounds lat, c='k’, s=4.5)
plt.scatter (pond bounds lon,pond bounds lat, c=’c’,s=3)

plt.scatter (base lon, base lat, c="w’

,s=launch _size)

plt.scatter (mine bounds lon,mine bounds lat, c=’r’,s=3)

Verifed distances via https://www.nhc.noaa.gov/gccalc.shtml

plt.xticks (xticks array ,xticks label, fontsize=axes ticks fontsize)
plt.yticks (yticks array, yticks label,fontsize=axes ticks fontsize)

plt . xlabel (xaxis label ,fontsize=axes label fontsize, labelpad=x_ labelpad)
plt.ylabel (yaxis label,fontsize=axes label fontsize, labelpad=y labelpad)
plt.gcf().subplots adjust(bottom=0.15)

plt.tight layout ()

fig _eight twelve.show ()

plt.savefig(direct save+’0800 1200 map.png’)

plt .show ()

Filter Nan for boxplot
Boxplot mine temps eight twelve filtered =\

Boxplot mine temps eight twelve| numpy.isnan (Boxplot mine temps eight twelve) |
Boxplot pond temps eight twelve filtered =\

Boxplot pond temps eight twelve| numpy.isnan (Boxplot pond temps eight twelve) |

Plot boxplot if data for either the pond OR the mine exist
if Boxplot mine temps eight twelve filtered != [] or
Boxplot pond temps eight twelve filtered != []:
fig bp eight twelve, ax = plt.subplots(figsize=figuresize)
Plot boxplot with filtered Nan data
plt.boxplot (| Boxplot pond temps eight twelve filtered,
Boxplot mine temps eight twelve filtered],
labels=[’Tailings _Pond’, ’Mine’])
plt.ylabel(color bar label, fontsize=axes bxplt label fontsize)
plt.xticks(fontsize=axes bxplt ticks fontsize)
plt.yticks(fontsize=axes bxplt ticks fontsize)
plt.tight layout ()
plt .savefig (direct _save+’0800_1200_boxplot.png’)
plt .show ()

210

Save the median temperature corresponding to the middle of each bin to a file
LatAxis median_eight twelve = numpy.zeros ((nLat, 1))

LonAxis median_eight twelve = numpy.zeros ((nLon, 1))

LatAxisIndex eight twelve = numpy.empty ((nLat+1,1))

LatAxisIndex eight twelve[:] = numpy.nan

LonAxisIndex eight twelve = numpy.empty ((nLon+1,1))
LonAxisIndex eight twelve[:] = numpy.nan

Calculate average between each "bin" and save to new median array
for a in range(0, nLat):
LatAxis median_eight twelve[a| = ((Lataxis eight twelve[a])+(Lataxis eight twelve[a+1]))

/2

for j in range(0, nLon):
LonAxis median eight twelve[j]| = (Lonaxis eight twelve|[j|+Lonaxis eight twelve[j+1])/2

Save latitude/longitude indices and median temperatures

output eight twelve filename = direct save+’Figure Data/Eight Twelve MedianTemp '+
filename res+’.txt’

outputFile eight twelve = open(output eight twelve filename, ’w’)

outputFile eight twelve.write("#_Latitude ,_Longitude_indices ,_median_temperature_and_
latitude /longitude"

"_bounds_for_the_mining_~facility ,_pond_and_mine_\n")

"#By: _Ryan_Byerlay_\n")

"#Recorded _Time_is_Local_Time_(MDT)_\n")

"The_nLat_is:_’+str(nLat)+’,_The_nLon_is:_ +str (nLon)+’\n")

"The_Latmax_1is :_ +str (Latmax)+’,_The_Latmin_is:_ +str (Latmin)+

outputFile eight twelve.write
outputFile eight twelve.write

outputFile eight twelve.write

o~ o~ o~ —~

outputFile eight twelve.write
>, _The_Lonmax_is:_~’
+str (Lonmax)+’,_The_Lonmin_is:_’+str (Lonmin)+’\n")
outputFile eight twelve.write(’The_max_mine_lat_is:_’+str(max mine lat)+’,_The_min_mine_lat_
is:_’'+str (min_ mine lat)+

’,.The_max_mine_lon_is:_’+str (max mine lon)+’,_ The_min_mine_

)

lon_is:_
+str (min_mine lon)+’\n’)

outputFile eight twelve.write(’The_max_pond_lat_is:_’+str(max pond lat)+’,_The_min_pond_lat_

is:_’+str (min_ pond lat)+
’,.The_max_pond_lon_is:_’+str (max pond lon)+’,_The_mib_pond._
lon_is:_’+str(min_ pond lon)+
\n")
outputFile eight twelve.write("#0:LatAxis eight twelve_\t_#1:LonAxis eight twelve_\t"
"_#2:MedianTemp eight twelve(K)_{lat ,lon}__\n")

Save data to file
for i in range(0, len(LatAxis eight twelve)—1):
for j in range(0, len(LonAxis eight twelve)—1):
print (TMatrix eight twelve median[i][]])
if numpy.isnan(TMatrix eight twelve median[i][j]) = False:
outputFile eight_twelve. write ("%f_\t_%f_\t _%f_\n" % (LatAxis_median_eight_twelve
i1,

211

LonAxis median_ eight twelve
[j] ’
TMatrix eight twelve median

[E103D)

outputFile eight twelve.close ()

F=

At 12:00 to 16:00

Lataxis twelve sixteen = numpy.linspace (Latmin, Latmax,nLat+1)
Lonaxis twelve sixteen = numpy.linspace (Lonmin,Lonmax,nLon+1)
LonAxis twelve sixteen ,LatAxis twelve sixteen = numpy.meshgrid(Lonaxis twelve sixteen,

Lataxis twelve sixteen)

fig twelve sixteen ,ax = plt.subplots(figsize=figuresize)
Tpcolor twelve sixteen=plt.pcolor (LonAxis twelve sixteen,LatAxis twelve sixteen,
TMatrix twelve sixteen median,
vmin=color bar min_twelve sixteen, vmax—=
color bar max twelve sixteen)
cbar twelve sixteen = plt.colorbar (Tpcolor twelve sixteen)
cbar twelve sixteen.set label(color bar label,labelpad=—75,y=1.1,rotation=0,fontsize=
axes clrbar label fontsize)
cbar twelve sixteen.ax.tick params(labelsize=axes clrbar ticks fontsize)
plt.scatter (property bounds lon,property bounds lat, c='k’, s=4.5)
plt.scatter (pond bounds lon,pond bounds lat, c=’c’,s=3)
plt.scatter (base lon, base lat, c¢=’w’,s=launch size)
plt.scatter (mine bounds lon,mine bounds lat, c='r’,s=3)
Verifed distances via https://www.nhc.noaa.gov/gccalc.shtml
plt.xticks (xticks array, xticks label, fontsize=axes ticks fontsize)
plt.yticks (yticks array, yticks label, fontsize=axes ticks fontsize)
plt.xlabel (xaxis label ,fontsize=axes label fontsize, labelpad=x_ labelpad)
plt.ylabel (yaxis label,fontsize=axes label fontsize, labelpad=y labelpad)
plt.gcf().subplots adjust(bottom=0.15)
plt.tight layout ()
fig twelve sixteen.show ()
plt.savefig(direct save+’1200_ 1600 map.png’)
plt .show ()

Filter Nan for boxplot
Boxplot mine temps twelve sixteen filtered =\

Boxplot mine temps twelve sixteen|[numpy.isnan (Boxplot mine temps twelve sixteen) |
Boxplot pond temps twelve sixteen filtered =\

Boxplot pond temps twelve sixteen| numpy.isnan (Boxplot pond temps twelve sixteen) |

Plot boxplot if data for either the pond OR the mine exist

if Boxplot mine temps twelve sixteen filtered != [] or
Boxplot pond temps twelve sixteen filtered != []:
fig _bp twelve sixteen, ax = plt.subplots(figsize=figuresize)

Plot Boxplot with filtered Nan data
plt.boxplot ([Boxplot pond temps twelve sixteen filtered,

212

Boxplot mine temps twelve sixteen filtered],
labels=[’Tailings_Pond’, 'Mine’])

plt.ylabel(color bar label, fontsize=axes bxplt label fontsize)
plt.xticks(fontsize=axes bxplt ticks fontsize)
plt.yticks(fontsize=axes bxplt ticks fontsize)
plt.tight layout ()
plt.savefig(direct save+’1200 1600 boxplot.png’)
plt .show ()

Save the median temperature corresponding to the middle of each bin to a file
LatAxis median twelve sixteen = numpy.zeros ((nLat, 1))

LonAxis median twelve sixteen = numpy.zeros ((nLon, 1))

LatAxisIndex twelve sixteen = numpy.empty ((nLat+1,1))

LatAxisIndex twelve sixteen [:| = numpy.nan

LonAxisIndex twelve sixteen = numpy.empty ((nLon+1,1))

LonAxisIndex twelve sixteen[:| = numpy.nan

Calculate average between each "bin" and save to new median array
for a in range(0, nLat):
LatAxis median twelve sixteen|a| = ((Lataxis twelve sixteen|a])+(Lataxis twelve sixteen]|
a+1]))/2

for j in range(0, nLon):
LonAxis median twelve sixteen|[j] = (Lonaxis twelve sixteen|j|+ Lonaxis twelve sixteen]|]j

+11)/2

Save latitude/longitude indices and median temperatures
output_twelve sixteen filename = direct save+’Figure Data/Twelve Sixteen MedianTemp '+

filename res+’.txt’

outputFile twelve sixteen = open(output twelve sixteen filename, ’w’)
outputFile twelve sixteen.write ("#_Latitude ,_Longitude_indices ,_median_temperature_and_
latitude /longitude"

" _bounds_for_mining_facility ,_pond_and_mine_\n")

"#By: _Ryan_Byerlay_\n")

"#Recorded _Time_is_Local_Time_(MDT)_\n")
"The_nLat_is:_’+str(nLat)+’,_The_nLon_is:_’+str (nLon)+’\n")
"The_Latmax_is :_ +str (Latmax)+’,_The_Latmin_is:_’+str (Latmin

outputFile twelve sixteen.write
outputFile twelve sixteen.write

outputFile twelve sixteen.write

—~ o~ o~ —~

outputFile twelve sixteen.write
)+’ ,.The_Lonmax_is:_’
+str (Lonmax)+’,_The_Lonmin_is :_’+str (Lonmin)+’\n")
outputFile twelve sixteen.write(’The_max_mine_lat_is:_’+str (max_ mine lat)+’,_The_min_mine_
lat_is:_ +str(min_ mine lat)+

>, _The_max_mine_lon_is:_'+str (max_ mine lon)+’,_The_min_mine_
lon_is:_’
+str(min_mine lon)+’\n’)
outputFile twelve sixteen.write(’The_max_pond_lat_is:_’+str(max pond lat)+’,_The_min_pond._
lat_is:_’+str(min_ pond lat)+

>, _The_max_pond_lon_is:_’+str (max_ pond lon)+’,_The_min_pond_

lon_is:_’

+str(min_pond lon)+’\n’)

outputFile twelve sixteen.write ("#0:LatAxis twelve sixteen_\t_#1:LonAxis twelve sixteen_\t"

213

"_#2:MedianTemp twelve sixteen(K)_{lat ,lon}__\n")

Save data to file
for i in range(0, len(LatAxis twelve sixteen)—1):

for j in range(0, len(LonAxis twelve sixteen)—1):

print (TMatrix twelve sixteen median|[i]|[j])
if numpy.isnan(TMatrix twelve sixteen median[i][j]) = False:
outputFile twelve sixteen.write ("%f_\t_%f_\t_%f_\n" % (
LatAxis median twelve sixteen[i],

LonAxis median_ twelve sixteen
il
TMatrix_twelve sixteen median

[i1031))

outputFile twelve sixteen.close ()

At 16:00 to 20:00

Lataxis sixteen twenty = numpy.linspace (Latmin,Latmax,nLat+1)
Lonaxis sixteen twenty = numpy.linspace (Lonmin,Lonmax,nLon+1)
LonAxis sixteen twenty,LatAxis sixteen twenty = numpy.meshgrid(Lonaxis sixteen twenty,

Lataxis sixteen twenty)

fig sixteen twenty, ax = plt.subplots(figsize=figuresize)
Tpcolor sixteen twenty=plt.pcolor (LonAxis sixteen twenty,LatAxis sixteen twenty,
TMatrix sixteen twenty median,
vmin=color bar min_sixteen twenty, vmax—
color bar max _sixteen twenty)
cbar sixteen twenty = plt.colorbar (Tpcolor sixteen twenty)
cbar _sixteen twenty.set label(color bar_label ,labelpad=-75,y=1.1,rotation=0,fontsize=
axes_clrbar label fontsize)
cbar sixteen twenty.ax.tick params(labelsize=axes clrbar ticks fontsize)
plt.scatter (property bounds lon,property bounds lat, c='k’, s=4.5)
plt.scatter (pond bounds lon,pond bounds lat, c=’c’,s=3)
plt.scatter (base lon, base lat, c=’w’,s=launch_size)
plt.scatter (mine bounds lon,mine bounds lat, c=’r’,s=3)
Verifed distances via https://www.nhc.noaa.gov/gccalc.shtml
plt.xticks (xticks array ,xticks label, fontsize=axes ticks fontsize)
plt.yticks (yticks array, yticks label,fontsize=axes ticks fontsize)
plt . xlabel (xaxis label ,fontsize=axes label fontsize, labelpad=x_labelpad)
plt.ylabel (yaxis label ,fontsize=axes label fontsize, labelpad=y labelpad)
plt.gcf().subplots adjust(bottom=0.15)
plt.tight layout ()
fig sixteen_ twenty .show ()

plt.savefig(direct save+’1600 2000 map.png’)
plt .show ()

Filter Nan for boxplot
Boxplot mine temps sixteen twenty filtered =\
Boxplot mine temps sixteen twenty[numpy.isnan (Boxplot mine temps sixteen twenty) |

Boxplot pond temps sixteen twenty filtered =\

214

Boxplot pond temps sixteen twenty[numpy.isnan (Boxplot pond temps sixteen twenty) |

Plot boxplot if data for either the pond OR the mine exist
if Boxplot mine temps sixteen twenty filtered != []| or
Boxplot pond temps sixteen twenty filtered != []:
fig bp_ sixteen twenty, ax = plt.subplots(figsize=figuresize)
Plot boxplot with filtered Nan data
plt . boxplot ([Boxplot pond temps sixteen twenty filtered,
Boxplot mine temps sixteen twenty filtered],
labels=[’Tailings_Pond’, ’'Mine’])
plt.xticks(fontsize=axes bxplt label fontsize)
plt . yticks (fontsize=axes bxplt ticks fontsize)
plt.ylabel(color bar label, fontsize=axes bxplt label fontsize)
plt.tight layout ()
plt .savefig (direct save+’1600_2000_boxplot.png’)
plt .show ()

Save the median temperature corresponding to the middle of each bin to a file
LatAxis median sixteen twenty = numpy.zeros ((nLat, 1))

LonAxis median_ sixteen twenty = numpy.zeros ((nLon, 1))

LatAxisIndex sixteen twenty = numpy.empty ((nLat+1,1))

LatAxisIndex sixteen twenty [:] = numpy.nan

LonAxisIndex sixteen twenty = numpy.empty ((nLon+1,1))

LonAxisIndex sixteen twenty [:| = numpy.nan

Calculate average between each "bin" and save to new median array
for a in range(0, nLat):
LatAxis median sixteen twenty|a] = ((Lataxis sixteen twenty|a])+(Lataxis sixteen twenty|
a+1]))/2

for j in range(0, nLon):
LonAxis median_ sixteen twenty|[j] = (Lonaxis sixteen twenty|[j|+Lonaxis sixteen twenty|]
+1])/2

Save Latitude/Longitude indices and median temperatures
output sixteen twenty filename = direct save+’Figure Data/Sixteen Twenty MedianTemp '+
filename res+’.txt’
outputFile sixteen twenty = open(output sixteen twenty filename, ’w’)
outputFile sixteen twenty.write("#_Latitude ,_Longitude_indices ,_median_temperature_and_
latitude /longitude_bounds_for"
"_mining_facility ,_pond_and_mine_\n")
outputFile sixteen twenty.write ("#By:_Ryan_Byerlay_\n")
outputFile sixteen twenty.write ("#Recorded_Time_is_Local_Time_(MDT)_\n")
outputFile sixteen twenty.write(The_nLat_is:_’+str (nLat)+’,_The_nLon_is:_’+str (nLon)+’\n")
outputFile sixteen twenty.write(The_Latmax_is:_’+str (Latmax)+’,_The_Latmin_is:_’+str(Latmin
)+’ ,_.The_Lonmax_is:_’
+str (Lonmax)+’,_The_Lonmin_is:_’+str (Lonmin)+’\n’)
outputFile sixteen twenty.write(’The_max_mine_lat_is:_’+str(max mine lat)+’,_ The_min_mine_
)

lat_is:_

+str(min_mine lat)+’,_The_max_mine_lon_is:_’+str(

215

max_mine lon)+
’,_The_min_mine_lon_is:_’+str (min_ mine lon)+’\n’)
outputFile sixteen twenty.write(’The_max_pond_lat_is:_’+str(max pond lat)+’,_The_min_pond._
lat_is:_’+str(min_ pond lat)+

>, _The_max_pond_lon_is:_’+str (max pond lon)+’,_The_min_pond_

lon_is:_’

+str(min_ pond lon)+’\n’)
outputFile sixteen twenty.write("#0:LatAxis sixteen twenty_\t_#1:LonAxis sixteen twenty_\t"
"_#2:MedianTemp sixteen twenty (K)_{lat ,lon}__\n")

Save data to file
for i in range(0, len(LatAxis sixteen twenty)—1):
for j in range(0, len(LonAxis sixteen twenty)—1):
print (TMatrix _sixteen twenty median[i]|[j])
if numpy.isnan(TMatrix sixteen twenty median[i][]j]) = False:
outputFile sixteen twenty.write("%f_\t %f_\t_%f_\n" % (
LatAxis median_sixteen twenty[i],
LonAxis median_ sixteen twenty
il
TMatrix sixteen twenty median
105 1)

outputFile sixteen twenty.close()

At 20:00 to 24:00

Lataxis twenty twentyfour = numpy.linspace (Latmin, Latmax,nLat+1)
Lonaxis twenty twentyfour = numpy.linspace (Lonmin,Lonmax,nLon+1)
LonAxis twenty twentyfour,LatAxis twenty twentyfour = numpy.meshgrid (

Lonaxis_twenty twentyfour,

Lataxis twenty twentyfour

)

fig twenty twentyfour ,ax = plt.subplots(figsize=figuresize)
Tpcolor twenty twentyfour=plt.pcolor (LonAxis twenty twentyfour,LatAxis twenty twentyfour,
TMatrix twenty twentyfour median, vmin=
color bar min twenty twentyfour,
vmax=color bar max twenty twentyfour)
cbar twenty twentyfour = plt.colorbar(Tpcolor twenty twentyfour)
cbar twenty twentyfour.set label(color bar label,labelpad=-75,y=1.1,rotation=0,fontsize=
axes clrbar label fontsize)
cbar twenty twentyfour.ax.tick params(labelsize=axes clrbar ticks fontsize)
plt.scatter (property bounds lon,property bounds lat, c='k’, s=4.5)
plt.scatter (pond bounds lon,pond bounds lat, c=’c’,s=3)
plt.scatter (base lon, base lat, c¢=’w’,s=launch size)
plt .scatter (mine_bounds_lon,mine_ bounds lat, c="r’,s=3)
Verifed distances via https://www.nhc.noaa.gov/gccalc.shtml
plt.xticks (xticks array, xticks label, fontsize=axes ticks fontsize)
plt.yticks (yticks array, yticks label, fontsize=axes ticks fontsize)
plt.xlabel (xaxis label ,fontsize=axes label fontsize, labelpad=x_labelpad)
(

plt.ylabel (yaxis label ,fontsize=axes label fontsize, labelpad=y labelpad)

216

plt.gcf().subplots adjust(bottom=0.15)
plt.tight layout ()

fig twenty twentyfour.show ()
plt.savefig(direct save+’2000 2400 map.png’)
plt .show ()

Filter Nan for boxplot
Boxplot mine temps twenty twentyfour filtered =\

Boxplot mine temps twenty twentyfour[numpy.isnan (Boxplot mine temps twenty twentyfour)]
Boxplot pond temps twenty twentyfour filtered =\

Boxplot pond temps twenty twentyfour[numpy.isnan (Boxplot pond temps twenty twentyfour)

Plot boxplot if data for either the pond OR the mine exist
if Boxplot mine temps twenty twentyfour filtered != []| or
Boxplot pond temps twenty twentyfour filtered != []:
fig _bp twenty twentyfour, ax = plt.subplots(figsize=figuresize)
Plot Boxplot with filtered Nan data
plt.boxplot ([Boxplot pond temps twenty twentyfour filtered,
Boxplot mine temps twenty twentyfour filtered],
labels=[’Tailings_Pond’, 'Mine’])
plt.ylabel(color bar label, fontsize=axes bxplt label fontsize)
plt.xticks(fontsize=axes bxplt label fontsize)
plt.yticks (fontsize=axes bxplt ticks fontsize)
plt . tight layout ()
plt .savefig (direct save+’2000 2400 boxplot.png’)
plt .show ()

Save the median temperature corresponding to the middle of each bin to a file
LatAxis median twenty twentyfour = numpy.zeros ((nLat, 1))

LonAxis median twenty twentyfour = numpy.zeros ((nLon, 1))

LatAxisIndex twenty twentyfour = numpy.empty ((nLat+1,1))

LatAxisIndex twenty twentyfour [:] = numpy.nan

LonAxisIndex twenty twentyfour = numpy.empty ((nLon+1,1))

LonAxisIndex twenty twentyfour [:] = numpy.nan

Calculate average between each "bin" and save to new median array
for a in range(0, nLat):
LatAxis median twenty twentyfour|[a] = ((Lataxis_ twenty twentyfour[a])-(
Lataxis twenty twentyfour[a+1]))/2

for j in range(0, nLon):
LonAxis median twenty twentyfour[j] = (Lonaxis twenty twentyfour|[j|+
Lonaxis_twenty twentyfour|j+1])/2

Save Latitude/Longitude indices and median temperatures

output twenty twentyfour filename = direct save+’ Figure Data/Twenty Twentyfour MedianTemp '+
filename res+’.txt’

outputFile twenty twentyfour = open(output twenty twentyfour filename, ’w’)

outputFile twenty twentyfour.write("#_Latitude,_Longitude_indices ,_median_temperature_and"

"_latitude/longitude_bounds_for_mining_facility ,_pond_and

217

mine\n")
outputFile twenty twentyfour.write("#By:_Ryan_Byerlay_\n")
outputFile twenty twentyfour.write("#Recorded_Time_is_Local_Time_(MDT)_\n")
outputFile twenty twentyfour.write(’The_nLat_is:_’+str(nLat)+’,_The_nLon_is:_’+str(nLon)+’\n
")
outputFile twenty twentyfour.write(’The_Latmax_is:_’+str (Latmax)+’,_The_Latmin_is:_’+str (
Latmin)+’,_The_Lonmax_is:_’

outputFile twenty twentyfour.write(’The_max_mine_lat_is:_’+str (max mine lat)+’,_The_min_mine
latis:

+str (Lonmax)+’,_The_Lonmin_is :_’+str (Lonmin)+’\n")

+str (min_mine lat)+’,_The_max_mine_lon_is:_’+str(
max_mine_lon)-+
>, _The_min_mine_lon_is:_’+str(min_ mine lon)+’\n’)
outputFile twenty twentyfour.write(’The_max_pond_lat_is:_’+str(max pond lat)+’,_The_min_pond
Jlat_is: o’

+str (min_pond lat)+’,_The_max_pond_lon_is:_’+str(
max_pond_lon)+
>, _The_min_pond_lon_is:_’+str (min pond lon)+’\n’)
outputFile twenty twentyfour.write("#0:LatAxis twenty twentyfour_\t_+#1:
LonAxis twenty twentyfour_\t"

"_#2:MedianTemp twenty twentyfour(K)_{lat ,lon}__\n")

Save data to file
for i in range(0, len(LatAxis twenty twentyfour)—1):
for j in range(0, len(LonAxis twenty twentyfour)—1):
print (TMatrix twenty twentyfour median[i][j])
if numpy.isnan(TMatrix twenty twentyfour median[i][]j]) = False:
outputFile twenty twentyfour.write ("%f_\t %f_\t_%f_\n" % (
LatAxis median twenty twentyfour[i],
LonAxis median_ twenty twentyfour
(il
TMatrix twenty twentyfour median

[i1031))

outputFile twenty twentyfour.close ()

F

May 24 FLIR ST Plot

Lataxis May 24 SA FLIR = numpy.linspace (Latmin, Latmax, nLat+1)

Lonaxis May 24 SA FLIR = numpy.linspace (Lonmin, Lonmax, nLon+1)

LonAxis May 24 SA FLIR, LatAxis May 24 SA FLIR = numpy.meshgrid (Lonaxis May 24 SA FLIR,
Lataxis May 24 SA FLIR)

fig May 24 SA FLIR, ax = plt.subplots(figsize=figuresize)
Tpcolor May 24 SA_ FLIR plt.pcolor (LonAxis May 24 SA FLIR, LatAxis May 24 SA FLIR,
TMatrix_May_ 24 SA_ FLIR_Median, vmin=May 24 cbar_ FLIR_min

vmax=May 24 cbar FLIR_max)
cbar_May 24 SA FLIR = plt.colorbar (Tpcolor_May 24 SA_ FLIR)
cbar May 24 SA FLIR.set label(May 24 cbar FLIR label, labelpad=-75, y=1.1, rotation=0,
fontsize=May 24 cbar FLIR_fontsize)

218

cbar_May 24 SA_ FLIR.ax.tick_params(labelsize=May 24 axes_clrbar_ticks_fontsize)

plt.scatter (property bounds lon, property bounds lat, c='k’, s=4.5)

)

(
plt.scatter (pond bounds lon, pond bounds lat, c=’c’, s=3)
(base lon, base lat, c=’w’, s=launch_size)

plt.scatter
plt.scatter (mine bounds lon, mine bounds lat, c=’r’, s=3)

Verifed distances via https://www.nhc.noaa.gov/gccalc.shtml

plt.xticks (xticks array, xticks label, fontsize=May 24 axes ticks fontsize)

plt . yticks (yticks array, yticks label, fontsize=May 24 axes ticks fontsize)
plt.xlabel (xaxis label, fontsize=May 24 axes label fontsize, labelpad=x_labelpad)
plt.ylabel (yaxis label, fontsize=May 24 axes label fontsize, labelpad=y labelpad)
plt.gcf().subplots adjust(bottom=0.15)

plt.tight layout ()

fig May 24 SA_FLIR.show ()

plt.savefig (direct save+’May 24 FLIR ST map.png’)

plt .show ()

May 24 MODIS ST Plot

Lataxis May 24 SA MODIS = numpy. linspace (Latmin, Latmax, nLat+1)

Lonaxis May 24 SA MODIS = numpy. linspace (Lonmin, Lonmax, nLon+1)

LonAxis May 24 SA MODIS, LatAxis May 24 SA MODIS = numpy.meshgrid (Lonaxis May 24 SA MODIS,
Lataxis May 24 SA MODIS)

fig May 24 SA MODIS, ax = plt.subplots(figsize=figuresize)

Tpcolor May 24 SA MODIS plt . pcolor (LonAxis May 24 SA MODIS, LatAxis May 24 SA MODIS,
TMatrix_May 24 SA MODIS Median, vmin=

May 24 cbar_ MODIS_ min,

vmax=May 24 cbar_ MODIS max)

cbar_May 24 SA MODIS = plt.colorbar (Tpcolor_May 24 SA MODIS)

cbar_May 24 SA MODIS. set label (May_ 24 cbar_ MODIS_label, labelpad=-75, y=1.1, rotation=0,

fontsize=May_24 cbar_MODIS_fontsize)
cbar_May 24 SA MODIS. ax.tick _params(labelsize=May 24 axes_clrbar_ticks_fontsize)
plt.scatter (property bounds lon, property bounds lat, c='k’, s=4.5)

plt.scatter (pond bounds lon, pond bounds lat, c=’c’, s=3)

plt.scatter (base lon, base lat, c='w’, s=launch_size)
plt.scatter (mine bounds lon, mine bounds lat, c=’r’, s=3)

Verifed distances via https://www.nhc.noaa.gov/gccalc.shtml

plt.xticks (xticks array, xticks label, fontsize=May 24 axes ticks fontsize)

plt . yticks (yticks array, yticks label, fontsize=May 24 axes ticks fontsize)
plt.xlabel (xaxis label, fontsize=May 24 axes label fontsize, labelpad=x_labelpad)
plt.ylabel(yaxis label, fontsize=May 24 axes label fontsize, labelpad=y labelpad)
plt.gcf().subplots adjust(bottom=0.15)

plt.tight layout ()

fig_ May 24 SA MODIS. show ()

plt .savefig (direct save+’May 24 MODIS_ST map.png’)

plt .show ()

219

May 24 Percentage Error/Absolute Error Plot

Lataxis May 24 SA PE = numpy.linspace (Latmin, Latmax, nLat+1)

Lonaxis May 24 SA PE = numpy.linspace (Lonmin, Lonmax, nLon+1)

LonAxis May 24 SA PE, LatAxis May 24 SA PE = numpy.meshgrid (Lonaxis May 24 SA PE,
Lataxis May 24 SA PE)

print (’The_Median_Error_is:_’+str (numpy.nanmedian (PE_ Matrix May 24 SA Median)))
print (’The_Max_Error_is :_’+str (numpy.nanmax (PE Matrix May 24 SA Median)))

print (’The_Minimum_Error_is :_ ’+str (numpy.nanmin (PE_Matrix May 24 SA Median)))

(numpy . nanmean (PE_ Matrix May 24 SA Median)))
(numpy . sqrt (numpy . nanmean (PE_Matrix May 24 SA Medianxx2))))

print (’The_Bias_is:_ +str
print (’The RMSE_is :_ +str

fig_ May 24 SA PE, ax = plt.subplots(figsize=figuresize)

Tpcolor_May 24 SA_ PE = plt.pcolor (LonAxis May 24 SA PE, LatAxis_May 24 SA PE,
PE_Matrix_May_ 24 SA _Median,

vmin=May 24 cbar PE min, vmax=May 24 cbar PE max)

cbar May 24 SA PE = plt.colorbar (Tpcolor May 24 SA PE)

cbar May 24 SA PE.set label(May 24 cbar PE label, labelpad=-75, y=1.1, rotation=0, fontsize=
May 24 cbar PE_fontsize)

cbar May 24 SA PE.ax.tick params(labelsize=May 24 axes clrbar ticks fontsize)

plt.scatter (property bounds lon, property bounds lat, c='k’, s=4.5)

plt.scatter (pond bounds lon, pond bounds lat, c=’c’, s=3)

plt.scatter (base lon, base lat, c="w’

s=launch_size)

plt.scatter (mine bounds lon, mine bounds lat, c='r’, s=3)

Verifed distances via https://www.nhc.noaa.gov/gccalc.shtml

plt.xticks (xticks array, xticks label, fontsize=May 24 axes ticks fontsize)
plt.yticks (yticks array, yticks label, fontsize=May 24 axes ticks fontsize)
plt.xlabel (xaxis label, fontsize=May 24 axes label fontsize, labelpad=x_labelpad)
plt.ylabel (yaxis label, fontsize=May 24 axes label fontsize, labelpad=y labelpad)
plt.gcf().subplots adjust(bottom=0.15)

plt.tight layout ()

fig_ May_ 24 SA PE.show ()

For Percentage Error

plt.savefig(direct save+’May 24 PE map.png’)

For Absolute Error

plt.savefig(direct save+’May 24 Absolute Error map.png’)

plt .show ()

F=

Mining facility , pond, and mine outline plot

fig site outline, ax = plt.subplots(figsize=figuresize)

plt.scatter (property bounds lon, property bounds lat, c='k’, s=4.5)

plt.scatter (pond_bounds lon, pond_ bounds lat, c=’c’, s=3)

plt.scatter (base lon, base lat, c='b’, s=launch size)

plt.scatter (mine_bounds_lon, mine bounds_lat, c='r’, s=3)

Verifed distances via https://www.nhc.noaa.gov/gccalc.shtml

plt.xticks (xticks array, xticks label, fontsize=May 24 axes ticks fontsize)
plt.yticks (yticks array, yticks label, fontsize=May 24 axes ticks fontsize)
plt.xlabel (xaxis label, fontsize=May 24 axes label fontsize, labelpad=x_labelpad)

220

plt.ylabel(yaxis label, fontsize=May 24 axes label fontsize, labelpad=y labelpad)
plt.gcf().subplots adjust(bottom=0.15)

plt.tight layout ()

fig site outline.show ()
plt.savefig(direct save+’Facility Mine Pond Outlines.png’)

plt .show ()

A.2.8 Principal Component Analysis (PCA)

import numpy

import matplotlib.pyplot as plt
import pandas as pd

from pandas import DataFrame
from math import sqrt

Current as of October 16, 2019
This script is to complete the PCA analysis for temperatures considering land use type
as a function of geographic position.
For zero to four
filename = ’/export/home/users/username/Documents/DG_temp/Mining Facility 2018/
Processed Data/Separated Hours/’ \
>Campus_ Calibrated /PCA_Data/Zero_four_data_calibrated PCA.csv’

Read in data (skip the first row with the header) and declare column names
= pd.read csv(filename , names=[’#0:Latitude’, ’#1:Longitude’, ’#2:Temperature(K)’]|,

skiprows=1)

H

]

Get length of data
= len (x|’ ’#0:Latitude’])

Z

Keep original x

¥+

»

_original = x

Get the mean of each column

mean_lat = numpy.nanmean (x| ’#0:Latitude’])
mean_lon = numpy.nanmean (x| ’#1:Longitude’])
mean_tempK = numpy.nanmean (x|’ #2:Temperature (K) ’|)

Create array and subtract appropriate mean from each column index

mean_x = numpy.ones ((int (N) ,3))
mean_x = mean x|[:,0]*mean lat, mean x|[:,l1]*mean lon, mean x|[:,2]%mean_ tempK
mean_X_array = X—nean_x

Calculate the covariance

Cx = mean_x_array.cov ()

Calculate eigenvalues and eigenvectors

eig _vals, eig vecs = numpy.linalg.eig(Cx)
print (’The_covariance_matrix_is:_\n’+str (Cx))
print (’The_eigenvalues_are:_\n’+str(eig vals))
print (’The_eigenvectors_are:_\n’+str(eig vecs))

221

Separate Eigenvectors

eigvecl = eig vecs|[:,0]
eigvec2 = eig vecs|[:,1]
eigvecd = eig vecs|[:,2]

Line coordinates to represent variances for the three most variable directions

eigVal 1 Line = ([0,(eig_vals[0]xeigvecl [0])],[0,(eig vals[0]xeigvecl[1])], [0,(eig_vals[O0]=
eigvecl [2])])

eigVal 2 Line = ([0,(eig_vals|[l]xeigvec2[0])],[0,(eig_ vals|[l]xeigvec2[1])], [0,(eig_vals[1]x
eigvec2[2])])

eigVal 3 Line = ([0,(eig_vals|[2]xeigvec3 [0])],[0,(eig vals|[2]*xeigvec3[1])], [0,(eig_vals[2]x
eigvec3 [2])])

Add the removed mean to the plotted lines
eigVal 1 Line no mean = ([0+mean lat,(eig vals[0|xeigvecl [0])+mean lat],
[0+mean lon,(eig vals[0]*eigvecl[1l])+mean lon],

[0+mean tempK, (eig vals[0]*eigvecl [2])+mean tempK])

Save the line with the greatest variance, will be plotted at the end of this script

eigVal zero four Line = eigVal 1 Line

"
#

For four to eight
filename = ’/export/home/users/username/Documents/DG_temp/Mining Facility 2018/
Processed Data/Separated Hours/’ \
>Campus_ Calibrated /PCA_Data/Four_eight data_calibrated PCA .csv’

Read in data (skip the first row with the header) and declare column names
x = pd.read csv(filename , names=|’#0:Latitude’, ’#1:Longitude’, ’#2:Temperature(K)’],

skiprows=1)

:#:

Get length of data
= len(x[’#0:Latitude’])

Z

H*

Keep original x

x original = x

Get mean of each column

mean_lat = numpy.nanmean (x| ’#0:Latitude’|)

print (mean lat)

mean_lon = numpy.nanmean (x| ’#1:Longitude’])

print (mean lon)

mean_tempK = numpy.nanmean (x|’ #2:Temperature(K) ’|)

print (mean tempK)
Create array and subtract appropriate mean from each column index

mean_x = numpy.ones ((int (N) ,3))

mean_x = mean_ x|[:,0]*mean lat, mean x[:,1]*mean lon, mean x|[:,2]%mean_ tempK

222

mean_X_array = X—mean_X

Calculate the covariance

Cx = mean_x_array.cov ()

Calculate eigenvalues and eigenvectors

eig vals, eig vecs = numpy.linalg.eig(Cx)
print (’The_covariance_matrix_is:_\n’+str (Cx))
print (’The_eigenvalues_are:_\n’+str(eig vals))
print (’The_eigenvectors_are:_\n'+str(eig vecs))

Separate Eigenvectors

eigvecl = eig_vecs|[:,0]
eigvec2 = eig vecs|[:,1]
eigvecd = eig vecs|[:,2]

Line coordinates to represent variances for the three most variable directions

eigVal 1 Line = ([0,(eig_vals[0]*eigvecl [0])],[0,(eig vals|[O]*xeigvecl[1])], [0,(eig_vals[0]=*
eigvecl [2])])

eigVal 2 Line = ([0,(eig_vals|[l]xeigvec2[0])]|,[0,(eig_ vals|[l]xeigvec2|[1])], [0,(eig_vals[1l]=*
eigvec2[2])])

eigVal 3 Line = ([0,(eig_vals[2]xeigvec3[0])],[0,(eig vals[2]xeigvec3[1])], [0,(eig_vals[2]x
eigvec3 [2])])

Add the removed mean to the line with the highest variance
eigVal 1 Line no mean = ([0+mean lat,(eig vals[0|xeigvecl [0])+mean lat],
[0+ mean lon,(eig vals[0]xeigvecl[1])+mean lon],
[0+mean tempK, (eig vals[0]*eigvecl [2])+mean tempK])

If necessary , Reverse direction of four eight Line to ensure that all lines are in the
same quadrant

eigVal four eight reversed = ([0,(eigVal 1 Line[0][1])],[0,(eigVal 1 Line[1][1])],[0,(
eigVal 1 Line[2][1])])

Save the reversed line with the greatest variance, will be plotted at the end of this
script

eigVal four eight Line = eigVal four eight reversed

#

For Eight to Twelve
filename = ’/export/home/users/username/Documents/DG_temp/Mining Facility 2018/
Processed Data/Separated Hours/’ \
>Campus_Calibrated /PCA_Data/Eight twelve data calibrated PCA.csv’

Read in data (skip the first row with the header) and declare column names
x = pd.read csv(filename , names=|’#0:Latitude’, ’#1:Longitude’, ’#2:Temperature(K)’],

skiprows=1)

Get length of data
N = len(x[’#0:Latitude’])

223

Keep original x

x _original = x

Get mean of each column

mean_lat = numpy.mean(x[’#0:Latitude’])

mean_lon = numpy.mean(x[’#1:Longitude’])

mean _tempK = numpy.mean(x|’#2:Temperature (K)'])

Create array and subtract appropriate mean from each column index

mean _x = numpy.ones ((int (N),3))

mean_x = mean_x|[:,0]*mean lat, mean x|[:,l1]*mean lon, mean x|[:,2]%mean_tempK
mean x_array = X—Inean_x

Calculate the covariance

71

Cx = mean_x_array.cov ()

Calculate eigenvalues and eigenvectors

eig vals, eig vecs = numpy.linalg.eig(Cx)
print (’The_covariance_matrix_is:_\n’+str (Cx))
print (’The_eigenvalues_are:_\n’+str(eig vals))
print (’The_eigenvectors_are:_\n’+str(eig vecs))

]

Separate Eigenvectors

eigvecl = eig vecs|[:,0]
eigvec2 = eig vecs|[:,1]
eigvec3 = eig vecs|[:,2]

Line coordinates to represent variances for the three most variable directions

eigVal 1 Line = ([0,(eig_vals[0]xeigvecl [0])],[0,(eig_vals[0]xeigvecl[1])], [0,(eig_vals[O0]=
eigvecl [2])])

eigVal 2 Line = ([0,(eig_vals|[l]xeigvec2[0])],[0,(eig_ vals|[l]*xeigvec2[1])], [0,(eig_vals[1l]x
eigvec2[2])])

eigVal 3 Line = ([0,(eig_vals[2]xeigvec3 [0])],[0,(eig vals|[2]*xeigvec3 [1])], [0,(eig_vals[2]x*
eigvec3 [2])])

Add the removed mean to the line with the highest variance
eigVal 1 Line no_ mean = ([0+mean lat,(eig vals[0]xeigvecl [0])+mean lat],[0+mean lon,(
eig vals[0]*eigvecl [1])+mean lon],

[04+mean tempK, (eig vals|[0]xeigvecl [2])+mean tempK])

Save line with the greatest variance, will be plotted at the end of this script
eigVal eight twelve Line = eigVal 1 Line
#

For Twelve to Sixteen
filename = ’/export/home/users/username/Documents/DG_temp/Mining Facility 2018/
Processed Data/Separated Hours/’ \
>Campus_ Calibrated /PCA_Data/ Twelve_sixteen data_calibrated PCA .csv’

Read in data (skip the first row with the header) and declare column names

224

x = pd.read csv(filename , names=|’#0:Latitude’, ’#1:Longitude’, ’#2:Temperature(K)’],
skiprows=1)

Get length of data
N = len (x| ’#0:Latitude’|)

Keep original x

x original = x

Get mean of each column

mean _lat = numpy.mean (x|’ #0:Latitude’|)
mean_lon = numpy.mean (x|’ #1:Longitude’|)
mean_tempK = numpy.mean(x[’#2:Temperature(K) '])

Create array and subtract appropriate mean from each column index

mean_x = numpy.ones ((int (N),3))
mean_ x = mean_ x|[:,0]*mean lat, mean x|[:,l1]*mean lon, mean x|[:,2]%mean tempK
mean_X_array = X—nean_x

Calculate the covariance

Cx = mean_ x_array.cov ()

Calculate eigenvalues and eigenvectors

eig vals, eig vecs = numpy.linalg.eig(Cx)
print (’The_covariance_matrix_is:_\n’+str (Cx))
print (’The_eigenvalues_are:_\n'+str(eig vals))
print (’The_eigenvectors_are:_\n’+str(eig vecs))

Separate Eigenvectors

eigvecl = eig vecs|[:,0]
eigvec2 = eig vecs|[:,1]
eigvecd = eig vecs|[:,2]

Line coordinates to represent variances for the three most variable directions

eigVal 1 Line = ([0,(eig_vals[0]*eigvecl [0])],[0,(eig_vals|[O]*xeigvecl [1])], [0,(eig_vals[0]x*
eigvecl [2])])

eigVal 2 Line = ([0,(eig_vals|[l]*eigvec2[0])]|,[0,(eig_ vals|[l]*xeigvec2[1])], [0,(eig_vals[1l]*
eigvec2[2])])

eigVal 3 Line = ([0,(eig_vals|[2]xeigvec3 [0])]|,[0,(eig vals|[2]*xeigvec3 [1])], [0,(eig_ vals[2]x*
eigvec3 [2])])

Add the removed mean to the line with the highest variance
eigVal 1 Line no_ mean = ([0+mean lat,(eig vals|[0]*xeigvecl [0])+mean lat],[0+ mean lon,(
eig vals[0]xeigvecl[1])+mean lon],
[0+mean tempK, (eig vals[0]*eigvecl [2])+mean tempK])

Save line with the greatest variance, will be plotted at the end of this script

eigVal_ twelve_ sixteen_ Line = eigVal_1_Line

A R R AR A

For Sixteen to Twenty
filename = ’/export/home/users/username/Documents/DG_temp/Mining Facility 2018/
Processed Data/Separated Hours/’ \
’Campus_Calibrated /PCA_Data/Sixteen twenty data calibrated PCA.csv’

Read in data (skip the first row with the header) and declare column names

x = pd.read csv(filename , names=|’#0:Latitude’, ’'#1:Longitude’, ’#2:Temperature(K)’],
skiprows=1)

Get length of data

N = len(x[’#0:Latitude’])

Keep original x

x _original = x

Get mean of each column

mean_lat = numpy.mean (x|’ #0:Latitude’])

mean_lon = numpy.mean (x|’ #1:Longitude’])

mean_tempK = numpy.mean(x[’#2:Temperature (K) '])

Create array and subtract appropriate mean from each column index

mean_x = numpy.ones ((int (N) ,3))
mean _x = mean_x|[:,0]*mean lat, mean x|[:,l]*mean lon, mean x|[:,2]*mean tempK
mean X _array = x—mean_Xx

Calculate the covariance

Cx = mean_x_array.cov ()

Calculate eigenvalues and eigenvectors

eig vals, eig vecs = numpy.linalg.eig(Cx)
print (’The_covariance_matrix_is:_\n’+str (Cx))
print (’The_eigenvalues_are:_\n’+str(eig vals))
print (’The_eigenvectors_are:_\n’+str(eig vecs))

Separate Eigenvectors

eigvecl = eig vecs|[:,0]
eigvec2 = eig vecs|[:,1]
eigvecd = eig vecs|[:,2]

Line coordinates to represent variances for the three most variable directions

eigVal 1 Line = ([0,(eig_vals[0]xeigvecl [0])],[0,(eig vals[0]xeigvecl[1])], [0,(eig_vals[O0]=
eigvecl [2])])

eigVal 2 Line = ([0,(eig_vals|[l]xeigvec2[0])],[0,(eig_ vals|[l]xeigvec2[1])], [0,(eig_vals[1l]x
eigvec2[2])])

eigVal 3 Line = ([0,(eig_vals|[2]xeigvec3 [0])],[0,(eig vals|[2]*xeigvec3 [1])], [0,(eig_vals[2]x
eigvec3 [2])])

Add the removed mean to the line with the highest variance
eigVal 1 Line no mean = ([0+mean lat,(eig vals[0]*xeigvecl [0])+mean lat],[0+mean lon,(
eig vals|[0]xeigvecl[1])4mean lon],

[0+mean tempK, (eig vals[0]*eigvecl [2])+mean tempK])

226

Save line with the greatest variance, will be plotted at the end of this script

eigVal sixteen twenty Line = eigVal 1 Line

H

For Twenty to Twenty four hour interval
filename= ’/export/home/users/username/Documents/DG_temp/Mining Facility 2018 /Processed Data
/Separated Hours/’ \
>Campus_ Calibrated /PCA_Data/ Twenty twentyfour data calibrated PCA.csv’

Read in data (skip the first row with the header) and declare column names

x = pd.read csv(filename , names=|[’#0:Latitude’, ’#1:Longitude’, ’#2:Temperature(K)’]|,
skiprows=1)

Get length of data

N = len (x|’ ’#0:Latitude’])

Keep original x

®

_original = x

Get mean of each column

mean_lat = numpy.mean(x[’#0:Latitude’])
mean_lon = numpy.mean(x[’#1:Longitude’])
mean_tempK = numpy.mean(x|’#2:Temperature (K) '])

Create array and subtract appropriate mean from each column index

mean _x = numpy.ones ((int (N),3))

mean_x = mean_x|[:,0]*mean lat, mean x[:,l1]*mean lon, mean x|[:,2]%mean_tempK

mean_X_array = X—mean_Xx

Calculate the covariance

Cx = mean_x_array.cov ()

Calculate eigenvalues and eigenvectors

eig vals, eig vecs = numpy.linalg.eig(Cx)
print (’The_covariance_matrix_is:_\n’+str (Cx))
print (’The_eigenvalues_are:_\n’+str(eig vals))
print (’The_eigenvectors_are:_\n’+str(eig vecs))

]

Separate Eigenvectors

eigvecl = eig vecs|[:,0]
eigvec2 = eig vecs|[:,1]
eigvec3 = eig vecs|[:,2]

Line coordinates to represent variances for the three most variable directions

eigVal 1 Line = ([0,(eig_vals[0]*eigvecl[0])],[0,(eig_ vals|[O]*xeigvecl [1])], [0,(eig_vals[0]x
eigvecl [2])])

eigVal 2 Line = ([0,(eig_vals|[l]xeigvec2[0])],[0,(eig_ vals|[l]xeigvec2[1])], [0,(eig_vals[1l]x*
eigvec2[2])])

eigVal 3 Line = ([0,(eig_vals[2]xeigvec3 [0])],[0,(eig vals|[2]*xeigvec3 [1])], [0,(eig_vals[2]x*
eigvec3 [2])])

227

Add the removed mean to the line with the highest variance
eigVal 1 Line no mean = ([0+mean lat,(eig vals|[0]xeigvecl [0])+mean lat],[0+mean lon,(
eig vals|[0]xeigvecl[1])4mean lon],

[0+mean tempK, (eig vals[0]*eigvecl [2])+mean tempK])

Reverse direction of twenty twentyfour Line to ensure that all lines are in the same
quadrant
eigVal twenty twentyfour reversed = ([0,(eigVal 1 Line[0]|[1]*—1)],[0,(eigVal 1 Line
[1][1]*=1)],
[0,(eigVal 1 Line[2][1]*—1)])

Save the reversed line with the greatest variance, will be plotted at the end of this
script

eigVal twenty twentyfour Line = eigVal_ twenty_ twentyfour reversed

Calculate the magnitude of each vector with the mean removed

sqrt _eigVal zero four Line = sqrt((eigVal zero four Line[0][1]*%2)+(eigVal zero four Line
[1][1]%=2))

sqrt _eigVal four eight Line = sqrt ((eigVal four eight Line[0][1]*%2)+(eigVal four eight Line
[11[1]*%2))

sqrt _eigVal eight twelve Line = sqrt ((eigVal eight twelve Line[0][1]%%2)+(
eigVal eight twelve Line[1][1]x%2))

sqrt _eigVal twelve sixteen Line = sqrt ((eigVal twelve sixteen Line[0][1]*%2)-+(
eigVal twelve sixteen Line[1][1]*%2))

sqrt_eigVal sixteen twenty Line = sqrt((eigVal sixteen twenty Line[0][1]*%2)+(
eigVal sixteen twenty Line[1][1]x%2))

sqrt_eigVal twenty twentyfour Line = sqrt ((eigVal twenty twentyfour Line[0][1]*%2)+

(eigVal twenty twentyfour Line[1][1]%%2))

Create normalized vectors with the mean removed from the latitude and longitude
norm_eigVal Line zero four = ([0, (eigVal zero four Line[0][1]/sqrt_ eigVal zero four Line)],
[0, (eigVal zero four Line[1l][1]/sqrt eigVal zero four Line)])
norm_eigVal Line four eight = ([0, (eigVal four eight Line[0][1]/sqrt eigVal four eight Line
p
[0,(eigVal four eight Line[1]|[1]/sqrt eigVal four eight Line)
1)
norm_eigVal Line eight twelve = ([0, (eigVal eight twelve Line[0][1]/
sqrt_eigVal eight twelve Line)]|,
[0, (eigVal eight twelve Line[1][1]/
sqrt_eigVal eight twelve Line)])
norm _eigVal Line twelve sixteen = ([0, (eigVal twelve sixteen Line[0][1]/
sqrt _eigVal twelve sixteen Line)],
[0, (eigVal twelve sixteen Line[1][1]/
sqrt _eigVal twelve_ sixteen_ Line)])
norm_eigVal Line sixteen twenty = ([0, (eigVal sixteen twenty Line[O0][1]/
sqrt _eigVal_sixteen_twenty Line)],
[0, (eigVal sixteen twenty Line[1][1]/
sqrt_eigVal sixteen twenty Line)])

228

norm_eigVal Line twenty twentyfour = ([0, (eigVal twenty twentyfour Line[O0][1]/
sqrt_eigVal twenty twentyfour Line)],

[0, (eigVal twenty twentyfour Line[1][1]/

sqrt _eigVal twenty twentyfour Line)])

Create 2D plot of PCA lines with highest variances for each time interval
fig = plt.figure()

0000—-0400

plt.plot (norm eigVal Line zero four[1], norm_ eigVal Line zero four[0],

))

c="r linestyle=":’, marker="x’, markersize=5, linewidth=2)
0400-0800
plt.plot (norm_eigVal Line four eight[1], norm_eigVal Line four eight[0],

>, markersize=3, linewidth=2)

c="k’, marker=’s
0800—1200

plt . plot (norm_eigVal_ Line eight_ twelve[l], norm_eigVal_ Line_eight twelve[0],

c="k’, linestyle=’:", marker="+’, markersize=5, linewidth=2)

1200—-1600

plt.plot (norm eigVal Line twelve sixteen|[l], norm eigVal Line twelve sixteen[0],
c="r’, linestyle="—.", marker="d’, markersize=5, linewidth=2)

1600—2000

plt.plot (norm eigVal Line sixteen twenty[l], norm eigVal Line sixteen twenty|[0],
c="b’, linestyle="—", marker="«’, markersize=5, linewidth=2)

2000—2400
plt.plot (norm eigVal Line twenty twentyfour[l], norm eigVal Line twenty twentyfour[O0],
c¢="b’, marker="v’, markersize=5, linewidth=2)

Create PCA Plot

plt.plot ([0, O], [0, 1], c¢='k’, linewidth=0.4, zorder=1)
plt.plot([—1, O], [0, O], c='k’, linewidth=0.4, zorder=1)
plt.ylim ([0 ,1])

plt.xlim ([—1,0])

ax = plt.gca()

ax.set xticks ([—1,0])

ax.set xticklabels (["West’, ’East’], fontsize=14)

ax.set yticks ([0,1])

ax.set yticklabels ([’South’, 'North’], fontsize=14)

plt.legend ([70000—0400’, ’0400—0800’, ’'0800—1200’, ’1200—1600’, ’1600—2000’, ’2000—2400’],
fontsize=14)

plt .show ()

A.3 Guelph Campaign

A.3.1 Identify TANAB2 Ascending and Descending Times

import sys
import numpy
import datetime

Current as of October 16, 2019
Use this script to create a text file of known TANAB2 starting altitides with the

=

229

corresponding geographic location and time stamps. This data will be used to identify the

base altitude for images and pixels

From another analysis (via linear fit to the hypsometric equation)

define 1st order polyfit coefficients to convert pressure to altitude alt=axpt+b
a=-—8.51514286e+400

b=8.62680905e+03

.
#

Open file with indices indicating start/end of profiles for July 28, 2018 Launch (This
file was manually
concatenated/compiled together)
indices 28 07 2018 = numpy.loadtxt(’/export/home/users/username/Documents/DG_ Temp/’
>Guelph 2018/ TriSonica/Unaveraged /Cleaned Data/18—07—28—
Indices.txt)

Separate Columns

profile Start 28 07 2018 = indices 28 07 2018(:,0]
profile_ End 28 07 2018 = indices 28 07_ 2018(:,1]
profile Ascending 28 07 2018 = indices 28 07_2018]:,2]

Initialize the starting indices from ground level
start 28 07 2018 = numpy.zeros (17)

For the total length of the start profile array
for i in range(0, numpy.size (profile Start 28 07 2018)):

if (profile Ascending 28 07 2018[i] = 1):
for j in range(0, numpy.size (start 28 07 2018)):
if start 28 07_2018[j] = 0:
start 28 07 2018[j] = profile Start 28 07 2018]i]
break

Import TriSonica Data for July 28, 2018 (This file was manually concatenated/compiled
together)
fileName 28 07 2018 = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/ TriSonica/
Unaveraged/’ \
’Cleaned Data/18—07—28—Data.csv’
data 28 07 2018 = numpy.genfromtxt (fileName 28 07 2018, skip header=5, invalid raise=False,
usecols=(0, 1, 2, 3, 4, 5, 13), missing values=’",
filling values=numpy.nan,
delimiter=",")

Separate Columns

year 28 07 2018 = data_28 07_2018[:,0]
month 28 07 2018 = data_28 07 2018[:,1]
day 28 07 2018 = data_ 28 07 2018]: 2]
hour_28 07_2018 = data_28_ 07_2018][:,3]
minute 28 07_2018 = data_28 07_2018]: ,4]
seconds_28 07 _2018 = data_28 07_2018[:,5]
P 28 07 2018 = data 28 07 2018[: ,6]

230

Get starting pressures from start of profile index

start P28 07 2018 = numpy.zeros (len(start 28 07 2018))
BaseAlt 28 07 2018 = numpy.zeros(len(start 28 07 2018))

year base 28 07 2018 = numpy.zeros(len (start 28 07 2018))
month base 28 07 2018 = numpy.zeros (len (start 28 07 2018))
day base 28 07 2018 = numpy.zeros(len(start 28 07 2018))
hour base 28 07 2018 = numpy.zeros (len(start 28 07 2018))
minute base 28 07 2018 = numpy.zeros (len(start 28 07 2018))
seconds base 28 07 2018 = numpy.zeros (len(start 28 07 2018))
index 28 07 2018 = numpy.zeros (len(start 28 07 2018))

Write indices data to new variables for the start and end of each profile as per the
imported indices file

for i in range(0,len(data_ 28 07 2018)):
for j in range(0, len(start 28 07 2018)):

if start_28_07_2018[j] = i:
start P28 07 2018[j] = P_28 07 _2018[i|
year base 28 07 2018[j] = year 28 07 2018[i]
month base 28 07 2018[j| = month 28 07 2018[1i]
day base 28 07 2018[j] = day 28 07 2018[i]
hour base 28 07 2018[j| = hour 28 07 2018][i]
minute base 28 07 2018[j] = minute 28 07 2018]1i]
seconds base 28 07 2018[j] = seconds 28 07 2018]i]
index 28 07 2018[j] = i

Calculate the base altitude in meters
for i in range(0, len(BaseAlt 28 07 2018)):
BaseAlt 28 07 2018[i] =(axstart P _28 07 _ 2018[i])+b

Get today’s date

today date = datetime.date.today().strftime ("%B %d_%Y")

Save Base Altitudes file for July 28, 2018 Launch
outputFileName 28 07 2018 = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/
TriSonica/Unaveraged/’ \
’Cleaned Data/BaseAltitudes 18 —07—28.txt’
outputFile 28 07 2018 = open(outputFileName 28 07 2018, ’w’)
outputFile 28 07 2018.write ("#_Base_Altitudes_for_start_of_each_profile_as_determined_by_
location\n")
outputFile 28 07 2018.write ("#By: _Ryan_Byerlay_\n")
outputFile 28 07 2018.write ("#Created_on_"+today date+"_\n")
outputFile 28 07 2018.write ("#0:Year_\t_#1:Month_\t_#2:Day_\t_#3:Hour_\t_#4:Minute_\t_"
"#5:Seconds_\t_#6:Base_Pressure_\t_#7:Base_Altitude_\t_#8:Index_
\n")
for i in range(0, len(BaseAlt 28 07 2018)):
outputFile 28 07_2018.write ("%i_\t %i \t_ %i_\t %i_\t_%i."
"Nt 01 L\t L N RE L\t %E L \n" % (year base 28 07 2018[i],
month_base 28 07_2018[i],
day base_28 07_2018[i],
hour base 28 07 2018[i],
minute base 28 07 2018][i],

231

seconds_base_28 07_2018][i],
start P28 07 2018][i],
BaseAlt 28 07 2018][i],
index 28 07 2018[i]))
outputFile 28 07 2018.close ()

F=

Open file with indices indicating start/end of profiles for August 13, 2018 Launch
indices 13 08 2018 = numpy.loadtxt(’/export/home/users/username/Documents/DG_ Temp/
Guelph 2018/TriSonica/Unaveraged/’ \
’Cleaned Data/18—08—13—Indices.txt ")

Separate Columns

profile Start_ 13 08 2018 = indices_13_08_ 2018[:,0]
profile_End_13_08_2018 = indices_13_08_2018[: ,1]
profile_ Ascending_13_08_2018 = indices_13_08_2018([:,2]

Initialize the starting indices from ground level
start 13 08 2018 = numpy.zeros(11)

For the total length of the start profile array
for i in range(0, numpy.size (profile Start 13 08 2018)):

if (profile Ascending 13 08 2018[i] = 1):
for j in range(0, numpy.size (start 13 08 2018)):
if start 13 08 2018[j] = 0:
start 13 08 2018[j] = profile Start 13 08 2018]i]|
break

print (start_13_08_2018)

Import Cleaned TriSonica Data from August 13, 2018
fileName 13 08 2018 = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/ TriSonica/
Unaveraged/’ \
’Cleaned Data/18—08—13 Data.csv’
data 13 08 2018 = numpy.genfromtxt (fileName 13 08 2018, skip header=5, invalid raise=False,
usecols=(0, 1, 2, 3, 4, 5, 13), missing values=’",
filling values=numpy.nan,

delimiter=",")

Separate Columns

year 13 08 2018 — data 13 08 2018]:,0]
month 13 08 2018 = data_13_08 2018 [:,1]
day 13_08_2018 — data_13_08_2018][: ,2]
hour_13_08 2018 = data_13_08_ 2018][:,3]
minute_13_08 2018 — data_13_08_2018[: 4]
seconds_13_08 2018 = data_13_ 08 2018[:,5]
P 13 08 2018 — data 13 08 2018[: ,6]

Get starting pressures from start of profile index
start P13 08 2018 = numpy.zeros (len(start 13 08 2018))

232

BaseAlt_13_08_2018 = numpy.zeros (len(start_13_08_2018))

year base 13 08 2018 = numpy.zeros(len (start 13 08 2018))
month base 13 08 2018 = numpy.zeros (len (start 13 08 2018))
day base 13 08 2018 = numpy.zeros (len(start 13 08 2018))
hour base 13 08 2018 = numpy.zeros(len (start 13 08 2018))
minute base 13 08 2018 = numpy.zeros (len(start 13 08 2018))
seconds base 13 08 2018 = numpy.zeros (len(start 13 08 2018))
index 13 08 2018 = numpy.zeros (len (start 13 08 2018))

Write indices data to new variables for the start and end of each profile as per the
imported indices file
for i in range(0,len(data_ 13 08 2018)):
for j in range(0, len(start 13 08 2018)):
if start 13 08 2018[j] = i:
start P13 08 2018[j| = P_13 08 2018]1i|
year base 13 08 2018[j] = year 13 08 2018[i]
month base 13 08 2018[j| = month 13 08 2018[1i]
day base 13 08 2018[j]| = day_ 13 08 2018]i]|
hour base 13 08 2018[j] = hour 13 08 2018[i]
minute base 13 08 2018[j]| = minute 13 08 2018]i]|
seconds base 13 08 2018[j| = seconds 13 08 2018[i]
index 13 08 2018[j]| = i

Calculate the base altitude in meters
for i in range(0, len(BaseAlt 13 08 2018)):
BaseAlt 13 08 2018[i]| =(axstart P 13 08 2018[i])-+b

Save Base Altitudes file for August 13, 2018 Launch
outputFileName 13 08 2018 = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/
TriSonica/Unaveraged/’ \
’Cleaned _Data/BaseAltitudes 18 —08—13.txt’
outputFile_13_08_2018 = open(outputFileName_13_08_2018, ’w’)
outputFile 13 _08_2018.write ("#_Base_Altitudes_for_start_of_each_profile_as_determined_by_the
TriSonica\n")
outputFile 13 08 2018.write ("#By:_Ryan_Byerlay_\n")
outputFile 13 08 2018.write ("#Created_on_"+today date+"_\n")
outputFile 13 08 2018.write ("#0:Year_\t_#1:Month_\t_#2:Day_\t_#3:Hour_\t_#4:Minute_\t"
"_#5:Seconds_\t_#6:Base_Pressure_\t_#7:Base_Altitude_\t_#8:Index
Sn")
for i in range(0, len(BaseAlt 13 08 2018)):
outputFile 13 08 2018.write ("%i .\t %1\t %i_\t %i_\t_ %i_\t %i."
"\t f NN\t R \n" % (year base 13 08 2018]i],
month base 13 08 2018][i],
day base 13 08 2018[i],
hour base 13 08 2018][i],
minute base 13 08 2018[i],
seconds_base_13_08_2018[i],
start_P_13_08_2018[i],
BaseAlt 13 08 2018[i],
index 13 08 2018[i]))
outputFile 13 08 2018.close ()

233

Calculate day of year in seconds and save Unaveraged concatenated Base Altitude values for
urban data set

Concatenate columns

year = numpy.concatenate ([year base 28 07 2018, year base 13 08 2018])

month = numpy.concatenate ([month base 28 07 2018, month base 13 08 2018])

day = numpy.concatenate ([day base 28 07 2018, day base 13 08 2018])

hour = numpy.concatenate ([hour base 28 07 2018, hour base 13 08 2018])

minute = numpy.concatenate ([minute base 28 07 2018, minute base 13 08 2018])

seconds numpy . concatenate ([seconds base 28 07 2018, seconds base 13 08 2018])

BaseAltitude = numpy.concatenate ([BaseAlt 28 07 2018, BaseAlt 13 08 2018])

index = numpy.concatenate ([index 28 07 2018, index 13_08 2018])

BasePressure = numpy.concatenate ([start P 28 07 2018, start P 13 08 2018])

L

Initialize variable for day of year in seconds

doy sec = numpy.zeros (len(day))

for i in range(0, len(day)):
For July 28, 2018
if day[i] = 28:
Day of year x Hours % Minutes % Seconds
doy sec[i] = (209 % 24 % 60 * 60) + (hour[i] * 60 * 60) + (minute[i]*60) + seconds|i

J

For August 13, 2018

elif day|i] = 13:
DOY * Hours x Minutes * Seconds
doy sec[i] = (225 % 24 % 60 % 60) + (hour[i] % 60 * 60) + (minute[i] % 60) + seconds
i
else:

print (’"More_Dates_need_to_be_included_above’)

Save Unaveraged concatenated variables and altitudes to file
outputFileName = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/’ \
>TriSonica/Unaveraged/ TANAB2 Ascending Indices.txt’

)

outputFile = open(outputFileName, ’'w’)

outputFile. write ("#_Data_collected _by_TriSonica_for_July/August_Guelph_Urban_Field _Campaign.
n
"_Includes_Altitude_calculation_\n")
outputFile. write ("#By: _Ryan_Byerlay_\n")
outputFile. write ("#Created _on_"+today date+"_\n")
outputFile. write ("#Recorded_Time_is_Local_Time_(EDT)_\n")
outputFile. write ("#0:Year_\t_#1:Month_\t_#2:Day_\t_#3:Hour_\t_#4:Minute_\t_#5:Seconds_"
"\t_#6:DOY_In_Minutes_\t_#7:Base_Pressure_\t_#8:Base_Altitude_\t_#9:Index_\
n")
for i in range(0, len(year)):
outputFile. write ("%i_\t %i \t %1\t %1 \t %1 "
"N\t %f Nt LT Nt LTE L\t BE L\t Si L \n" % (year[i], month[i]|, day[i], hour|i
|, minute[i],

234

seconds[i], doy sec|i],
BasePressure|[i],
BaseAltitude[i], index[i]))
outputFile. close ()

A.3.2 TriSonica Atmospheric Pressure to Altitude

import numpy
import datetime

Current as of October 18, 2019
Code to load in TriSonica data (from the two UofG TANAB2 launches),

concatenate data for the two days and calculate the 1 second averaged data

%

S

£ July 28/2018
fileName 28 07 2018 = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/’ \
>TriSonica/Unaveraged/Cleaned Data/18—07—28—Data.csv’

data 28 07 2018 = numpy.genfromtxt (fileName 28 07 2018, skip header=5, invalid raise=False,
usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’",

filling values=numpy.nan, delimiter=’,")

Separate columns

year 28 07 2018 — data 28 07 2018]:,0]
month 28 07 2018 = data_28 07 _2018[:,1]
day 28 07 2018 — data 28 07 2018[: 2]
hour 28 07 2018 = data_28 07_2018][:,3]
minute_28 07 2018 = data_28 07 2018[: 4]
seconds_28 07 _2018 = data_28 07_2018[:,5]
temp_28 07_2018 = data_28_ 07_2018[: ,6]

P 28 07 2018 — data_28 07 2018[: 7]

August 13/2018
fileName 13 08 2018 = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/’ \
>TriSonica/Unaveraged/Cleaned Data/18—08—13 Data.csv’

data 13 08 2018 = numpy.genfromtxt (fileName 13 08 2018, skip header=5, invalid raise=False,
usecols=(0, 1, 2, 3, 4, 5, 11, 13), missing values=’’,

filling values=numpy.nan, delimiter=’,")

Separate columns

year 13 08 2018 = data 13 08 2018]:,0]
month 13 08 2018 — data 13 08_2018[: 1]
day 13_08_2018 — data_13_08_2018[: ,2]
hour_13_08 2018 = data_13_08_ 2018][:,3]
minute_13_08 2018 = data_13_08_2018[: 4]
seconds_13_08 2018 = data_13_ 08 2018[:,5]
temp_13_08_2018 = data_13_08_2018[: ,6]

P 13 08 2018 — data_13_ 08 2018[:,7]

Concatenate columns for all days

235

year = numpy.concatenate ([year_ 28 07_2018, year_ 13_08_2018])

month = numpy.concatenate ([month 28 07 2018, month 13 08 2018])

day = numpy.concatenate ([day 28 07 2018, day 13 08 2018])

hour = numpy.concatenate ([hour 28 07 2018, hour 13 08 2018])

minute = numpy.concatenate ([minute 28 07 2018, minute 13 08 2018])
seconds = numpy.concatenate ([seconds 28 07 2018, seconds 13 08 2018])
temp = numpy.concatenate ([temp 28 07 2018, temp 13 08 2018])

P = numpy.concatenate ([P_28 07 2018, P_13 08 2018])

/
bial

Calculate Altitudes from pressure

From another analysis (via first order fit of hypsometric equation) define 1st order
polyfit

coefficients to convert pressure to altitude alt=axp+b

a=-—8.51514286e+00

b=8.62680905e+03

Initialize altitude array

altitude = numpy.zeros(len(year))

Calculate Altitude
for i in range(0, len(altitude)):
altitude [1] =(axP[i])+b

Calculate the number of seconds passed since the beginning of 2018 based on day of year
doy sec = numpy.zeros (len(year))
for i in range(0, len(year)):
For July 28, 2018
if day[i] = 28:
doy sec[i] = (209%24%60%60)+(hour[i]|*60*60)+(minute[i]*60)+seconds|i]

For August 13, 2018
elif day[i] = 13:
doy sec|[i] = (225%24%60%60)+(hour[i|*60%60)+(minute|[i]*60)+seconds|i]

else:
print ("More_dates_need_to_be_included_above’)

Save Unaveraged concatenated variables and altitude to file
today date = datetime.date.today().strftime ("%B _%d %Y")

outputFileName = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/ TriSonica’ \
> /Unaveraged/TriSonica Unaveraged 2018 Urban Campaign Altitudes. txt’

)

outputFile = open(outputFileName, ’'w’)
outputFile.write ("#_Data_collected _by_TriSonica_for _UofG_Campus_Field_Campaigns._Includes_
Altitude_calculation_\n")
outputFile. write ("#By: _Ryan_Byerlay_\n")
outputFile. write ("#Created _on_"+today date+"_\n")
outputFile. write ("#Recorded_Time_is_Local_Time_ (EDT)_\n")
(

outputFile. write ("#0:Year_\t_#1:Month_\t_#2:Day_\t_#3:Hour_\t_#4:Minute_\t_#b5:Seconds_|[sec]|._

236

\t_#6DOY_In_Seconds_|[sec]|"
"_\to_#T7:Pressure_[hPa] _\t_#8:Altitude_[m]\ t_#9:_Temperature_|[degC]\n")
for i in range(0, len(year)):
Check for Pressure values of 0 and skip
if P[i] = 0:

continue

else:
outputFile. write ("%i_\t %1.\t %1o\t %1\t %1\t %L L\t %f L\t %"
"N\t %E Nt % \n" % (year[i], month[i], day[i], hour[i], minute[i],
seconds[i]|, doy_ sec|i],
Pli], altitude[i], temp[i]))

outputFile. close ()

4

Complete 1 second averaging

Second Averaging (10 Hz Frequency)
AverageSample = 10

Total number of samples
Ntotal = numpy.size (altitude)
NSample = int (Ntotal /AverageSample)

Calculate 1 second averaged altitudes and year, month, day, hour, minute, second, pressure
doy second, and

temperature averages for each sample

yearavg = numpy. zeros ((NSample,1))

monthavg = numpy. zeros ((NSample,1))

houravg = numpy.zeros ((NSample,1))

dayavg = numpy.zeros ((NSample,1))

minuteavg = numpy. zeros ((NSample,1))
secondavg = numpy.zeros ((NSample,1))
pressureavg = numpy.zeros ((NSample,1))

altitudeavg = numpy.zeros ((NSample,1))
doy sec avg = numpy.zeros ((NSample,1))
temp avg = numpy.zeros ((NSample,1))

for i in range(0, NSample):

Calculate Averages

yearavg|[i| = numpy.mean(year|i*AverageSample:(i+1)xAverageSample])
monthavg|[i] = numpy.mean(month|[i*AverageSample:(i+1)xAverageSample])
houravg|[i| = numpy.mean(hour|i*AverageSample:(i+1)xAverageSample])
dayavg|[i] = numpy.mean(day|i*AverageSample:(i+1)xAverageSample])
minuteavg|i]| = numpy.mean(minute[i*xAverageSample:(i+1)xAverageSample])
secondavg|[i] = numpy.mean(seconds|ixAverageSample:(i+1)xAverageSample])
pressureavg|i]| = numpy.mean(P[i*AverageSample:(i+1)xAverageSample])
altitudeavg|[i] = numpy.mean(altitude [i*AverageSample:(i+1)xAverageSample])
doy sec avg|[i] = numpy.mean(doy sec|ixAverageSample:(i+1)*xAverageSample])
temp avg|[i]| = numpy.mean(temp|ixAverageSample:(i+1)*xAverageSample])

237

t The following is to the fix the issue where in the averaged second column, the 59th

averaged
second does not equal 59, instead it is a lower value as I think this is whats
happening: 58, 59, 0 are being averaged so the value will be < 59
Note: As of May 2/2019 This problem occurs when the U—-99.99 etc are manually deleted (from
raw TriSonica file),
within 1 second of data, 10 data points do not always exist
Put condition in to omit Nan values in the base altitude section too
When saving, put in a check to see if the values are Nan, if index has Nan values, then
skip
for i in range(0, len(secondavg)):
print (secondavg|[i])
if numpy.isnan (secondavg|[i]) == True:
continue
else:
if int(secondavg|i]) = 58 and int(secondavg|[i+1]) != 59:

yearavg|[i-+1] = numpy.nan

monthavg[i+1] = numpy.nan
houravg|[i-+1] = numpy.nan
dayavg|[i+1] = numpy.nan
minuteavg[i+1] = numpy.nan
secondavg|[i+1] = numpy.nan
pressureavg|i+1] = numpy.nan
altitudeavg|[i+1] = numpy.nan
doy sec avg|i+1] = numpy.nan
temp avg[i+1] = numpy.nan

Call in TriSonica Ascending TANAB2 launch base altitude data
fileName BaseAlt = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/ TriSonica/
Unaveraged/’ \
"TANAB2 Ascending Indices. txt’

data BaseAlt = numpy. genfromtxt (fileName BaseAlt, skip header=5)

Separate columns

day BaseAlt = data BaseAlt|[:,2]

hour BaseAlt = data BaseAlt[:,3]

minute BaseAlt = data BaseAlt|[:,4]

seconds BaseAlt = data BaseAlt[:,5]

doy sec BaseAlt = data BaseAlt[:,6]
BasePressure trisonica = data_ BaseAlt[:,7]
BaseAlt trisonica = data BaseAlt[:,8]

Initialize variable that stores the difference between day of year in seconds for the
TriSonica TANAB2 ascending
indices and for the second averaged file

7

delta doy = numpy.zeros ((len(data BaseAlt) ,1))

Initialize variables to calculate altitude above the ground
BaseAltitude = numpy.zeros ((NSample,1))

BasePressure = numpy.zeros ((NSample,1))

Location = numpy.empty (NSample, dtype=str)

238

index Base = numpy.zeros ((NSample,1))

Match day of year in seconds indices from TANAB2 ascending indices file & second averaged
data
loop through averaged dy of year in seconds indices
for i in range(0, len(yearavg)):
Skip Nan values
if numpy.isnan(yearavg|i]|) = True:
continue
else:
loop through Base Altitude indices
for j in range(0, len(day BaseAlt)):
Calculate difference between times

delta doy|[j] = abs(doy sec BaseAlt[j]—doy sec_avg|[i])

When at the last value of the TriSonica TANAB2 Ascending Indices file ,
find index of minimum value and write corresponding Altitude to file
Also record index of the Base Altitude file
if j = (len(BaseAlt trisonica)—1):
BaseAltitude [i] = BaseAlt trisonica [numpy.argmin(delta doy)]|
BasePressure|[i| = BasePressure trisonica|[numpy.argmin(delta doy)]
index Base|1i]

numpy . argmin (delta_doy|[j])

Initialize variables for deltaPressure and deltaAltitude
deltaPressure = numpy.zeros ((NSample,1))
deltaAltitude = numpy.zeros ((NSample,1))

Calculate deltaPressure (change in pressure with respect to the start of the TANAB2 launch
) and deltaAltitude

(change in altitude) with respect to the ground

for i in range(0, NSample):
skip Nan values

if numpy.isnan (pressureavg|[i]) = True:
continue
else:
deltaPressure[i]| = abs(BasePressure|i|—pressureavg|i])

deltaAltitude [i] = abs(BaseAltitude|i]—altitudeavg][i])

Save Averaged data to file
outputFileName avg = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/TriSonica/’
\
"TriSonica_Averaged Guelph Urban Altitudes.txt’

outputFile avg = open(outputFileName avg, ’'w’)

outputFile avg.write ("#.Second_Averaged_Data_collected _by_TriSonica_for_2018_Guelph_Urban_
field _campaign."

"_Includes_Altitude_calculation_\n")

outputFile avg.write("#By:_Ryan_Byerlay_\n")

outputFile avg.write("#Created_on_"+today date+"_\n")

outputFile avg.write ("#Recorded_Time_is_Local_Time, EDT_\n")

outputFile avg.write ("#0:AvgYear_\t_#1:AvgMonth_\t_#?2:AvgDay_\t_#3:AvgHour_\t_#4:AvgMinute_\
t_#5:AvgSeconds_\t"

239

"_#6:Day_of_Year_in_Seconds_\t_#7:AvgPressure_\t_#8:BasePressure_\t_#9:
DeltaPressure_\t"
"_#10: AvgAltitude_\t_#11:BaseAltitude_\t_#12:DeltaAltitude_\t_#13:
Temperature (degC)_\t"
"_#14:Index_in_BaseAlt_File_\n")
for i in range(0, NSample):
If index has Nan value, skip and do not write

if numpy.isnan(yearavg|[i]|) = True:
continue
else:
outputFile avg.write ("%i \t %1\t %1\t %1\t %10\t %1 L\t %E U\t Lf L\t L%E L\t L%E U\ ¢ %f
AN I
"\t NNt il \n" % (yearavg|[i]|, monthavg[i], dayavg|[i],
houravg|[i], minuteavg[i],
secondavg|i]|, doy sec avgl|i],
pressureavg|[i], BasePressureli],
deltaPressure[i], altitudeavg]|i],

BaseAltitude[i],
deltaAltitude[i], temp avg[i],
index Base[i]))
outputFile avg.close ()

A.3.3 Spatial Coordinate Grid Overlaid on University of Guelph

Campus

import numpy

import math

from math import radians
from math import degrees
from math import asin
from math import tan
from math import atan2
from math import sin
from math import cos
from math import acos
from math import sqrt
from math import atan

def SiteCoordinatesCalc(res x, y iterator, TLeft lat rads, R, TLeft lon rads, GPS_ matrix):
for a in range(0, res_ x):
for b in range(0, res_ y

)
if a=— 0 and b = 0:

continue
elif a — 0 and b != 0:
d km = y _iterator[b—1]
Yaw = 180
Yaw rads = math.radians (Yaw)

lat2 = math.asin (math.sin (TLeft lat rads) % math.cos(d km / R) + math.cos(
TLeft lat rads)

240

* math.sin(d km / R) * math.cos(Yaw_rads))
lon2 = TLeft lon_ rads + math.atan2 (math.sin(Yaw_ rads) * math.sin(d km / R) =x
math. cos (TLeft lat rads),
math.cos(d_km / R) — math.sin(
TLeft lat rads) % math.sin(lat2))

Convert back to decimal degrees
lat2 = math.degrees(lat2)
lon2 = math.degrees(lon2)

Save to GPS Matrix
GPS_matrix[a][b][0] = lat2
GPS_matrix[a][b][1] = lon2

continue
elif b= 0 and a != 0:
d km = x_iterator[a—1]
Yaw = 90
Yaw rads = math.radians (Yaw)

lat2 = math.asin (math.sin (TLeft lat rads) % math.cos(d km / R) + math.cos(
TLeft lat rads) =
math.sin(d km / R) % math.cos(Yaw rads))
lon2 = TLeft lon rads + math.atan2 (math.sin(Yaw rads) * math.sin(d km / R) =*
math.cos (TLeft lat rads),
math.cos(d _ km / R) — math.sin (
TLeft lat rads) * math.sin(lat2))

Convert back to decimal degrees
lat2 = math.degrees(lat2)
lon2 = math.degrees(lon2)

Save to GPS Matrix
GPS_matrix[a]|[b][0] = lat2
GPS_matrix[a][b][1] = lon2

continue
else:
d km = y iterator|[b]
Yaw = 180
Yaw rads = math.radians (Yaw)

lat2 = math. asin (math.sin (math.radians (GPS_matrix[a|[0][0]))*math.cos(d_km /
R) +
math. cos (math. radians (GPS_matrix[a][0][0])) *math. sin (d_km/R
)*math. cos (Yaw_rads))

lon2 = math.radians (GPS_matrix[a][0][1]) + \
math. atan2 (math.sin (Yaw rads) * math.sin (d_km/R)*math.cos (math.
radians (GPS_matrix[a][0][0])),
math. cos (d_km/R)—math. sin (math.radians (GPS_matrix|a
J]{0][0]))*math.sin (lat2))

241

Convert back to decimal degrees
lat2 = math.degrees(lat2)
lon2 = math.degrees(lon2)

Save to GPS Matrix
GPS_matrix[a][b][0]
GPS_matrix[a][b][1]

lat2
lon2

return GPS_matrix

Get GPS coordinates for an approximately 15 km by 13 km rectangle around the University of
Guelph TANAB2 launch

with a spatial resolution of 500m

Identify the Top Left latitude and longitude
Use the top left as a reference point

TLeft lat = 43.594589

TLeft _lon = —80.331025

Convert degrees to rads
TLeft lat rads = radians(TLeft lat)
TLeft lon rads = radians(TLeft lon)

Top right latitude/longitude
TRight lat = TLeft lat
TRight lon —80.145714

Bottom right latitude/longitude
Starting latitude/longitude
BRight lat = 43.472844

BRight lon = —80.145714

Bottom left latitude/longitude
BLeft _lat = BRight_lat
BLeft lon = —80.331025

Equatorial radius of earth in km as per: https://nssdc.gsfc.nasa.gov/planetary/factsheet/
earthfact .html
R = 6378.1

Number of bins per resolution
500m resolution

res500 x = 30

res500 y = 28

100m resolution
res100_x = 150
resl00_y = 140

lkm resolution
resl000_x = 15

242

resl000_y = 14

For Code below use the following resolution
res_x = res500_x

res_y = res500 _y

x iterator = numpy.zeros ((res x,1))

y _iterator = numpy.zeros ((res_y,1))

Initialize array for latitude and longitude calculation
GPS_matrix = numpy. zeros ((res_x, res_y, 2))

Assign Known GPS latitude/longitude
GPS_matrix [0][0][0] = TLeft lat
GPS_matrix[0][0][1] = TLeft lon

The number of GPS coordinates to save to file

len _save = res_xxres_y
save GPS_ matrix = numpy.zeros ((len save,2))
save GPS_ matrix [:] = numpy.nan

Set up x_iterator vector for left to right GPS coordinates
if res x == res100_ x:
d iterator = 0.1
elif res x = res500_ x:
d_iterator = 0.5
elif res x — res1000_ x:
d_ iterator =1

if 1 = 0
x _iterator[i] = d_iterator
else
x_iterator[i| = d_iterator=(i+1)

Set up y iterator vector for top to bottom GPS coordinates
for i in range(0, res_y):

if i =— 0:
y _iterator|[i] = d_iterator
else:
y _iterator[i] = d_iteratorx(i+1)

Calculate new latitude and longitude coordinates 500m apart from each other and save to
text file
SiteCoordinatesCalc (res _x, y iterator, TLeft lat rads, R, TLeft lon rads, GPS_ matrix)

in range(0,res x):
j in range(0,res_y):
for k in range(0, len save):

if numpy.isnan (save GPS matrix[k]|[0]) = True:
save GPS_ matrix[k][0] = GPS_matrix[i][j][0]

243

save GPS_ matrix |[k][1] = GPS_matrix[i][]j][1]
break

Save Data to file , name file based on spatial resolution

if res x == resl100_ x:
outputFileName = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/’ \
"MODIS/ Emissivity /100m _Resolution GPS Data.csv’
elif res x = res500_ x:
outputFileName = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/’ \
"MODIS/ Emissivity /500m_Resolution GPS_Data.csv’
elif res x == resl000_x:
outputFileName = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/’ \

"MODIS/ Emissivity /1000m_Resolution GPS_ Data.csv’

outputFile = open(outputFileName, ’'w’)
numpy . savetxt (outputFileName, save GPS matrix, delimiter=’,’, fmt="%f’, header=’#0:Lat,#1:

Lon’)
A.3.4 Direct Georeferencing and Temperature Calculation

Extract temperatures (degC and K) from individual pixels within each image
Extract longitude and latitude for each image
Created By: Ryan Byerlay On: April 26, 2018, Current as of: October 18, 2019

Successfully works on ImageMagick (IM) 7.0.7 and ExifTool 10.94 on a linux OS (both Ubuntu
16.04 and Ubuntu 18.04)

with Python 3.5

NOTE: Syntax for IM before version 7 is different

NOTE: The Raw Thermal Image Type must be TIFF, to check put image in same folder as IMT7,
ExifTool and this script

and type the following into the command line: "ExifTool filename.jpg"

NOTE: May need to install Ubuntu/Linux developer tools for TIFF, PNG, JPEG etc as IM 7 may

mnot be able to process images

NOTE: Updated versions of ExifTool may have more functionality for FLIR Images, may result
in improved

quantitative image analysis

Check here for the latest on ExifTool: https://www.sno.phy.queensu.ca/ phil/exiftool/

import os

import subprocess
import numpy
import time

import math
from math import tan

from math import sin
from math import cos
from math import asin
from math import sqrt

244

from
from
from
from

from

math import pi
math import fabs
math import atan2
math import radians
math import atan

import datetime

import simplekml

from numba import jit
import pytemperature

Data derived from the Advanced Land Observing Satellite (ALOS) Digital Surface Model
(DSM) Version 2.1 file with a spatial resolution of 30 m
def LandSlopeEquations (BaseAltitude, heading):

Convert the heading from a float to an int

heading int = int(heading)

Degree of poly fit. Use degree of 3 for Earth surface elevation as

#

per: https://doi.org/10.1080/13658810310001596058

poly deg = 3
For the TANAB2 launch location at Reek Walk, University of Guelph, Guelph, Ontario,

Canada

For the North direction
Between N (0 deg) and NNE (22.5 deg) or NNW (337.5 deg) and N (360 deg)
if heading int >= 0 and heading int < 22.5 or heading int > 337.5 and heading int <=360:

Elevation data for 10 km due North of the Reek Walk launch location
Guelph N _filename = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/’ \
’Elevation Data/Cardinal Direction Profiles /ALOS DSM N.csv’

Load data from file
Guelph N data = numpy.genfromtxt (Guelph N _filename, delimiter=’,")

Distance away from the TANAB2 launch location in meters
distance_ Guelph N = Guelph_N_data[:, 0]

Elevation above sea level in meters for each data point away from the TANAB2

launch location
elevation Guelph N = Guelph N _ data[:, 3]

Returns coefficients for the polyfit equation between the distance away from the
TANAB2 launch location and the corresponding elevation above sea level in meters

Land Poly Coeff = numpy. polyfit (distance Guelph N, elevation Guelph N, poly deg)

Evaluate the polynomial at specific values as given by the distance away from the
TANAB2 Launch location in the North direction

Elevation above sea level

ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance Guelph N)

Detrend the resulting land surface elevations calculated from the derived
polynomial

with respect to the elevation data derived from the ALOS DSM file

Elevation above ground

ground_elev_AGL = elevation_Guelph_ N — ground_elev_ASL_fitted

245

return ground_elev_ASL_fitted, ground_elev_AGL

For the North East direction
Between NNE (22.5 deg) and ENE (67.5 deg)
elif heading int > 22.5 and heading int < 67.5:
Elevation data for 10 km due North East of the Reek Walk launch location
Guelph NE filename = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/’ \
’Elevation Data/Cardinal Direction Profiles /ALOS DSM NE. csv’

Load data from file
Guelph NE data = numpy.genfromtxt (Guelph NE filename, delimiter=’,")

Distance away from the TANAB2 launch location in meters
distance_Guelph NE = Guelph_NE_data[:, 0]

Elevation above sea level in meters for each data point away from the TANAB2
launch location in meters
elevation _Guelph_NE = Guelph_NE_data[:, 3]

Returns coefficients for the polyfit equation between the distance away from the
TANAB2

launch location and the corresponding surface elevation above sea level in meters

Land Poly Coeff = numpy. polyfit (distance Guelph NE, elevation Guelph NE, poly deg)

Evaluate the polynomial at specific values as given by the distance away from the
TANAB2
Launch location in the North East direction

ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance Guelph NE)

Detrend the resulting land surface elevations from the derived polynomial with
respect to the

elevation data derived from the ALOS DSM file

ground_elev_AGL = elevation_Guelph NE — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the East direction
Between ENE (67.5 deg) and ESE (112.5 deg)
elif heading int > 67.5 and heading int < 112.5:
Elevation data for 10 km due East of the Reek Walk launch location
Guelph E filename = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/’ \
’Elevation Data/Cardinal Direction Profiles /ALOS DSM E.csv’

Load data from file
Guelph E data = numpy.genfromtxt (Guelph E filename, delimiter=’,")

Distance away from the TANAB2 launch location in meters
distance_Guelph_E = Guelph_E_data[:, 0]

Elevation above sea level in meters for each data point away from the TANAB2

launch location

246

elevation _Guelph E = Guelph_E_data[:, 3]

Returns coefficients for the polyfit equation between the distance away from the
TANAB2 launch
location and the corresponding elevation above sea level in meters

Land Poly Coeff = numpy. polyfit (distance Guelph E, elevation Guelph E, poly deg)

Evaluate the polynomial at specific values as given by the distance away from the

TANAB2
Launch location in the East direction

ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance Guelph E)

Detrend the resulting land surface elevations calculated from the derived
polynomial with respect to the

elevation data derived from the ALOS DSM file

ground_elev_AGL = elevation_Guelph_E — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the South East direction
Between ESE (112.5 deg) and SSE (157.5 deg)
elif heading int > 112.5 and heading int < 157.5:
Elevation data for 10 km due South East of the Reek Walk launch location

Guelph SE filename = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/’ \

’Elevation Data/Cardinal Direction Profiles /ALOS DSM SE. csv’

Load data from file
Guelph SE data = numpy.genfromtxt (Guelph SE filename, delimiter=’,")

Distance away from TANAB2 launch location in meters
distance_Guelph_SE = Guelph_SE_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2 launch
location
elevation_Guelph_SE = Guelph_SE_data[:, 3]

Returns coefficients for the polyfit equation between the distance away from the
TANAB2 launch

location and the corresponding elevation above sea level in meters

Land Poly Coeff = numpy. polyfit (distance Guelph SE, elevation Guelph SE, poly deg)

Evaluate the polynomial at specific values as given by the distance away from the

TANAB2
Launch location in the South East direction

ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance Guelph SE)

Detrend the resulting land surface elevations calculated from the derived
polynomial with respect to the

elevation data derived from the ALOS DSM file

ground_elev_AGL = elevation_Guelph_SE — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

247

For the South direction
Between SSE (157.5 deg) and SSW (202.5 deg)
elif heading int > 157.5 and heading int < 202.5:
Elevation data for 10 km due South of the Reek Walk launch location
Guelph S filename = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/’ \
’Elevation Data/Cardinal Direction Profiles /ALOS DSM S.csv’

Load data from file
Guelph S data = numpy. genfromtxt(Guelph S filename, delimiter=",")

Distance away from TANAB2 launch location in meters
distance _Guelph_S = Guelph_S_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2 launch

location
elevation_Guelph_S = Guelph_S_data[:, 3]

Returns coefficients for the polyfit equation between the distance away from the
TANAB2

launch location and the corresponding elevation above sea level in meters
Land Poly Coeff = numpy. polyfit (distance Guelph S, elevation Guelph S, poly deg)

Evaluate the polynomial at specific values as given by the distance away from the
TANAB2

Launch location in the South direction

ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance Guelph S)

Detrend the resulting land surface elevations calculated from the derived
polynomial with respect

to the elevation data derived from the ALOS DSM file

ground_elev_AGL = elevation_ Guelph_S — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the South West direction
Between SSW (202.5 deg) and WSW (247.5 deg)
elif heading int > 202.5 and heading int < 247.5:
Elevation data for 10 km due South West of the Reek Walk launch location
Guelph SW filename = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/’ \
’Elevation Data/Cardinal Direction Profiles /ALOS DSM SW. csv’

Load data from file
Guelph SW_data = numpy.genfromtxt (Guelph SW filename, delimiter=’,")

Distance away from TANAB2 launch location in meters
distance_ Guelph_SW = Guelph_SW_data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2 launch

location
elevation_Guelph_SW = Guelph_SW_data[:, 3]

248

Returns coefficients for the polyfit equation between the distance away from the

TANAB2

launch location and the corresponding elevation above sea level in meters

Land Poly Coeff = numpy. polyfit (distance Guelph SW, elevation Guelph SW, poly deg)

Evaluate the polynomial at specific values as given by the distance away from the

TANAB2
Launch location in the South West direction
ground elev ASL fitted = numpy. polyval(Land Poly Coeff, distance Guelph SW)

Detrend the resulting land surface elevations calculated from the derived
polynomial with respect

to the elevation data derived from the ALOS DSM file

ground_elev_AGL = elevation_Guelph_ SW — ground_elev_ASL _fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the West direction
Between WSW (247.5 deg) and WNW (292.5 deg)
elif heading int > 247.5 and heading int < 292.5:
Elevation data for 10 km due West of the Reek Walk launch location

Guelph W _filename = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/’ \

’Elevation Data/Cardinal Direction Profiles /ALOS DSM W.csv’

Load data from file
Guelph W _data = numpy. genfromtxt (Guelph W _filename, delimiter=’,")

Distance from TANAB2 launch location in meters
distance_Guelph W = Guelph W _data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2 launch

location
elevation_Guelph_ W = Guelph_ W _data[:, 3]

Returns coefficients for the polyfit equation between the distance away from the

TANAB2
launch location and the corresponding elevation above sea level in meters
Land Poly Coeff = numpy. polyfit (distance Guelph W, elevation Guelph W, poly deg)

Evaluate the polynomial at specific values as given by the distance away from the

TANAB2
Launch location in the West direction

ground elev ASL fitted = numpy. polyval(Land Poly Coeff, distance Guelph W)

Detrend the resulting land surface elevations calculated from the derived
polynomial with respect

to the elevation data derived from the ALOS DSM file

ground_elev_AGL = elevation_Guelph_ W — ground_elev_ASL_fitted

return ground_elev_ASL_fitted, ground_elev_AGL

For the North West direction

249

+* #*

++ #*

#
#

Between WNW (292.5 deg) and NNW (337.5 deg)
elif heading_int > 292.5 and heading_int < 337.5:

Note:

Elevation data for 10 km due North West of the Reek Walk launch location
Guelph NW _filename = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/’ \
’Elevation Data/Cardinal Direction Profiles /ALOS DSM NW. csv’

Load data from file
Guelph NW_data = numpy. genfromtxt (Guelph NW _filename, delimiter=",")

Distance from TANAB2 launch location in meters
distance_Guelph NW = Guelph NW data[:, 0]

Elevation above sea level in meters for each data point away from TANAB2 launch

location
elevation_Guelph NW = Guelph NW _data[:, 3]

Returns coefficients for the polyfit equation between the distance away from the
TANAB2

launch location and the corresponding elevation above sea level in meters
Land Poly Coeff = numpy. polyfit (distance Guelph NW, elevation Guelph NW, poly deg)

Evaluate the polynomial at specific values as given by the distance away from the
TANAB2

Launch location in the North West direction

ground elev ASL fitted = numpy.polyval(Land Poly Coeff, distance Guelph NW)

Detrend the resulting land surface elevations calculated from the derived
polynomial with respect

to the elevation data derived from the ALOS DSM file

ground_elev_AGL = elevation Guelph NW — ground_elev_ASL _fitted

return ground_elev_ASL_fitted, ground_elev_AGL

Using the Numba library and the @jit (Just In Time compiler), these functions are

sped up with parallel

processing as this function is executed in another compiler after the code is transformed

to machine code

Depending on the application of this software, this library supports CUDA/GPU processing
within Python

This library is continually being updated and future versions should have increased

functionality with

respect to parallel processing and GPU/CUDA processing from a Python script

Calculate Pixel distance to assign emissivity value. For selected pixels

Use the JIT compiler to translate Python/numpy code into machine code that is executed in

parallel with
the Python code
This compiler reduced the run time of the code by 90%

The following formulas are based off of:

https://stackoverflow.com/questions /19412462/getting—distance —between—two—points—based—on

250

—latitude —longitude
@jit (nopython=True, parallel=True)
def HaversinePixelCalc (emis lat Jul, lat2 pixel, emis lon Jul, lon2 pixel, Radius_Earth,
haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat Jul)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat Jul[k] — lat2 pixel)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis_lon_Jul[k] — lon2 pixel)

Separate parts of the haversine formula into different wvariables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(lat2 pixel))
\
* math.cos (math.radians (emis lat Jul[k])) * math.sin (haversine dlon /
2) *% 2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs

haversine d[k] = Radius_Earth % haversine c¢
return haversine d

Calculate Pixel distance to assign emissivity value. For top left pixel
Use the JIT compiler to translate Python/numpy code into machine code that is executed in
parallel with
the Python code
This compiler reduced the run time of the code by 90%
@jit (nopython=True, parallel=True)
def HaversinePixelCalc_top_left (emis_lat_Jul, lat2_ top_ left, emis lon_Jul, lon2 top left,
Radius_Earth, haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat Jul)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat Jul[k] — lat2 top left)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis_ lon_ Jul[k] — lon2 top_ left)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(
lat2 top left))\
* math.cos (math.radians (emis lat Jul[k])) * math.sin (haversine dlon /
2) *% 2
haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs

haversine d[k] = Radius_Earth x haversine_ c

return haversine d

251

Calculate pixel distance to assign emissivity value. For top center pixel
Use the JIT compiler to translate Python/numpy code into machine code that is executed in
parallel with
the Python code
This compiler reduced the run time of the code by 90%
@jit (nopython=True, parallel=True)
def HaversinePixelCalc top center(emis lat Jul, lat2 top, emis lon Jul, lon2 top,
Radius_Earth, haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis_ lat Jul)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat Jul[k] — lat2 top)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis_lon_Jul[k] — lon2 top)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) % 2 + math.cos(math.radians(lat2 top))\
* math.cos (math.radians (emis lat Jul[k])) * math.sin (haversine dlon /
2) *% 2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine d[k] = Radius_ Earth % haversine c¢

return haversine d

Calculate pixel distance to assign emissivity value. For top right pixel
Use the JIT compiler to translate Python/numpy code into machine code that is executed in
parallel with
the Python code
This compiler reduced the run time of the code by 90%
@jit (nopython=True, parallel=True)
def HaversinePixelCalc_top_right (emis_lat_Jul, lat2 top_right, emis_lon_Jul, lon2_ top_right,
Radius_Earth, haversine_d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat Jul)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat Jul|[k] — lat2 top right)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis_ lon_ Jul[k] — lon2 top right)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) % 2 + math.cos(radians(lat2 top right))\

* math.cos(radians(emis lat Jul[k])) * math.sin(haversine dlon / 2) xx
2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))
Solve for the geographic distance between the two coordinate pairs

haversine_d[k] = Radius_FEarth x haversine_c

return haversine d

252

Calculate pixel distance to assign emissivity value. For center left pixel
Use the JIT compiler to translate Python/numpy code into machine code that is executed in
parallel with
the Python code
This compiler reduced the run time of the code by 90%
@jit (nopython=True, parallel=True)
def HaversinePixelCalc center left(emis lat Jul, lat2 center left, emis lon Jul,
lon2 center left, Radius_ Earth,
haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat Jul)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat Jul[k] — lat2_ center left)
Calculate the difference between the two longitude locations

haversine_dlon = math.radians(emis_lon_Jul[k] — lon2 center _left)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(
lat2 center left)))\
* math.cos(math.radians (emis lat Jul[k])) * math.sin(haversine dlon /
2) *% 2

haversine ¢ = 2 % math.atan2(math.sqrt (haversine a), math.sqrt (1 — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine d[k| = Radius_Earth % haversine ¢

return haversine d

Calculate pixel distance to assign emissivity value. For center pixel

Use the JIT compiler to translate Python/numpy code into machine code that is executed in
parallel with the

Python code

This compiler reduced the run time of the code by 90%

@jit (nopython=True, parallel=True)

def HaversinePixelCalc center(emis lat Jul, lat2 center, emis lon Jul, lon2 center,
Radius_Earth, haversine d):
Calculate the haversine distance between each coordinate pair

for k in range(0, len(emis lat Jul)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat Jul[k] — lat2 center)
Calculate the difference between the two longitude locations

haversine dlon = math.radians(emis_lon_ Jul[k] — lon2 center)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(lat2 center)

AN

* math.cos (math.radians (emis lat Jul[k])) * math.sin (haversine dlon /
2) *% 2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

253

Solve for the geographic distance between the two coordinate pairs
haversine_d[k] = Radius_FEarth x haversine_c

return haversine d

Calculate pixel distance to assign emissivity value. For center right pixel
Use the JIT compiler to translate Python/numpy code into machine code that is executed in
parallel with the
Python code
This compiler reduced the run time of the code by 90%
@jit (nopython=True, parallel=True)
def HaversinePixelCalc center right(emis lat Jul, lat2 center right, emis lon Jul,
lon2 center right, Radius_Earth,
haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat Jul)):

Calculate the difference between the two latitude locations

haversine dlat = math.radians(emis_lat_Jul[k] — lat2_ center_right)
Calculate the difference between the two longitude locations
haversine dlon = math.radians(emis lon Jul[k] — lon2 center right)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(
lat2 center right))\
* math.cos(math.radians (emis lat Jul[k])) * math.sin(haversine dlon /
2) #x 2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine d[k] = Radius_Earth * haversine c

return haversine d

Calculate pixel distance to assign emissivity value. For bottom left pixel

Use the JIT compiler to translate Python/numpy code into machine code that is executed in
parallel with the

Python code
This compiler reduced the run time of the code by 90%
@jit (nopython=True, parallel=True)
def HaversinePixelCalc bottom left(emis lat Jul, lat2 bottom left, emis lon Jul,
lon2 bottom left, Radius FEarth,
haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis_ lat_ Jul)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis lat Jul[k] — lat2 bottom left)
Calculate the difference between the two longitude locations

haversine_dlon = math.radians (emis_lon_Jul[k] — lon2 bottom _left)

Separate parts of the haversine formula into different variables for calculation
simplicity

haversine a = math.sin(haversine dlat / 2) % 2 + math.cos(math.radians(
lat2 bottom left))\

254

* math.cos (math.radians (emis lat Jul[k])) * math.sin (haversine dlon /
2) *% 2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine d[k] = Radius_Earth % haversine c¢

return haversine d

Calculate pixel distance to assign emissivity value. For bottom center pixel

Use the JIT compiler to translate Python/numpy code into machine code that is executed in
parallel with the

Python code

This compiler reduced the run time of the code by 90%

@jit (nopython=True, parallel=True)

def HaversinePixelCalc_bottom (emis_lat_Jul, lat2 bottom, emis_lon_Jul, lon2_ bottom,
Radius_Earth, haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat Jul)):

Calculate the difference between the two latitude locations

haversine dlat = math.radians(emis lat Jul[k] — lat2_ bottom)
Calculate the difference between the two longitude locations
haversine dlon = math.radians(emis lon_ Jul[k] — lon2 bottom)

Separate parts of the haversine formula into different variables for calculation
simplicity
haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(lat2 bottom)
N\
* math.cos (math.radians (emis lat Jul[k])) * math.sin (haversine dlon /
2) *% 2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt (1l — haversine a))

Solve for the geographic distance between the two coordinate pairs
haversine_d[k] = Radius_Earth x haversine_c

return haversine d

Calculate pixel distance to assign emissivity value. For bottom right pixel

se e compiler to translate Python/numpy code into machine code at is executed in
U the JIT il to t 1 Pyth de int hi de that i ted i
parallel

with the Python code
This compiler reduced the run time of the code by 90%
@jit (nopython=True, parallel=True)
def HaversinePixelCalc bottom right(emis lat Jul, lat2 bottom right, emis lon Jul,
lon2 bottom right, Radius_ Earth,
haversine d):
Calculate the haversine distance between each coordinate pair
for k in range(0, len(emis lat Jul)):
Calculate the difference between the two latitude locations
haversine dlat = math.radians(emis_lat_Jul[k] — lat2_bottom right)
Calculate the difference between the two longitude locations
haversine_dlon = math.radians(emis_lon_Jul[k] — lon2_ bottom _right)

Separate parts of the haversine formula into different variables for calculation

255

simplicity

haversine a = math.sin(haversine dlat / 2) %% 2 + math.cos(math.radians(

lat2 bottom right))\

* math.cos(radians(emis lat Jul[k])) * math.sin(haversine dlon / 2) xx

2

haversine ¢ = 2 * math.atan2 (math.sqrt (haversine a), math.sqrt(l — haversine a))

Solve for the geographic distance between the two coordinate pairs

haversine d[k] = Radius_ Earth % haversine c¢

return haversine d

data to master file
folder

parallel=True)

Save picture
the
@jit (nopython=True,

’Rawlmages’

(master

file

saves to text

file with all image data from

def SaveMasterMatrix (x_pixel range, v_pixel top, y_pixel range, image_ matrix,

all pixel data multi_ image,

filename image,

filenames total):

for i in range(0, x_ pixel range):
for j in range(v_ pixel top, y_ pixel range):
If a real value exists with latitude/longitude etc, save to master matrix
if numpy.isnan (image matrix[i]|[j][5]) == False:
for k in range(0, len(all pixel data multi image)):
if numpy.isnan(all pixel data multi_ image[k][0]) = True:

Save name of file
filenames total[k][0]
Save year image was taken to master

all pixel data multi_ image[k][0]

#

71

all pixel data_ multi_image[k][1]
Save day image was taken to
all pixel data multi image[k][2]
Save hour image was taken to

all _pixel data_multi_image[k][3]

Save month image was taken to

to master

array

filename image[i][j][0]

array

image matrix[i]|[j][0]

master array

image matrix[1i]|[j][1]

master array

image matrix[i]|[j][2]
master array

image matrix[i]|[j][3]

Save minute image was taken to master array

all pixel data multi image|[k][4]
Save calculated geographic
all pixel data_ multi_ image[k][5]
Save calculated geographic
all pixel data multi_ image[k][6]

Save the horizontal

calculated

all pixel data multi image[k][7]
Save the vertical
all pixel data multi_ image[k][8]

Save the ST in

surface

all _pixel data_multi_image[k][9]

pixe

kelvin

pixel

image matrix[i]|[j][4]
latitude to array

image matrix[i][]j][5]

longitude to array

image matrix[i][]j][6]

value of the image where ST was

image matrix[i][]j][7]

1 value of the image where ST was calculated

image matrix[i]|[j][8]

considering the MODIS emissivity of the land

image matrix[1]|[j][9]

Save the ST in degC considering the MODIS emissivity of the land

surface

all _pixel data_multi_image[k][10]

break

return all pixel data multi_ image

256

image matrix[1][j][10]

Time the following process

start = time.time ()

Directory where RAW DJI XXX.jpg Images are located
directory = ’/export/home/users/username/Documents /DG Temp/Guelph 2018/Elevation Data/
Rawlmages’

Return the Number of images in Rawlmages Directory

numFiles = sum([len(files) for r, d, files in os.walk(directory)])

Loop through each thermal image in the Rawlmages directory

for file in os.listdir(directory):
Read the file name that would be shown in the Linux Terminal
filename = os.fsdecode(file)

print (’The_Image_being_processed _now_is:_'+str(filename))

Extract variables used for georeferencing calculations

Extract GPS Latitude from image via the Linux Terminal with ExifTool (ExifTool
converts to decimal degrees)

Latitude = subprocess.Popen(|["exiftool_—b_—GPSLatitude_" + directory + "/" + filename],
shell=True,

stdout=subprocess .PIPE) .communicate () [0]

Decode Latitude to string, a readable format

Latitude = Latitude.decode("utf—8")

Convert from string to float

Latitude = float (Latitude)

Extract GPS Longitude from image via the Linux Terminal with ExifTool (ExifTool
converts to decimal degrees)

Longitude = subprocess.Popen(["exiftool_—b_—GPSLongitude_" + directory + "/" + filename
|, shell=True,

stdout=subprocess .PIPE) . communicate () [0]

Decode Longitude to string, a readable format

Longitude = Longitude.decode ("utf—8")

Convert from string to float

Longitude = float (Longitude)

Extract camera Gimbal Roll Degree from image via the Linux terminal with ExifTool
gRollDeg = subprocess.Popen(["exiftool_—b_—GimbalRollDegree_" + directory + "/" +
filename], shell=True,
stdout=subprocess .PIPE) .communicate () [0]
Decode Gimbal Roll Degree to string, a readable format
gRollDeg = gRollDeg.decode ("utf—8")
Convert from string to float
gRollDeg = float (gRollDeg)

Extract camera Gimbal Yaw Degree from image via the Linux terminal with ExifTool
gYawDeg = subprocess.Popen(["exiftool_—b_—GimbalYawDegree_" + directory + "/" + filename
|, shell=True,
stdout=subprocess .PIPE) .communicate () [0]
Decode Gimbal Yaw Degree to string

257

gYawDeg = gYawDeg.decode ("utf—8")
Convert from string to float

gYawDeg = float (gYawDeg)

Extract camera Gimbal Pitch Degree from image via the Linux terminal with ExifTool
gPitchDeg = subprocess.Popen(["exiftool_—b_—GimbalPitchDegree_" + directory + "/" +
filename], shell=True,
stdout=subprocess.PIPE) . communicate () [0]
Decode Gimbal Pitch Degree to string
gPitchDeg = gPitchDeg.decode("utf—8")
Convert from string to float
gPitchDeg = float (gPitchDeg)

Extract Flight (Gondola) Roll Degree from image as recorded by N3 via the Linux
terminal with ExifTool

fRollDeg = subprocess.Popen(["exiftool_—b_—FlightRollDegree_" + directory + "/" +
filename|, shell=True,

stdout=subprocess .PIPE).communicate () [0]

Decode Flight Roll Degree to string

fRollDeg = fRollDeg.decode("utf—8")

Convert from string to float

fRollDeg = float (fRollDeg)

Extract Flight (Gondola) Yaw Degree from image as recorded by N3 via the Linux
Terminal with ExifTool

fYawDeg = subprocess.Popen (["exiftool_—b_—FlightYawDegree_" + directory + "/" + filename
|, shell=True,

stdout=subprocess .PIPE) .communicate () [0]

Decode Flight Yaw Degree to string

fYawDeg = fYawDeg.decode ("utf—8")

Convert from string to float

fYawDeg = float (fYawDeg)

Extract Flight (Gondola) Pitch Degree from image as recorded by N3 via the Linux
terminal with ExifTool

fPitchDeg = subprocess.Popen(|["exiftool_—b_—FlightPitchDegree_" + directory + "/" +
filename], shell=True,

stdout=subprocess.PIPE) . communicate () [0]

Decode Flight Pitch Degree to string

fPitchDeg = fPitchDeg.decode("utf—8")

Convert from string to float

fPitchDeg = float (f{PitchDeg)

#

Filtering Parameters for GPS georeferencing:

If Gondola Roll > 4+/— 45 degrees (since camera is self stabilized , roll should be
minimal)

If Gondola tilt (fPitchDeg) is > +45 degrees or < —135 degrees (as per mechanical
range of

Zenmuse XT:https://www. dji.com/zenmuse—xt/info) This can affect the self

258

stabilization of the camera

If latitude or longitude = 0 degrees, Longitude > 180 degrees or

Longitude < 180 degrees, Latitude > 90 degrees or Latitude < 90 degrees

If Camera Gimbal pitch is >= to 0 degrees (center of the image), GPS georeferencing
will not work

as the camera line of sight will extend to the sky

if fRollDeg > 45 or fRollDeg < —45 or fPitchDeg > 45 or fPitchDeg < —135 or gPitchDeg >=
0:
continue

elif Latitude <= 0 or Latitude > 90 or Latitude < —90:
continue

elif Longitude = 0 or Longitude > 180 or Longitude < —180:

continue

If the gimbal pitch plus half of the vertical field of view is <= —76 deg, then skip
the image

If this was not included, the bottom of the image could theoretically be positioned
behind the camera

which would complicate calculations

if gPitchDeg <= —76:

continue

If gimbal pitch is greater than 2 deg, skip image
if gPitchDeg > —2:

continue

Parameters for temperature calculation

For all Planck Constants below, reference Martiny et al. 1996, "In Situ Calibration
for Quantitative Infrared

Thermography": http://qirt.gel.ulaval.ca/archives/qirt1996 /papers/001.pdf

Also reference FLIR Systems, Installation manual: FLIR A3XX and FLIR A6XX series ,

2010: http://91.143.108.245/Downloads/Flir /Dokumentation/T559498%a461 Manual.pdf

Get Planck Rl constant from image metadata with ExifTool via Linux terminal
R1 = subprocess.Popen(["exiftool_—b_—PlanckR1_" + directory + "/" + filename]|, shell=
True,
stdout=subprocess .PIPE) .communicate () [0]
Decode Planck Rl constant to string
R1 = R1l.decode("utf—8")
Convert from string to float
R1 = float (R1)

Get Planck R2 constant from image metadata with ExifTool via Linux terminal
R2 = subprocess.Popen(["exiftool_—b_—PlanckR2_" + directory + "/" + filename]|, shell=
True,
stdout=subprocess.PIPE) .communicate () [0]
Decode Planck R2 constant to string
R2 = R2.decode("utf—8")

Convert from string to float

259

R2 = float (R2)

Get Planck B constant from image metadata with ExifTool via Linux terminal

B = subprocess.Popen (["exiftool_—b_—PlanckB_" + directory + "/" + filename], shell=True,
stdout=subprocess .PIPE) .communicate () [0]

Decode Planck B constant to string

B = B.decode("utf—8")

Convert from string to float

B = float (B)

Get Planck O constant from image metadata with ExifTool via Linux terminal
planck O = subprocess.Popen(["exiftool_—b_—PlanckO_" + directory + "/" + filename],
shell=True,
stdout=subprocess .PIPE).communicate () [0]
Decode Planck O constant to string
planck_ O = planck_O.decode("utf—8")
Convert from string to float
planck_ O = float (planck_O)

Get Planck F constant from image metadata with ExifTool via Linux terminal
F = subprocess.Popen(["exiftool_—b_—PlanckF_" + directory + "/" + filename], shell=True,
stdout=subprocess .PIPE) .communicate () [0]

Decode Planck F constant to string
F = F.decode("utf—8")

Convert from string to float

F = float (F)

#

The next few lines is for TriSonica Altitude calculations to derive TANAB2 altitude
above ground level

Need to call in the date from each picture and convert to day of year in seconds (doy)
(add the hours, minutes,

and the seconds)

Next, find the closest doy in TriSonica doy, return the index with the closest value
to identify the

altitude of balloon

Get date and time when pictures were taken
If the following variables do not exist as a local variable, then initialize them
if ’Year’ not in locals():

Year = numpy.empty (numFiles, dtype—object)

Month = numpy.empty (numFiles, dtype=object)

Days = numpy.empty (numFiles, dtype=object)

Hour = numpy.empty (numFiles, dtype=object)

Minutes = numpy.empty (numFiles, dtype=object)

Get date and time from images via the Linux terminal with ExifTool
dates = subprocess.Popen(["exiftool_—b_—DateTimeOriginal_" + directory + "/" + filename
|, shell=True,
stdout=subprocess .PIPE) . communicate () [0]

260

convert dates to string

dates = str(dates)

Slice string to only include date and time

print (’The_Image_Date_and_Time_is:_'+str(dates[2:21]))

Date & time as YYYY:MM:DD HH:MM: SS

dates dates [2:21]

Convert date format to date time from string
datetime.datetime.strptime (dates, "%Y:%m:%d_YH:%M:%S")

dates =

Separate image date and time into variables and change data type from datetime to
string

yr = str(dates.year)

mnth = str (dates.month)

day = str(dates.day)

hr = str(dates.hour)

minute = str(dates.minute)

#

Assign the Base Altitude (elevation above sea level) for the TANAB2 launch location
for the Urban Field Campaign

Estimated elevations from Google Earth,

BaseLat = 43.532381

BaseLon = —80.225408
BaseAltitude = 334 # meters above sea level
#

Call in averaged data extracted from TriSonica

This file includes data from the July 28, 2018 and August 13, 2018 TANAB2 Launches

trisonica avg fileName = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/’ \
>TriSonica/TriSonica_Averaged Guelph Urban_Altitudes. txt’

Call in TriSonica averaged data

trisonica avg = numpy.genfromtxt (trisonica avg fileName, usecols=[6,10])
Call in second averaged data column

TriSonica day of year (since January 1, 2018) in seconds

trisonica soy = trisonica_ avg][:,0]

Call in the TriSonica derived altitude from pressures. The altitude is relative to the
land surface

trisonica altitude = trisonica_ avg|[:,1]

Day/hour/minute in July/August when pictures were taken
month picture = dates.month

day picture = dates.day

hour picture = dates.hour

minute picture = dates.minute

seconds picture = dates.second

Initialize doy in seconds for pictures

261

doy seconds_picture = 0

Convert day/hour/minute into doy seconds based on the day the picture was recorded
Where 209 DOY = July 28, 2018 and 225 DOY — August 13, 2018
if day picture = 28:

doy seconds picture = (209%24%60%60)+(hour picture*60%60)+(minute picture*60)+

seconds picture

elif day picture =— 13:
doy seconds picture = (225%24%60%60)+(hour picture*60%60)+(minute picture*60)+

seconds picture

else:
print (’More_Dates_need_to_be_included_above’)

Initialize delta doy in seconds (soy) variable (difference between image capture time
and TriSonica data)

delta soy = numpy.zeros(len(trisonica soy))

Match doy second indices from second averaged file & each individual image
Loop through averaged doy indices from TriSonica data
for i in range(0, len(trisonica soy)):
Calculate difference between doy times (each individual image and each second
averaged TriSonica index)
delta soy[i] = abs(doy seconds picture — trisonica soy|[i])

When at the last value of the TriSonica averaged file , find index of minimum value
and write corresponding

altitude value to the Altitude variable

if i = (len(trisonica soy) — 1):
Altitude AGL = trisonica_altitude [numpy.argmin(delta soy)]

print (’The_Altitude_above_the TANAB_launch_location_is:_’+str (Altitude AGL)+’_[m]’)

#

Set up variables that are used within the georeferencing calculations below

Yaw, Roll and Pitch frame of references correspond to:

http://blog—ghd4—france.over—blog.com/2015/12/test —du—dji—ronin—m-sur—le—gh4.html

Yaw of gimbal is calibrated to the True North, therefore it is not necessary to add
the flight yaw angle

Yaw = gYawDeg

Assume the gimbal roll is zero (camera is self—stabilized)
Roll = fRollDeg

Pitch and Roll angles are independent of each other, ie if one changes (ex. the flight

parameter) ,
it will directly affect the gimbal but it will not be accounted for by the gimbal

pitch/roll variable
Positive upward from horizontal; usually negative for lines of sight below horizontal

262

Pitch = gPitchDeg

Field of View angles in degrees for the 19 mm Zenmuse XT thermal camera
(Specifications: https://www.dji.com/ca/zenmuse—xt/specs)
Vertical Field of View |[degree]

FoVV = 26
Horizontal Field of View [degree|
FoVH = 32

When the camera lens is exactly perpendicular to the ground (pointed towards the
horizon) ,

the resulting pitch angle for the center of an image is 0 degrees

If the camera is tilted towards the ground, the pitch angle is negative, if camera
tiled upwards,

the pitch angle is positive

References for mechanical rotational limits of the Zenmuse XT: https://www.dji.com/
zenmuse—xt /info

Find GPS coordinates for middle (tilt center), top middle (tilt top) and

Dbottom middle (tilt bottom) of each image

These three values are all related to the gimbal pitch angle from the image metadata
and the

physical vertical field of view for the 19mm lens camera

Tilt angles |[degree]

tilt center = Pitch

tilt _bottom = Pitch —(FoVV/2)

tilt top = Pitch+(FoVV/2)

Need to check if the sky will be in the image. Images with a top tilt angle

above 0 degrees will have their tilt angle adjusted to include pixels below an
assumed

pixel row which is a direct function of an assumed tilt angle

The center tilt angle does not need to be considered as images with a gimbal pitch
angle

>= 0 degrees were already skipped over in the code near the top of the script

if top of image has a tilt angle >= —1 degrees then, assign an assumed tilt angle to
omit pixels that may
contain the sky (i.e. above the horizon/horizontal)
if tilt _top >= —1:
print ("The_tilt _angle_for_the_top_of_the_image_is:_’ + str(tilt top))
Change tilt angle so it is equal to an arbitrary tilt angle. I assumed —1 degrees
(can be changed)
tilt _top = —1

print (’The_top_tilt _angle_(deg)_for_the_image_is:_ ’ + str(tilt top))
’ str(tilt center))
str(tilt bottom))

print (’The_center_tilt __angle_(deg)._for_the_image_is:_

+
+

)

print (’The_bottom_tilt __angle_(deg)_for_the_image_is:_

#

263

Used this section of code to implement a sensitivity analysis. Can be revisited if

required .

Apply an offset to each Pitch angle used during the sensitivity analysis as of Dec.
5/2018.

December 17, 2018: After completing a few tests, the developed method does not need
the tilt angle adjusted ,

therefore set the theta offset as 0.

thetaOffset = 0

theta top degrees = tilt top—thetaOffset

theta center degrees = tilt center—thetaOffset
theta bottom degrees = tilt bottom—thetaOffset

#

Convert theta angles to radians. All trigonometric functions in Python assume that
angles are in radians

theta top rads = math.radians(theta top degrees)

theta center rads = math.radians(theta center degrees)

theta bottom rads = math.radians(theta bottom degrees)

Note: If heading is 0 deg or 360 deg = north exactly, if 90 deg = -east, 180 deg =
south , 270 deg = west

Set Heading variable for georeferencing calculations

heading = Yaw

Adjust heading if less than 0 degrees, add 360 degrees, so the angles will always be
positive

if heading < O0:
heading = heading + 360

Convert Latitude/Longitude/Yaw to Rads for georeferencing calculations
Yaw_ rads = math.radians (heading)

Latitude rads = math.radians(Latitude)

Longitude rads = math.radians (Longitude)

Call LandSlopeEquations Function

Function fits a polynomial relating the elevation above sea level for the land in the
8 cardinal

directions at the Reek Walk TANAB2 launch site to distance away from the launch site

(up to 10km away from the origin of each launch site)

ground elev ASL fitted, ground elev. AGL = LandSlopeEquations(BaseAltitude ,heading)

Calculate latitude/longitude of top/virtual top of image

Find coefficients for line of sight from camera that intersects with the ground

line of sight = numpy.zeros (4)

Find slope of the line associated with line of sight which is negative because
theta top is negative

line of sight[2] = math.tan(theta top rads)

Find altitude of the TANAB2 from the ground. this is the y—intercept of the line of

264

sight with respect to
TANAB2 launch origin located at ground level
line_of_sight [3] = Altitude_AGL

Create equations and detrend the data

Create a numeric sequence starting at 0, ending at 30,000, the number of indices to
use is equal to the

length of ground elev. AGL (as calculated in LandSlopeEquations function) (given
information ,

the numerical difference between each value is calculated by the function

x _test represents distance in meters away from the TANAB2 launch site

x _test = numpy.linspace (0, 30000, len(ground elev. AGL))

Make a polyfit of the x test distance away from TANAB2 launch site with respect to the
detrended

land surface elevation

Return the coefficients for a 3rd order polynomial of the detrended surface elevation
with respect to distance

away from the TANAB2 launch site

land elevation equation AGL = numpy.polyfit (x test,ground elev_ AGL,3)

Find the roots and select the smallest positive value to be the horizontal distance
away from the
TANAB2 launch location
coefficients of intersection = land_elevation equation AGL — line of sight
Roots Top = numpy.roots (coefficients of intersection)
print (’The_roots_are:_’ + str (Roots Top))
print (*The_altitude_of_the_balloon_above_grade_level_is:_’+str(line of sight[3]))
(

print (’The_Tilt_angle_is:_ '+str (math.degrees(theta top degrees)))

Create an array for the roots that are real numbers (not complex)
real roots top = numpy.empty(3)

real roots top [:] = numpy.nan

Check for roots that are not complex numbers and write real roots to array
for i in range(0, len(Roots Top)):
if numpy.iscomplex (Roots Top|[i]) = False:
real roots top[i]| = Roots Top|i]

print (’The_Real_Roots_for_the_Top_Center_are:_’+str(real roots top))

Initialize a variable that counts the number of non real roots
root counter = 0

Identify the number of non real roots
for non real root in range(0, len(Roots Top)):
if real roots_top[non_real root| < 0 or numpy.isnan(real roots_top[non_real root])
— True:

root counter += 1

If no real roots exist, then continue to the next image

if root_counter = len (Roots_Top):

265

continue

Choose the root that is the smallest real positive solution to be the distance from
the TANAB2 launch location

to the top of the projected image on the land surface

d top = min(i for i in real roots top if i > 0)

Convert d_top to km

d top_km = d_top/1000

Volumetric Mean Radius of earth in km: https://nssdc.gsfc.nasa.gov/planetary/factsheet
/earthfact .html
Radius _Earth = 6378.1

If the distance is less than 5km, then calculate coordinates. This is included as the
urban environment

likely impacts the camera line of sight. The 5 km value is assumed and can be changed

if d top km < 5:
Get the latitude/longitude for the top, center, and bottom of each image via the
variation of the Haversine Formula
Formulas for latitude/longitude are from: https://www.movable—type.co.uk/scripts/
latlong . html,
as of August 17/2018, I verified that these formulas are correct
Calculate lat2/lon2 for top of image

lat2 top = asin(sin(Latitude rads)*cos(d top km/Radius Earth)+cos(Latitude rads)=sin
(d_top_km/Radius_Earth)
xcos (Yaw_rads))

lon2 top = Longitude rads + atan2(sin(Yaw_ rads)*sin(d_top km/Radius Earth)=*cos(
Latitude rads),
cos(d_top km/Radius Earth)—sin (Latitude rads)s*sin(lat2 top))

Convert coordinates to decimal degrees
lat2 top = math. degrees(lat2_ top)
lon2 top = math.degrees(lon2 top)

Calculate latitude/longitude for the center of the image

Find coefficients for line of sight from camera that intersects with the ground
line_of sight = numpy.zeros (4)

line of sight[2] = math.tan(theta center rads)

line_of sight [3] = Altitude_ AGL

Create equations and detrend the data

Create a numeric sequence starting at 0, ending at 30,000, the number of indices to
use is equal to the

length of ground elev. AGL (as calculated in LandSlopeEquations function)

(given information, the numerical difference between each value is calculated by the

function

266

x test represents distance in meters away from the TANAB2 launch site

X _test = numpy.linspace (0, 30000, len(ground elev_AGL))

Make a polyfit of the x test distance away from TANAB2 launch site with respect to the
detrended

land surface elevation

Return the coefficients for a 3rd order polynomial of the detrended surface elevation
with respect

to distance away from the TANAB2 launch site

land elevation equation AGL = numpy. polyfit(x_test, ground elev_AGL, 3)

Find the roots and select the smallest positive value to be the horizontal distance
away from the
TANAB2 launch location

coefficients of intersection = land_elevation_equation AGL — line_of_sight
Roots_Center = numpy.roots (coefficients of intersection)
print (’The_roots_are:_’ + str(Roots_ Center))

(
print (’The_altitude_of_the_balloon_is:_’ + str(line of sight[3]))
print (’The_Tilt_angle_is:_’ + str(math.degrees(theta center rads)))

Create an array for the roots that are real numbers (not complex)

real roots center = numpy.empty (3)
real roots center [:] = numpy.nan
for i in range(0, len(Roots Center)):
if numpy.iscomplex (Roots Center[i]|) = False:
real roots center[i] = Roots Center|[i|

Initialize a variable that counts the number of non real roots

root counter = 0

Identify the number of non real roots
for non real root in range(0, len(Roots Center)):
if real_roots_center[non_real_ root] <= 0 or numpy.isnan(real_roots_center|
non_real root]) = True:

root counter += 1

If no real roots exist, then continue to the next image
if root counter = len(Roots Center):

continue

Choose the root that is the smallest real positive solution to be the distance from
the TANAB2 launch location
to the center of the projected image on the land surface

d center = min(i for i in real roots center if i > 0)

Convert d_center to km
d_center_km = d_center / 1000

If the center horizontal distance is less than 5km, calculate the corresponding pixel
coordinates .
This is included as the urban environment likely impacts the camera line of sight.

The 5 km value is assumed and can be changed.

267

if d center km < 5:
Formulas for latitude/longitude are from: https://www.movable—type.co.uk/scripts/
latlong .html,
as of Aug.17/2018, I verified that these formulas are correct
Calculate lat2/lon2 for the center of the image
lat2 center asin (sin (Latitude rads)*cos(d_center km/Radius Earth)4cos(
Latitude rads)
xsin (d_center km/Radius_ Earth)xcos(Yaw_ rads))

lon2 center Longitude rads + atan2(sin(Yaw_rads)*sin(d_center km/Radius Earth)x*cos
(Latitude rads),

cos(d_center km/Radius Earth)—sin (Latitude rads)x
sin (lat2 center))

Convert back to decimal degrees
lat2 center = math.degrees(lat2 center)

lon2 center = math.degrees(lon2 center)

Calculate latitude/longitude for the center of the image

Find coefficients for line of sight from camera that intersects with the ground
line of sight = numpy.zeros (4)

line of sight[2] = math.tan(theta bottom rads)

line of sight [3] = Altitude AGL

Create equations and detrend the data

Create a numeric sequence starting at 0, ending at 30,000, the number of indices to
use is equal

to the length of ground elev. AGL (as calculated in LandSlopeEquations function)

(given information, the numerical difference between each value is calculated by the
function

x test represents distance in meters away from the TANAB2 launch site along the

X _test = numpy.linspace (0, 30000, len(ground elev_AGL))

Make a polyfit of the x test distance away from TANAB2 launch site with respect to the

detrended land surface elevation

Return the coefficients for a 3rd order polynomial of the detrended surface elevation
with respect

to distance away from the TANAB2 launch site

land elevation equation AGL = numpy.polyfit(x test, ground elev_ AGL, 3)

Find the roots and select the smallest positive value to be the horizontal distance
away from the

TANAB2 launch location

coefficients of intersection = land_elevation_equation AGL — line_of_sight

Roots_Bottom = numpy.roots(coefficients of intersection)
print (’The_roots_are:_’ + str (Roots Bottom))

print (’The_altitude_of_the_balloon_is:_’ + str(line of sight[3]))
print (’The_Tilt_angle_is:_’ + str(math.degrees(theta bottom rads)))

268

Create an array for the roots that are real numbers (not complex)

real_roots_bottom = numpy.empty (3)
real roots bottom [:] = numpy.nan
for i in range(0, len(Roots Bottom)):
if numpy.iscomplex (Roots Bottom|[i]|) = False:
real roots bottom|[i]| = Roots Bottom]|1i]

]

Initialize a variable that counts the number of non real roots

root counter = 0

Identify the number of non real roots
for non real root in range(0, len(Roots Bottom)):
if real roots_bottom [non_ real root] < 0 or numpy.isnan (real roots_bottom |
non_real root]) = True:

root counter += 1

If no real roots exist, then continue to the next image
if root counter = len (Roots Bottom):

continue

Choose the root that is the smallest real positive solution to be the distance from
the TANAB2 launch location to

the bottom of the projected image on the land surface

d bottom = min(i for i in real roots bottom if i > 0)

Convert d_bottom to km

d_bottom km = d_bottom / 1000

If the horizontal distance for the bottom of the image is greater than 5 km,
skip the image as the line of sight likely intersects a structure
if d_bottom km > 5:

continue

Formulas for latitude/longitude are from: https://www.movable—type.co.uk/scripts/
latlong .html,
as of Aug.17/2018, I verified that these formulas are correct
Calculate lat2/lon2 for the bottom of the image
lat2 bottom = asin(sin(Latitude rads)*cos(d_ bottom km/Radius Earth)+cos(Latitude rads)
xsin (d_bottom km/Radius Earth)=*cos(Yaw rads))

lon2 bottom = Longitude rads + atan2(sin(Yaw_ rads)s*sin(d_bottom km/Radius Earth)s*cos (
Latitude rads),
cos (d_bottom km/Radius_Earth)—sin (Latitude rads)=sin(
lat2 bottom))

Convert back to decimal degrees
lat2 bottom = math.degrees(lat2 bottom)
lon2 bottom = math.degrees(lon2 bottom)

Print Results
print (’The_Altitude_of_the_balloon_with_respect_to_grade_level_is:_'+str (Altitude AGL)+’

\n’)

269

print (’The_Origin_lat_is:_ '+str (Latitude))

print (’The_Origin_lon_is:_’'+str (Longitude)+’\n")

if ’lat2 top’ in locals():

print (’The_lat top_is:_’ str(lat2 top))

+ (
print (’The_lon top_is:_’ + str(
print (’The_d top_is:_’ + str(d top))

)
i

)

if ’lat2 center’ in locals(

print ("The_lat2 center_is:_’ + str(lat2 center))
print (’The_lon2 center_is:_’ + str(lon2 center) + ’'\n’)
t

r(d_center))

print (’The_d center_is:_’ + s
if ’lat2 bottom’ in locals():

print (’The_lat2 bottom_is:_

+ str(lat2 bottom))
print (’The_lon2 bottom_is:_.’ + str(lon2 bottom) + ’\n’)
(

print (’The_d bottom_is:_’+str(d_bottom))

A

i i L A e e Ak

A
Calculate GPS coordinates for pixels on the edge/corners of the image

Find the top right and top left latitude/longitude for each image

Find the geographic distance in km for both the top right and left of each image

R

_geographic_top km = d_top_ km/cos(math.radians (FoVH / 2))
For pixels on the left edge of the image
Yaw left rads = math.radians(heading — (FoVH / 2))

Ensure this angle is strictly positive
if Yaw left rads < 0:
Yaw_left rads = Yaw_left rads + 2 x numpy. pi

For pixels on the right edge of the image
Yaw right rads = math.radians (heading + (FoVH / 2))

Ensure this angle is strictly less than 360 degrees
if Yaw_right_rads > 2 % numpy. pi:
Yaw right rads = Yaw right rads — 2 % numpy. pi

Find the latitude/longitude for the top left of the image
lat2 top left rads = asin(sin(Latitude rads) * cos(d _ geographic top km / Radius Earth) +
cos(Latitude rads)
* sin (d_geographic top km / Radius_Earth) x cos(Yaw_left rads)

)

lon2 top left rads = Longitude rads + atan2(sin(Yaw left rads) * sin(d_geographic top km
/ Radius Earth)
x cos(Latitude rads), cos(
d_geographic_top_km / Radius_Earth)
— sin(Latitude rads) =* sin(
lat2 top left rads))

Convert back to decimal degrees
lat2 top left = math.degrees(lat2 top left rads)

270

L1

L

T

lon2 top left = math.degrees(lon2 top left rads)

Find the latitude/longitude for the top right of the image
lat2 top right rads = asin(sin(Latitude rads) x cos(d_geographic top km / Radius FEarth)
+ cos(Latitude rads)
* sin (d_geographic_top_km / Radius_FEarth) x cos(
Yaw right rads))

lon2 top right rads = Longitude rads + atan2(sin(Yaw_ right rads) x sin(
d_geographic_top km / Radius_ Earth)
x cos(Latitude rads), cos(
d_geographic_top km / Radius Earth)
— sin(Latitude rads) =* sin(
lat2 top right rads))

Convert back to decimal degrees
lat2 top right = math.degrees(lat2 top right rads)
lon2 top right = math.degrees(lon2 top right rads)

Find the geographic distance in km for both the center right and left of each image

d_geographic center km = d_center km / cos(math.radians(FoVH / 2))

Find the latitude/longitude for the center left of the image
lat2 center left rads = asin(sin(Latitude rads) * cos(d_geographic center km /
Radius Earth) + cos(Latitude rads)
% sin (d_geographic_center _km / Radius_Earth) % cos(
Yaw left rads))

lon2 center left rads = Longitude rads + atan2(sin(Yaw_left rads) * sin(
d_geographic_center_km / Radius_Earth)
* cos(Latitude rads), cos(
d_geographic_center km / Radius_Earth
)
— sin(Latitude rads) * sin(
lat2 center left rads))

Convert back to decimal degrees
lat2 center left = math.degrees(lat2 center left rads)
lon2 center left = math.degrees(lon2 center left rads)

Find the latitude/longitude for the center right of the image
lat2 center right rads = asin(sin(Latitude rads) x cos(d_geographic_center km /
Radius Earth) + cos(Latitude rads)
% sin (d_geographic_center _km / Radius_Earth) % cos(
Yaw right rads))

lon2 center right rads = Longitude rads + atan2(sin(Yaw right rads) * sin(

d _geographic_center km / Radius_ Earth)
% cos(Latitude rads), cos(

271

d geographic_center km /
Radius_Earth)
— sin(Latitude rads) * sin(

lat2 center right rads))

Convert back to decimal degrees
lat2 center right = math.degrees(lat2 center right rads)

lon2 center right = math.degrees(lon2 center right rads)

Find the geographic distance in km for both the bottom

right and left of each image
d geographic_bottom km =

d_ bottom km / cos(math.radians (FoVH / 2))
Find the latitude/longitude for the bottom left of the

lat2 bottom left rads = asin(sin(Latitude rads) = cos(d_geographic bottom km /

Radius_Earth) + cos(Latitude rads)

image

* sin (d_geographic_bottom km / Radius_ Earth) =% cos(
Yaw left rads))

lon2 bottom left rads = Longitude rads + atan2(sin(Yaw left rads) = sin(

d geographic_bottom km / Radius Earth)
% cos(Latitude rads), cos(
d geographic_bottom km / Radius Earth
)
— sin(Latitude rads) * sin(
lat2 bottom left rads))

Convert back to decimal degrees
lat2 bottom left = math.degrees(lat2 bottom left rads)
lon2 bottom left = math.degrees(lon2 bottom left rads)

Find the latitude/longitude for the bottom

right of the image
lat2 bottom right rads

asin (sin (Latitude rads) * cos(d_geographic_bottom km /
Radius_Earth) + cos(Latitude rads)

* sin(d_geographic_bottom km / Radius_ Earth) x cos(
Yaw_ right rads))

lon2 bottom right rads

Longitude rads + atan2(sin(Yaw right rads) * sin(

d_geographic_bottom km / Radius_ Earth)

x cos(Latitude rads), cos(
d_geographic_bottom km /
Radius Earth)

— sin(Latitude rads) * sin(
lat2 bottom right rads))

Convert back to decimal degrees
lat2 bottom right

math. degrees (lat2 bottom right rads)
lon2 bottom right = math.degrees(lon2 bottom right rads)

print (’The_lat2 top left_is:_’ + str(lat2 top left))

272

lon2 top left) + ’\n’)
(1at2 top right))
r (lon2 top right) + ’\n’)

print (’The_lon2 top left_is: r(
print (’The_lat2 top rlght > + str

print (’Theulon2_top_r1ghtu .H’ —+

print (’The_lat2 center left_is:_’ + __center left))

print (’The_lon2 center left_is:_’ + (10n2 center left) + ’\n’)
print (’The_lat2 center right_is:_’ + r(lat2 center right))

print (’The_lon2 center right_is:_’ + str(lon2 center right) + ’\n’)
print (’The_lat2 bottom left_is:_’ + str(lat2_ bottom left))

print (’The_lon2 bottom leftuiszu’ tr (lon2 bottom left) + ’\n’)
print (’The_lat2 bottom right_is:_’ + s r(lat2 bottom right))

print (’The_lon2 bottom right_is:_’ + _right) + ’'\n’)
#

b L L

Maximum pixel width and height of each image based on the FLIR 19 mm lens Zenmuse XT
x_pixel range = 640

<

__pixel range = 512

If the tilt angle for the top of the image is greater than zero degrees and an assumed
top
tilt angle was assigned, Calculate the new pixel top row, only if the top tilt angle
is > or = to —1 degrees
if tilt_top >= —1:
Get relation between Trigonometric angles and pixels
See created figures in thesis for visual reference
The following variables are all in degrees
Note: d_top was already calculated by assuming a new top which looked down —1
degrees below horizon
gamma — math.degrees (math.atan(d_ top/Altitude AGL))
beta = 90 — abs(Pitch) 4+ (FoVV/2) — gamma
kappa = 90—(FoVV/2)
eta = 90— (FoVV/2)+beta

y_pixel top = int (((y_pixel range/2)*sin(radians(beta)))/(sin(radians(FoVV/2))x*sin (
radians (180—eta))))

print (’The_top_of_the_image_is_located_at:_’+str(y_ pixel top))

The value to divide the horizontal and vertical pixel resolution by
Used to calculate the maximum pixel step for the horizontal direction
delta_x_pixel = 10

delta_y pixel = 8

Returns a maximum pixel step of 64 columns/rows based on the 19mm-Zenmuse XT image
horizontal and vertical resolution
x_max_step = int(x_pixel range/delta x_ pixel)

y_max_step = int(y pixel range/delta_y pixel)

273

i

S

L

/-

1

1

Initialize matrix for singular image for pixels include: x/y pixel coordinates,
latitude , longitude , temperature,

and set values to Nan

Note: The amount of data retrieved per image should be less than the full image as a
result the size of

image matrix could likely be optimized

image matrix = numpy.zeros ((x_pixel range, y pixel range, 11))

image matrix [:] = numpy.nan

Create an array for the filename for the corresponding pixel retrieved from each image
This is required as this script does not process images in chronological order

filename image = numpy.chararray ((x_pixel range, y pixel range,l), itemsize=12)

Initialize matrix to save data from all pictures (and a separate variable for
filenames)

check if variable exists in local (do only for the first image)

This section is only run for the 1st image processed

if ’all pixel data multi image’ not in locals():

all pixel data multi image = numpy.zeros ((x_max stepxy max stepxnumFiles, 11))
all pixel data multi_ image [:] = numpy.nan
filenames total = numpy.chararray ((x_max stepxy max_ stepxnumPFiles, 1), itemsize=12)

Create variables to save known coordinates to
Size will depend on the number of files in the folder (numPFiles)
These variables are to contain the data for the center and edges of each image
This section of code is only executed for the 1st image processed
if ’file names array’ not in globals():
file names
file names array = numpy.chararray (numFiles*1, itemsize=12)

file names array|[:] = b’

TANAB2 launch location
lat TANAB array = numpy.zeros ((numPFiles, 1))
lon TANAB_ array = numpy.zeros ((numPFiles, 1))

Top left of image

Create arrays for the latitude , longitude, and pixel locations for the top left
corner of the image

tLeft lat array = numpy.zeros ((numPFiles, 1))

tLeft lon array = numpy.zeros ((numkFiles, 1))

tLeft x pixel array = numpy.zeros ((numFiles, 1))

tLeft y pixel array = numpy.zeros ((numFiles, 1))

Top center of image
Create arrays for the latitude, longitude, and pixel locations for the top middle

of the image

tCenter lat array = numpy.zeros ((numPFiles, 1))
tCenter lon array = numpy.zeros ((numFiles, 1))
tCenter x pixel array = numpy.zeros ((numFiles, 1))

tCenter y pixel array = numpy.zeros ((numFiles, 1))

274

Top right of image

Create arrays for the latitude , longitude, and pixel locations for the top right
corner of the image

tRight lat array = numpy.zeros ((numPFiles, 1))

tRight lon array = numpy.zeros ((numFiles, 1))

tRight x pixel array = numpy.zeros ((numFiles, 1))

tRight y pixel array = numpy.zeros ((numFiles, 1))

Center left of image

Create arrays for the latitude, longitude, and pixel locations for the center left
edge of the image

cLeft lat array = numpy.zeros ((numPFiles, 1))

cLeft lon array = numpy.zeros ((numFiles, 1))

~—
~—

cLeft x pixel array = numpy.zeros ((numFiles, 1

~—
~—

cLeft y pixel array = numpy.zeros ((numFiles, 1

Center of image
Create arrays for the latitude, longitude, and pixel locations for the middle (

center) of the image

center lat array = numpy.zeros ((numPFiles, 1))
center lon array = numpy.zeros ((numPFiles, 1))
center x pixel array = numpy.zeros ((numFiles, 1))
center y pixel array = numpy.zeros ((numFiles, 1))

Center right of image

Create arrays for the latitude, longitude, and pixel locations for the center
right edge of the image

cRight lat array = numpy.zeros ((numPFiles, 1))

cRight lon array = numpy.zeros ((numPFiles, 1))

cRight x pixel array = numpy.zeros ((numFiles, 1))

cRight y pixel array = numpy.zeros ((numFiles, 1))

Bottom left of image

Create arrays for the latitude, longitude, and pixel locations for the bottom left
corner of the image

bLeft lat array = numpy.zeros ((numPFiles, 1))

bLeft lon array = numpy.zeros ((numPFiles, 1))

—_
~—
~

bLeft x pixel array = numpy.zeros ((numFiles,

—_
~
~

bLeft y pixel array = numpy.zeros ((numFiles,

Bottom center image

Create arrays for the latitude, longitude, and pixel locations for the bottom
center of the image

bCenter lat array = numpy.zeros ((numFiles, 1))

bCenter lon array = numpy.zeros ((numFiles, 1))

bCenter x pixel array = numpy.zeros ((numFiles, 1))

bCenter y pixel array = numpy.zeros ((numFiles, 1))

Bottom right of image
Create arrays for the latitude, longitude, and pixel locations for the bottom
right corner of the image

bRight lat array = numpy.zeros ((numPFiles, 1))

275

bRight lon array = numpy.zeros ((numFiles, 1))
bRight x pixel array = numpy.zeros ((numFiles, 1))
bRight y pixel array = numpy.zeros ((numFiles, 1))

Write filenames to array. Used in kml (google earth) save
for j in range(0, numFiles):
if file names array[j| = ’’:
file names array|[j] = filename

break

Check if the top pixel is not at the top of the image

1If the gimbal pitch angle for the top of the image based on the recorded pitch plus
half of

the vertical field of view is > 0 degrees, use the calculated new top pixel row as
the "top" of the image

if tilt_top >= —1:
v_pixel top = y pixel top

else:
v_pixel top = 0

Calculate and implement geometric step to determine how many vertical pixels to skip
over when calculating

pixel temperature

The goal is to have higher resolution for steps at the top of the image as pixel rows
at the top of the image

would result in a larger geographic distance away from the TANAB2 as compared to
pixel rows near

the bottom of the image.

Data associated with pixels at the top of the image should return surface temperatures
further away from the

TANAB2 launch site and result in a more even and possibly consistent spatial surface

temperature map

Initialize the pixel step array

y _pixel step = numpy.zeros((10, 1))

Identify the coefficient to use in the geometric pixel step formula
aStepGeometric = 18

Identify the constant to use in the geometric pixel step calculation

rStepGeometric = 1.41

Start at the top of the image (Row 0), if a new "top" is chosen, a filtering loop
below skips over any pixels
in y pixel step that are out of the calculated vertical pixel range.

y _pixel step[0] = 0

The second index in the geometric step function was selected to be pixel row 18.
y _pixel step[l] = aStepGeometric
for GeometricStep in range(2, 10):

Calculate the geometric pixel step for the 8 remaining pixels and save to the

276

appropriate array
vy _pixel step|[GeometricStep| = int(aStepGeometric * ((rStepGeometric) =*x

GeometricStep))

print (’The_virtual_pixel_top_is:_’+str(v_pixel top))
print (’The_y pixel step_is_as_follows:_’+str(y pixel step))

#

This nested loop chooses pixels based on the predetermined horizontal pixel step and
the
calculated geometric pixel step
Within the loop, each pixel is georefereced with the derived mathematical formulas
between pixels and
geographic distance. Surface tempertaures are calculated based on recorded pixel
signal values
The outer loop represents the horizontal (column) pixel step
for i in range(0, x_pixel_range, x_max_step):
print (*The_pixel_column_number_being_processed_now_is:_’+str(i))
Initialize a counter variable to be used to correspond to the geometric step
matrix index
Count must be —1 as y pixel step[0] = 0 (if count = 0, y pixel step[l] = 18 and if
a new "top" is NOT used,
j must equal 0!
count = —1
The inner loop represents the vertical (row) pixel step
for j in y pixel step:
Add one to the counter variable
count +=1
Check to see if the chosen geometric pixel step value is less than the virtual
pixel top, if it is,
continue to next y pixel step value
if y pixel step[count]| < v_pixel top:

continue
print (’The_pixel_row_number_being_processed _now_is:_ +str(j))

Need to convert data type of pixel step to int, same as i
j = int(j)

(i)
(J)+"\n")

print (’x_Pixel_Location:_’+
o+

str
str

print (’y_Pixel_Location:

Pixel to Geographic distance relationship

Find Slope for line of sight for each specific pixel coordinate from the
camera to the ground

Need Beta new (tilt angle of camera given known y pixel coordinate)

Must correlate pixels to latitude/longitude ... need to calculate new beta
given pixel coordinates ...

From Sine Law solve for beta, Where kappa = 90—FoVV/2

Refer to diagrams of TANAB2 camera with respect to image projection on the

277

Earth’s surface in thesis for further clarification
kappa = 90—FoVV/2

Go from pixels to distance, Using the sine law, rearrange for Beta
beta new rads = —Ilxatan(((0.5%y pixel range—j)s*sin(math.radians(0.5%xFoVV)))/
(0.5xy pixel range*sin(math.radians (kappa))))-+(math.
radians (0.5%FoVV))

Convert beta new to degrees

beta new = math.degrees(beta new_rads)

Next get gamma new. This is the angle away from the horizontal axis (zero
degrees)

corresponding to the current pixel

gamma_new = 90—abs(Pitch)+(FoVV/2)—beta new

gamma _new_rads = math.radians (gamma new)

Calculate the slope for line of sight through the current pixel from camera.

slope = (1/tan(gamma new_rads))*—1

Call LandSlopeEquations Function
ground elev ASL fitted, ground elev. AGL = LandSlopeEquations(BaseAltitude,
heading)

print (’The_slope_for_the_line_of_sight_from_the_camera_to_the_ground_on_the_
current _pixel_is:_’+str(slope))

Find coefficients for line of sight from camera that intersects with the
ground

line of sight pixel = numpy.zeros (4)

line of sight pixel[2] = slope

line_of sight_pixel[3] = Altitude AGL

Create equations and detrend the data

Create a numeric sequence starting at 0, ending at 30,000, the number of
indices to use is equal to

the length of ground elev. AGL (as calculated in LandSlopeEquations function)
(given information ,

the numerical difference between each value is calculated by the function

x _test represents distance in meters away from the TANAB2 launch site

X _test pixel = numpy.linspace (0, 30000, len(ground elev_AGL))

Make a polyfit of the x test distance away from TANAB2 launch site with
respect to

the detrended land surface elevation

Return the coefficients for a 3rd order polynomial of the detrended surface
elevation with

respect to distance away from the TANAB2 launch site

land _elevation equation_pixel AGL = numpy. polyfit (x_test pixel, ground_ elev_AGL,
3)

Find the roots and select the smallest positive value to be the horizontal

278

distance away from the
TANAB2 launch location
intersections pixel = land elevation equation pixel AGL — line of sight pixel
Roots new = numpy.roots(intersections pixel)
print (’The_roots_are:_’ + str (Roots new))

Create an array for the roots that are real numbers (not complex)

real roots new = numpy.empty (3)

real roots new [:] = numpy.nan
for m in range(0, len(Roots new)):
if numpy.iscomplex (Roots new|[m]) = False:
real roots new |[m|] = Roots new [m]

Initialize a variable that counts the number of non real roots
root_counter_new = 0

Identify the number of non real roots
for non_real root_new in range(0, len(Roots_new)):
if real roots_new[non_real root_mnew] < 0 or numpy.isnan (real_ roots_new [
non_real root new|) = True:

root counter new += 1

If no real roots exist, then continue to the next image
if root counter new == len(Roots new):
continue
else:
Choose the root that is the smallest real positive solution to be the
distance from the TANAB2
launch location
d_pixel proj ctr = min(n for n in real roots new if n > 0)
Convert d_center to km
d_pixel _proj_ctr_km = d_pixel proj_ctr / 1000

Put check in for d_pixel. If greater than 5 km (too far), continue on to
next y pixel

(This condition can be changed)

if d_pixel_proj_ctr_km > 5:
continue

else:
print (’The_horizontal_geographic_pixel_distance_as_projected_on_the_

center_of_the_image_is:

)

+str(d_pixel proj ctr km))

Get the alpha angle. The angle away from the geographic distance away
from the

TANAB2 and parallel to the camera line of sight

The alpha value is used to calculate the geographic distance away from
the

TANAB2 for pixels that are not parallel to the camera line of sight

Find the angle from the center line of the image given index i for the
current pixel

279

This will change the "effective" yaw angle
if i = 0:
alpha = — FoVH/2
alpha rads = math.radians (alpha)
elif (i > 0) and (i < x_pixel range/2):
alpha = — (x_pixel range/2—i) x FoVH / (x_pixel range)
alpha rads = math.radians (alpha)
elif i = x_ pixel range/2:
alpha rads = 0
elif (i > x_pixel range/2) and (i < x_pixel range):
alpha = (i — x_pixel range / 2) % FoVH / (x_pixel range)
alpha rads = math.radians (alpha)
elif i = x_pixel range:
alpha = FoVH/2
alpha rads = math.radians (alpha)

print ("alpha rads_is_equal_to:_"+ str(alpha rads))
print ("Yaw_ rads_is_equal_to:_" + str(Yaw_ rads))

Find the d hyp distance in km for each respective pixel

d pixel km = d_pixel proj ctr km/(cos(alpha rads))

Ensure this angle is strictly positive and less than 2xpi
if Yaw rads + alpha rads < 0:
Yaw rads adjusted = Yaw_ rads + alpha rads + 2 x numpy. pi

elif Yaw right rads + alpha rads > 2 * numpy.pi:
Yaw rads adjusted = Yaw rads + alpha rads — 2 * numpy. pi
else:

Yaw rads adjusted = Yaw_rads + alpha rads
print ("Yaw rads adjusted_is_equal_to:_" 4 str(Yaw rads adjusted))

Find the geographic coordinates for each specific pixel coordinate,
must add the calculated alpha to the Yaw value so we use
Yaw rads adjusted
lat2 pixel = asin(sin(Latitude rads) % cos(d_pixel km / Radius Earth) +
cos(Latitude rads)
* sin(d_pixel km / Radius_ Earth) * cos(
Yaw rads adjusted))
lon2 pixel = Longitude rads + atan2(sin(Yaw_ rads adjusted) = sin(
d pixel km / Radius_ Earth)
x cos(Latitude rads), cos(d_pixel km
/ Radius Earth)
— sin(Latitude rads) =* sin(
lat2 pixel))

Convert back to decimal degrees
lat2 pixel = math.degrees(lat2 pixel)

lon2 pixel = math.degrees(lon2 pixel)

print (’The_lat2 pixel_is:_ '+str(lat2 pixel)+’,_given_a_x_pixel_of:_ "+

280

str(i))
print (’The_lon2_pixel_is:_ '+str(lon2 pixel)+’,_given_a_y_pixel_of:_ "+
str(j)+’\n’)

Temperature Calculation

Some reference source on temperatures:

http://91.143.108.245/Downloads/Flir /Dokumentation/

T559498%a461 Manual. pdf

Temperature formula reference:

Thttps://graftek.biz/system/files /137/original/
FLIR AX5 GenlCam ICD Guide 052013.pdf?71376925336

Radiance relation to A/D counts reference: http://flir.custhelp.com/ci
/fattach/get /1667/

Useful reference from FLIR for thermal imaging and A/D counts/Signals

H+ H#* H

generated from
Thermal cameras: http://www. hoskin.ca/wp—content/uploads/2016/10/
flir thermal camera guide

for research professionals.pdf

Extract the RAW total signal value contained within the specific pixel
as denoted by i and j
Return the value to a variable
RAW total = subprocess.Popen (["exiftool_—b_—RawThermallmage_" +
directory + "/" + filename +
"_2>/dev/zero_|_magick_—_—crop_1X1+" +
str(i) + "+ + str(j) +
"_—colorspace_gray _—format_’%|mean|’_info:
."], shell=True,
stdout=subprocess.PIPE) .communicate () [0]

Need to decode RAW as its a bytes object to a string
RAW _total = RAW _total.decode (" utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

#

Calculate temperature for each specific pixel in in K and degC when
emissivity < 1.0

Call in Emis 29, Emis 31, Emis 32 and apply Wang et al. 2005

BroadBand Emissivity (BBE) formula

Check if BBE variables are in local variables, if they are do not call
in file
(do this for the first image only)

if ’emis filename’ not in locals():

281

Emissivity values are derived from the MODIS11B3 monthly land
surface emissivity file

MODIS image and a grid of coordinates at 500m resolution were
overlaid on each other in

QGIS (same procedure as the mining campaign)

Using the point extract tool, emissivity data and the
corresponding geographic

coordinates were extracted and saved to both a CSV and text file

For July 2018 Images
emis filename Jul = ’/export/home/users/username/Documents/DG_Temp/
Guelph 2018/MODIS/ > \
’Emissivity /LatLonEmisData_Jull8.csv’

For August 2018 Images
emis filename Aug = ’/export/home/users/username/Documents/DG_Temp/
Guelph 2018 /MODIS/’ \
’Emissivity /LatLonEmisData_Augl8.csv’

Call in emissivity data
emis data Jul = numpy.genfromtxt (emis filename Jul, delimiter=",",
skip header=1)
b

emis data Aug = numpy.genfromtxt (emis filename Aug, delimiter=’,",
skip header=1)

For July 2018

Latitude of Emissivity values

emis_lat Jul = emis data_Jul[:,0]
Longitude of Emissivity Values
emis_lon_Jul = emis_data_Jul[:,1]
MODIS Band 32 Emissivity Values
emis_32_ uncorrected_Jul = emis_data_Jul[:,2]
MODIS Band 29 Emissivity Values
emis_29_ uncorrected_Jul = emis_data_Jul[:,3]
MODIS Band 31 Emissivity Values
emis 31 uncorrected Jul = emis data Jul[:,4]

For August 2018
Latitude of Emissivity values

emis lat Aug = emis data Aug[:, 0]

Longitude of Emissivity Values

emis_lon_ Aug = emis_data_ Aug[:, 1]

MODIS Band 32 Emissivity Values

emis_32 uncorrected Aug = emis_data_Aug[:, 2]
MODIS Band 29 Emissivity Values

emis_ 29 uncorrected Aug = emis_data_Aug[:, 3]
MODIS Band 31 Emissivity Values

emis_ 31 uncorrected Aug = emis_data_Aug[:, 4]

Initialize corrected emissivity variables
For July 2018

282

emis_32_corrected Jul = numpy.zeros ((len(emis_32_ uncorrected_Jul),

1))

emis_29_ corrected_Jul = numpy.zeros ((len(emis_32_ uncorrected_Jul),
1))
emis 31 corrected Jul = numpy.zeros ((len(emis 32 uncorrected Jul),

1))

For August 2018

emis 32 corrected Aug = numpy.zeros ((len(emis 32 uncorrected Aug),
1))

emis 29 corrected Aug = numpy.zeros ((len(emis 32 uncorrected Aug),
1))

emis_ 31 corrected Aug = numpy.zeros ((len(emis_32 uncorrected Aug),

1))

Convert all emissivity values (multiply by scale factor and add
offset) as per:

MODIS documentation: https://lpdaac.usgs.gov/sites/default/files/
public/

product documentation/modll user guide.pdf

emis scale = 0.002

emis offset = 0.49

Calculate the true emissivity values for each band by applying the
appropriate scale
factor and additive offset for each index of each array
for k in range(0, len(emis lat_ Jul)):
For July 2018
Apply Emissivity scale/offset factors to Band 29
emis 29 corrected Jul[k] = (emis_ 29 uncorrected Jul[k]x
emis scale)temis offset
Apply Emissivity scale/offset factors to Band 31
emis_31_corrected_Jul[k] = (emis_31_uncorrected_Jul[k]x*
emis scale)+emis offset
Apply Emissivity scale/offset factors to Band 32
emis_32_ corrected_Jul[k] = (emis_32_uncorrected_Jul[k]x

emis scale)temis offset

For August 2018

Apply Emissivity scale/offset factors to Band 29

emis 29 corrected Aug|k] = (emis 29 uncorrected Aug[k]| =x
emis scale) + emis offset

Apply Emissivity scale/offset factors to Band 31

emis 31 corrected Aug|k| = (emis 31 uncorrected Augl|k] =x
emis scale) + emis offset

Apply Emissivity scale/offset factors to Band 32

emis_ 32 corrected Aug|k] = (emis_32 uncorrected Aug|[k]| =*

emis scale) + emis offset
Create new array for BBE, is used to calculation ST

For July 2018
BBEmissivity Jul = numpy.zeros ((len(emis lat Jul) ,1))

283

For August 2018
BBEmissivity Aug = numpy.zeros ((len(emis lat Aug), 1))

Initialize coefficients for BBE formula as per Wang et al 2005 pg
7 of 12 Table 2

See the following for more information: https://doi.org
/10.1029/2004JD005566

BBE_ constant 29 = 0.2122

BBE_constant 31 = 0.3859

BBE _constant 32 0.4029

Calculate BBE for each index
Haversine Distance Formula from:
https://stackoverflow.com/questions /19412462 /getting —distance—
between—two—points
—based—on—latitude —longitude
for k in range(0, len(emis lat Jul)):
BBEmissivity Jul[k| = (BBE_constant 29xemis 29 corrected Jul[k])
+\
(BBE_constant 31xemis 31 corrected Jul[k])
+\
(BBE_constant 32xemis 32 corrected Jul[k])
BBEmissivity Aug|k|] = (BBE_constant 29xemis 29 corrected Aug|[k])
+\
(BBE_constant 31xemis 31 corrected Auglk])
+\
(BBE _constant 32xemis 32 corrected Auglk])

Initialize Haversine distance array

This array is used to calculate the geographic distance between
the BBE values and the

specific pixel location

The BBE index with smallest distance between the two geographic
coordinates will be used as

the emissivity value in the surface temperature calculation

Note: The length of emis lat Jul and emis lat Aug are the same.
The latitude/longitude

coordinates are the same for each case. Only emissivity changes
between the two months

haversine d = numpy.empty ((len(emis lat Jul), 1))

Initialize haversine formula variables to be used in the

HaversinePixelCalc function\

haversine d|[:] = numpy.nan
haversine _a = 0
haversine ¢ = 0

haversine dlat = 0
haversine dlon = 0

Run following function with the @jit compiler in parallel
Haversine Distance Formula from:
https://stackoverflow.com/questions /19412462/getting—distance —between

284

—two—points
—based—on—latitude —longitude
haversine_d = HaversinePixelCalc(emis_lat_Jul, lat2_pixel, emis_lon_Jul,

lon2 pixel, Radius_ Earth, haversine d)

Find minimum index of the output of the haversine formula with the
smallest distance

This will be the index that has the surface emissivity value that will
be used

in the temperature calculation for the specific pixel

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to
1

Source: Usamentiaga et al.: https://doi.org/10.3390/s140712305

Reflected Apparent Temperature as per FLIR manual

F* 3k

(http://www. cctvcentersl.es/upload /Manuales/A3xxx A6xxx manual eng.
pdf)
and image metadata (use ExifTool in Linux terminal)

Note: Depending on the imaged surface, this paramater may change

Return the reflected apparent temperature (degrees C) from the image
metadata with

the Linux terminal and ExifTool

refl temp degC

= subprocess.Popen (["exiftool _—b_—

ReflectedApparentTemperature_ "

+ directory + "/" + filename], shell=
True,

stdout=subprocess .PIPE) . communicate ()

[0]

Decode the value and convert its type to a float
refl _temp_degC = refl temp_ degC.decode("utf—8")
refl_temp_degC = float (refl _temp_degC)

Convert reflected apparent temp from degC to K
refl temp K = pytemperature.c2k(refl temp degC)

Get Raw reflected apparent temperature signal value

See the FLIR Manual: http://www.cctvcentersl.es/upload/Manuales/
A3xxx A6xxx manual eng.pdf and

RAWrefl = (R1/(R2x*(math.exp(B/(refl temp K))-F))—planck O)

RAWrefl remains the same for all pixels as it is a function of the
assumed

constant apparent reflected temperature

Check to see if July or August BBE should be used
if mnth =— str (7):
RAWobj = (RAW _total — (1 — BBEmissivity Jul|[min idx]) % RAWrefl) /
BBEmissivity _Jul [min_idx]

285

elif mnth = str(8):
RAWobj = (RAW _total — (1 — BBEmissivity Aug|min_ idx]) % RAWrefl) /
BBEmissivity Aug|min_idx]
else:

print (’Double_check_the_value_and_data_type_of_the_mnth_variable)

Rearrange the RAW object signal value to calculate the object
temperature of each pixel in

degC and Kelvin

Consider the case for when emissivity is not equivalent to 1

LST kelvin = (B/numpy.log (R1/(R2x(RAWobjt+planck O))+F))

LST degree = (B/numpy.log(R1/(R2*(RAWobj+planck O))+F) —273.15)

Save data to matrix for the specific image

The data in this matrix is then saved to a master matrix which will
include all surface

temperature data for pixels from each file in the ’Rawlmages’
directory

Save the filename for each corresponding pixel location, not used in
data analysis ,

only used as a check as the files are not processed chronologically

filename image[i][j][0] = filename

Save the year for each corresponding pixel location for when the image
was recorded

image matrix[i]|[j][0] = yr

Save the month for each corresponding pixel location for when the
image was recorded

image matrix[i]|[j][1] = mnth

Save the day for each corresponding pixel location for when the image
was recorded

image matrix[i]|[j][2] = day

Save the hour for each corresponding pixel location for when the image
was recorded

image matrix[i]|[j][3] = hr

Save the minute for each corresponding pixel location for when the
image was recorded

image matrix[i]|[]j][4] = minute

Save the calculated latitude for each corresponding pixel location

image matrix[i]|[]j][5] = lat2 pixel

Save the calculated longitude for each corresponding pixel location

image matrix[i]|[j][6] = lon2 pixel

Save the horizontal pixel coordinate that was processed to obtain ST

image matrix[i]|[j][7] = i

Save the vertical pixel coordinate that was processed to obtain ST

image matrix[i]|[j][8] = j

Save the ST in kelvin of each corresponding pixel location where
emissivity does not equal 1

image matrix[i]|[j][9] = LST_kelvin

Save the ST in degC of each corresponding pixel location where
emissivity does not equal 1

image matrix[i][j]|[10] = LST degree

286

Save known latitude , longitude, and x/y pixels to arrays
TANAB2 launch location
for origin in range(0, numFiles):
if int(lat TANAB array|[origin]) = 0:
lat TANAB array|[origin] = Latitude
lon TANAB_ array|[origin| = Longitude
break

Save known location for the top left pixel

Initialize variables identifying top left pixel in terms of horizontal/vertical pixel
row/column location

horiz_pixel = 0

vert pixel = v_pixel top

Extract the RAW total value for the top left pixel through the Linux terminal with
ExifTool and ImageMagcick
RAW _total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero_|_magick_—_—crop_1X1+" + str(horiz pixel) +
"+" + str(vert pixel) +
"_—colorspace_gray_—format_’%|mean|’_info:_"],
shell=True, stdout=subprocess.PIPE).communicate() [0]

Need to decode RAW total as its a bytes object to a string
RAW total = RAW _total.decode ("utf—8")

Convert RAW total from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:]| = numpy.nan
haversine_a = 0
haversine ¢ = 0

haversine dlat = 0
haversine dlon = 0

if ’lat2 top’ in locals():
Calculate Haversine distance for the top left pixel to identify the emissivity
value to use in the ST calculation
haversine _d = HaversinePixelCalc top left(emis lat Jul, lat2 top left, emis lon Jul,

lon2_top_left, Radius_Earth, haversine d)

Find the index with the lowest distance between the 2 geographic coordinates

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1
Source: Usamentiaga et al.: https://doi.org/10.3390/s140712305

287

Check to see if July or August BBE should be used
if mnth = str (7):
RAWobj = (RAW total — (1 — BBEmissivity Jul|min idx]) % RAWrefl) /
BBEmissivity Jul [min _idx]
elif mnth =— str(8):
RAWobj = (RAW _total — (1 — BBEmissivity Aug|min_ idx]) % RAWrefl) /
BBEmissivity Aug|[min_idx]
else:
print (’Double_check_the_value_and_data_type_of_the_mnth_variable’)

Calculate temperature of each pixel in kelvin and degC respectively
LST kelvin = (B / numpy.log(R1 / (R2 * (RAWobj + planck O)) + F))
LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|horiz pixel|[vert pixel]|[0] = filename
image matrix|[horiz pixel]|[vert pixel][0] = yr

image matrix|[horiz pixel][vert pixel|[1] = mnth

image matrix|[horiz pixel][vert pixel]|[2] = day

image matrix|[horiz pixel][vert pixel][3] = hr

image matrix|[horiz pixel]|[vert pixel|[4] = minute

image matrix|[horiz pixel|[vert pixel][5] lat2 top left
lon2 top left

image matrix[horiz pixel|[vert pixel|[7] = horiz pixel

image matrix|[horiz pixel|[vert pixel|[6]

image matrix|[horiz pixel|[vert pixel]|[8] vert pixel
image matrix[horiz pixel|[vert pixel|[9] = LST _ kelvin

image matrix[horiz pixel|[vert pixel|[10] = LST_degree

Save latitude , longitude, x, and y pixel values to arrays

for i in range(0, numFiles):

if int(tLeft lat array[i]) = O:
tLeft lat array[i] = lat2 top left
tLeft lon array[i] = lon2 top left
tLeft x pixel array[i] = horiz pixel

tLeft y pixel array|[i] = vert pixel
break

H

Save known location for the top center pixel

Initialize variables identifying top center pixel in terms of horizontal/vertical
pixel row/column location

horiz_pixel = int(x_pixel range/2)

vert pixel = v_pixel top

Extract the RAW total value for the top center pixel through the Linux terminal with
ExifTool and ImageMagcick
RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero_|_magick_—_—crop_1XI14+" + str(horiz_ pixel) +

288

"+" + str(vert pixel) +
"_—colorspace_gray_—format_’%[mean]’ _info:_"], shell=True,
stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a string
RAW total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW _total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d [:] = numpy.nan
haversine _a = 0
haversine_c¢ = 0

haversine dlat = 0
haversine dlon = 0

Call Haversine top center pixel function to identify the emissivity value to use in
the

surface temperature calculation

if ’lat2 top’ in locals():
haversine d = HaversinePixelCalc top center(emis lat Jul, lat2 top, emis lon Jul,

lon2 top, Radius Earth, haversine d)

Find the index with the lowest distance between the 2 geographic coordinates

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1

Source: Usamentiaga et al.: https://doi.org/10.3390/s140712305

Check to see if July or August BBE should be used and calculate Raw object
temperature
if mnth =— str (7):
RAWobj = (RAW _total — (1 — BBEmissivity Jul|[min idx]) % RAWrefl) /
BBEmissivity Jul[min _idx]
elif mnth =— str(8):
RAWobj = (RAW _total — (1 — BBEmissivity Aug[min_idx]) x RAWrefl) /
BBEmissivity Aug|[min_idx|
else:

print (’Double_check_the_value_and_data_type_of_the_mnth_variable’)

Calculate temperature of each pixel in kelvin and degC respectively
LST kelvin = (B / numpy.log(R1 / (R2 * (RAWobj + planck O)) + F))
LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|[horiz pixel|[vert pixel|[0] = filename

image matrix|[horiz pixel][vert pixel][0] = yr
image matrix|[horiz pixel][vert pixel|[1] = mnth
image matrix|[horiz pixel]|[vert pixel]|[2] = day
image matrix|[horiz pixel]|[vert pixel][3] = hr

289

image matrix|[horiz pixel]|[vert pixel|[4] = minute
lat2 top
image matrix|[horiz pixel][vert pixel|[6] = lon2 top

image matrix|[horiz pixel][vert pixel][5]

image matrix|[horiz pixel][vert pixel][7] horiz pixel

image matrix|[horiz pixel|[vert pixel][8] vert pixel
image matrix|[horiz pixel|[vert pixel|[9] = LST _ kelvin

image matrix|[horiz pixel|[vert pixel]|[10] = LST_degree

Save latitude , longitude, x, and y pixel values to arrays
for i in range(0, numkFiles):
if int(tCenter lat array[i]|) = O0:
tCenter lat array[i] = lat2_ top

tCenter lon_ array|[i] = lon2_ top
tCenter x_pixel array[i] = horiz pixel
tCenter_y pixel array[i] = vert_pixel
break

1y I

I

TN ININTI TR NI INIRIe| TN IR IR TR I I IR NI IR IR IR R IR TRy T RN IR NIRRT NI NI NIRRT R IR IR
T AT

Save known coordinates for the top right pixel

Initialize variables identifying top right pixel in terms of horizontal/vertical pixel
row/column location

horiz pixel = x pixel range-—1

vert pixel = v_pixel top

Extract the RAW total value for the top right pixel through the terminal with ExifTool
and ImageMagcick
RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero._|_magick_—_—crop_1X14+" + str(horiz_ pixel) +
"+" + str(vert pixel) +

"_—colorspace_gray_—format_’%[mean]’ _info:_"], shell=True,

stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a string
RAW _total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:] = numpy.nan
haversine a = 0
haversine ¢ = 0

haversine dlat = 0
haversine dlon = 0

if ’lat2 top’ in locals():
Call Haversine top right pixel function to identify the emissivity value to use in
the

surface temperature calculation

290

Ty
T

haversine_d = HaversinePixelCalc_top_right(emis_lat_Jul, lat2_top_right,
emis_lon_Jul,
lon2 top right, Radius_ Earth, haversine d

)

Find the index with the lowest distance between the 2 geographic coordinates

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1
Source: Usamentiaga et al: https://doi.org/10.3390/s140712305
Check to see if July or August BBE should be used
if mnth = str(7):
RAWobj = (RAW _ total — (1 — BBEmissivity Jul|[min idx]) * RAWrefl) /
BBEmissivity Jul [min_idx]
elif mnth =— str(8):
RAWobj = (RAW _total — (1 — BBEmissivity Aug|min_ idx]) % RAWrefl) /
BBEmissivity Aug|min_idx]|
else:

print (’Double_check_the_value_and_data_type_of_the_mnth_variable’)
Calculate temperature of each pixel in kelvin and degC respectively
LST kelvin = (B / numpy.log(R1 / (R2 * (RAWobj + planck O)) + F))
LST degree = (B / numpy.log(R1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|[horiz pixel][vert pixel][0] = filename
image matrix|[horiz pixel]|[vert pixel][0] = yr

image matrix|[horiz pixel][vert pixel|[1] = mnth

image matrix[horiz pixel][vert pixel]|[2] = day

image matrix|[horiz pixel]|[vert pixel][3] = hr

image matrix|[horiz pixel][vert pixel|[4] = minute

image matrix|[horiz pixel]|[vert pixel][5] = lat2 top right
image matrix|[horiz pixel][vert pixel][6] = lon2 top_ right
image matrix|[horiz pixel]|[vert pixel]|[7] = horiz_ pixel
image matrix|[horiz pixel]|[vert pixel][8] = vert pixel
image matrix|[horiz pixel][vert pixel|[9] = LST kelvin

image matrix|[horiz pixel]|[vert pixel]|[10] = LST degree

Save latitude , longitude, x, and y pixel values to arrays
for i in range(0, numPFiles):
if int (tRight lat array[i]) = O0:
tRight lat array[i] = lat2 top right
tRight lon_array[i] = lon2_ top_ right

tRight x pixel array[i]| = horiz_pixel
tRight _y pixel array[i] = vert_pixel
break

For the middle left pixel

291

Initialize variables identifying the middle left pixel in terms of horizontal/vertical
pixel row/column location
horiz pixel = 0

vert pixel = int(y pixel range / 2)

Extract the RAW total value for the middle left pixel through the Linux terminal with
ExifTool and ImageMagcick
RAW _total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero_|_magick_—_—crop_1X1+" + str(horiz pixel) +
"+" + str(vert pixel) +
"_—colorspace_gray_—format_’'%|mean|’_info:_ "], shell=True,

stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a string
RAW_total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:] = numpy.nan
haversine a = 0
haversine ¢ = 0

haversine dlat = 0
haversine dlon = 0

if ’lat2 center’ in locals():
Call Haversine center left pixel function to identify the emissivity value to use in
the surface
temperature calculation
haversine_d = HaversinePixelCalc_center_left (emis_lat_Jul, lat2_center_left,
emis_lon_Jul, lon2 center_left,
Radius_Earth, haversine_d)

Find the index with the lowest distance between the 2 geographic coordinates

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1
Source: Usamentiaga et al.: https://doi.org/10.3390/s140712305

Check to see if July or August BBE should be used
if mnth = str (7):
RAWobj = (RAW _total — (1 — BBEmissivity Jul[min idx]) *= RAWrefl) /
BBEmissivity Jul[min idx]
elif mnth = str(8):
RAWobj = (RAW _total — (1 — BBEmissivity Aug|min idx]) * RAWrefl) /
BBEmissivity Aug|[min_idx]

else:

print (’Double_check_the_value_and_data_type_of_the_mnth_variable’)

Calculate temperature of each pixel in kelvin and degC respectively

292

LST kelvin = (B / numpy.log(R1 / (R2 * (RAWobj + planck O))
LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O))

))

+F
+ F) — 273.15)

Save data to matrix for specific image

filename image|horiz pixel|[vert pixel|[0] = filename
image matrix|[horiz pixel|[vert pixel|[0] = yr

image matrix|[horiz pixel|[vert pixel|[1] = mnth

image matrix[horiz pixel|[vert pixel]|[2] = day

image matrix[horiz pixel|[vert pixel|[3] = hr

image matrix[horiz pixel|[vert pixel|[4] = minute

image matrix|[horiz pixel]|[vert pixel|[5] = lat2 center left

image matrix|[horiz pixel][vert pixel]|[6]

lon2 center left

image matrix|[horiz pixel][vert pixel]|[7]

horiz pixel
image matrix|[horiz pixel]|[vert pixel][8] = vert pixel
image matrix|[horiz pixel][vert pixel|[9] = LST _ kelvin

image matrix|[horiz pixel][vert pixel][10] = LST degree

Save latitude , longitude, x, and y pixel values to arrays
r

for i in range(0, numFiles):
if int(cLeft lat array[i]) = O0:
cLeft lat array[i] = lat2 center left
cLeft lon array[i] = lon2 center left
cLeft x pixel array[i] = horiz pixel
cLeft y pixel array[i] = vert pixel
break

For the middle center pixel

Initialize variables identifying the center pixel in terms of horizontal/vertical
pixel

row/column location

horiz pixel = int(x_pixel range/2)

vert pixel = int(y_ pixel range/2)

Extract the RAW total value for the center pixel through the Linux terminal with
ExifTool and ImageMagcick
RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero_|_magick_—_—crop_1X1+" + str(horiz pixel) +
"+" 4+ str(vert pixel) +
"_—colorspace_gray_—format_’'%|mean|’_info:_"], shell=True,
stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a string
RAW _total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

293

haversine d[:]| = numpy.nan

haversine a = 0
haversine ¢ = 0
haversine dlat = 0

|
=)

haversine dlon =

if ’lat2 center’

in locals():

Call Haversine center pixel function to identify the emissivity value to use in
the surface

temperature calculation

haversine _d = HaversinePixelCalc center(emis lat Jul, lat2 center, emis lon Jul,

lon2 center, Radius Earth, haversine d)

Find minimum distance index

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1
Source: Usamentiaga et al: https://doi.org/10.3390/s140712305

Check to see if July or August BBE should be used
if mnth =— str (7):
RAWobj = (RAW _ total — (1 — BBEmissivity Jul|min idx]) % RAWrefl) /
BBEmissivity Jul[min_idx]
elif mnth = str(8):
RAWobj = (RAW _total — (1 — BBEmissivity Aug[min_ idx]) x= RAWrefl) /
BBEmissivity Aug|[min_idx]
else:

print (’Double_check_the_value_and_data_type_of_the_mnth_variable)

Calculate temperature of each pixel in degC
LST kelvin = (B / numpy.log(R1 / (R2 * (RAWobj + planck O))
LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O))

))

+ F
+ F) — 273.15)

Save data to matrix for specific image

filename image|horiz pixel|[vert pixel|[0] = filename
image matrix|[horiz pixel][vert pixel]|[0] = yr

image matrix|[horiz pixel|[vert pixel|[1] = mnth

image matrix|[horiz pixel][vert pixel]|[2] = day

image matrix|[horiz pixel|[vert pixel|[3] = hr

image matrix|[horiz pixel|[vert pixel|[4] = minute

image matrix[horiz pixel|[vert pixel][5]

lat2 center

image matrix[horiz pixel|[vert pixel|[6] lon2 center

image matrix[horiz pixel|[vert pixel|[7] = horiz_pixel
image matrix|[horiz pixel]|[vert pixel]|[8] = vert pixel
image matrix|[horiz pixel][vert pixel|[9] = LST_ kelvin
image matrix|[horiz pixel][vert pixel][10] = LST _ degree

Save latitude , longitude, x, and y pixel values to arrays
for i in range(0, numFiles):
if int(center lat array|[i]) = O0:

center lat array[i] = lat2 center

294

center lon array|[i]| = lon2 center
center x pixel array[i] = horiz_ pixel
center y pixel array|[i]
break

vert pixel

For the middle right pixel

Initialize variables identifying the middle right pixel in terms of horizontal/
vertical pixel row/column location

horiz _pixel = x_pixel range—1

vert pixel = int(y pixel range/2)

Extract the RAW total value for the middle

right pixel through the terminal with
Exiftool and ImageMagcick

RAW _total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +

"_2>/dev/zero_|_magick_—_—crop_1XI14+" + str(horiz_ pixel) +
"+" + str(vert pixel) +

"_—colorspace_gray_—format_ %|mean]|’_info:_"], shell=True,
stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a string
RAW _total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:]| = numpy.nan
haversine_a = 0
haversine_c = 0

haversine dlat = 0
haversine dlon = 0

if ’lat2 center’ in locals():
Call Haversine center right pixel function to identify the emissivity value to use
in the surface

temperature calculation

haversine d = HaversinePixelCalc center right(emis lat Jul, lat2 center right,
emis lon_Jul,

lon2 center right, Radius_FEarth,
haversine d)

Find minimum distance index

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1

Source: Usamentiaga et al.: https://doi.org/10.3390/s140712305

Check to see if July or August BBE should be used

295

if mnth =— str(7):
RAWobj = (RAW _total — (1 — BBEmissivity Jul|[min_ idx]) % RAWrefl) /
BBEmissivity Jul[min _idx]
elif mnth =— str(8):
RAWobj = (RAW _total — (1 — BBEmissivity Aug|min_ idx]) % RAWrefl) /
BBEmissivity Aug|[min_idx]|
else:
print (’Double_check_the_value_and_data_type_of_the_mnth_variable’)

Calculate temperature of each pixel in Kelvin and degC respectively
LST kelvin = (B / numpy.log(R1 / (R2 * (RAWobj + planck O)) + F))
LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|[horiz pixel|[vert pixel]|[0] = filename

image matrix|[horiz pixel][vert pixel][0] = yr

image matrix|[horiz pixel]|[vert pixel|[1] = mnth

image matrix|[horiz pixel][vert pixel][2] = day

image matrix|[horiz pixel]|[vert pixel][3] = hr

image matrix|[horiz pixel][vert pixel|[4] = minute

image matrix|[horiz pixel][vert pixel|[5] = lat2 center right
image matrix|[horiz pixel|[vert pixel|[6] = lon2 center right
image matrix|[horiz pixel|[vert pixel|[7] = horiz pixel

image matrix[horiz pixel|[vert pixel|[8] = vert pixel

image matrix|[horiz pixel|[vert pixel|[9] = LST kelvin

image matrix[horiz pixel|[vert pixel|[10] = LST_degree

Save latitude , longitude, x, and y pixel values to arrays
for i in range(0, numPFiles):
if int (cRight lat array[i]) = O0:

cRight _lat_array[i]| = lat2_ center_ right
cRight_lon_array[i] = lon2_ center_right
cRight _x_pixel array[i] = horiz_pixel
cRight y pixel array[i] = vert_ pixel
break

H

For the bottom left pixel

Initialize variables identifying the bottom left pixel in terms of horizontal/vertical
pixel row/column location

horiz pixel = 0

vert pixel = y pixel range—1

Extract the RAW total value for the bottom left pixel through the Linux terminal with
ExifTool and ImageMagcick
RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero_|_magick_—_—crop_1XI14+" + str(horiz_ pixel) +
"+" + str(vert pixel) +

296

"_—colorspace_gray_—format_’'%|mean|’_info:_"],

stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a string
RAW total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW _total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:] = numpy.nan
haversine _a = 0
haversine_c¢ = 0

haversine dlat = 0
haversine dlon = 0

if ’lat2 bottom’ in locals():

shell=True,

Call Haversine bottom left pixel function to identify the emissivity value to use

in the

surface temperature calculation

haversine d = HaversinePixelCalc bottom left(emis lat Jul, lat2 bottom left,

emis lon_ Jul,

lon2 bottom left, Radius FEarth,

haversine d)

Find minimum distance index

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1

Source: Usamentiaga et al.: https://doi.org/10.3390/s140712305

Check to see if July or August BBE should be used
if mnth =— str(7):

RAWobj = (RAW _total — (1 — BBEmissivity Jul|[min idx]) % RAWrefl) /

BBEmissivity Jul[min _idx]
elif mnth — str (8):

RAWobj = (RAW _total — (1 — BBEmissivity Aug|min_ idx]) % RAWrefl) /

BBEmissivity Aug|min_idx]|
else:

print (’Double_check_the_value_and_data_type_of_the_mnth_variable’)

Calculate temperature of each pixel in kelvin and degC respectively

LST kelvin = (B / numpy.log(R1 / (R2 x (RAWobj + planck O)) + F))

LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|[horiz pixel|[vert pixel|[0] = filename
image matrix|[horiz pixel][vert pixel][0] = yr

image matrix|[horiz pixel][vert pixel|[1] = mnth

image matrix|[horiz pixel]|[vert pixel]|[2] = day

image matrix|[horiz pixel]|[vert pixel][3] = hr

297

image matrix|[horiz pixel]|[vert pixel|[4] = minute

image matrix|[horiz pixel][vert pixel]|[5] = lat2 bottom left
image matrix|[horiz pixel]|[vert pixel|[6] = lon2 bottom left
image matrix|[horiz pixel]|[vert pixel|[7] = horiz_pixel
image matrix|[horiz pixel|[vert pixel|[8] = vert_ pixel

image matrix|[horiz pixel|[vert pixel|[9] = LST _ kelvin

image matrix|[horiz pixel|[vert pixel]|[10] = LST_degree

Save latitude ,
for i in range(0, numFiles):
if int(bLeft lat

longitude , x, and y pixel values to arrays

_array[i]) = O0:

bLeft lat array[i] = lat2 bottom left
bLeft lon_ array[i] = lon2_ bottom left
bLeft x pixel array[i] = horiz pixel
bLeft y pixel array[i] = vert pixel
break
#
A A
For the bottom center pixel

Initialize variables identifying the bottom center pixel in terms of horizontal/

vertical
pixel row/column location
horiz

_pixel = int(x_pixel range/2)

vert pixel = y pixel range-—1

Extract the RAW total value for the bottom center pixel through the Linux terminal

with ExifTool and ImageMagcick
RAW total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +

filename +

2>/dev/zero|_magick_.—_—crop_1X14+" + str(horiz pixel) +
"+" + str(vert pixel) +
'_—colorspace_gray _—format_’%[mean]|’_info:_"], shell=True,

stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a string
RAW _total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation

haversine d[:] = numpy.nan
haversine a = 0
haversine ¢ = 0

haversine dlat = 0
haversine dlon = 0

if ’lat2 bottom’

in locals():
Call Haversine bottom pixel function to identify the emissivity value to use
the surface

temperature calculation

298

in

haversine_d = HaversinePixelCalc_bottom (emis_lat_Jul, lat2_bottom, emis lon_Jul,
lon2_ bottom,
Radius_Earth, haversine d)

Find minimum distance index

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1
Source: Usamentiaga et al.: https://doi.org/10.3390/s140712305

Check to see if July or August BBE should be used
if mnth =— str(7):
RAWobj = (RAW _ total — (1 — BBEmissivity Jul[min idx]) * RAWrefl) /
BBEmissivity Jul [min_idx]
elif mnth =— str(8):
RAWobj = (RAW _total — (1 — BBEmissivity Aug|min_ idx]) * RAWrefl) /
BBEmissivity Aug|[min_idx]
else:

print (’Double_check_the_value_and_data_type_of_the_mnth_variable)
Calculate temperature of each pixel in kelvin and degC respectively
LST kelvin = (B / numpy.log(R1 / (R2 * (RAWobj + planck O)) + F))
LST degree = (B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

Save data to matrix for specific image

filename image|[horiz pixel]|[vert pixel][0] = filename
image matrix|[horiz pixel|[vert pixel|[0] = yr

image matrix|[horiz pixel]|[vert pixel|[1] = mnth

image matrix|[horiz pixel][vert pixel|[2] = day

image matrix[horiz pixel][vert pixel][3] = hr

image matrix|[horiz pixel][vert pixel|[4] = minute

image matrix|[horiz pixel][vert pixel][5]

lat2 bottom

image matrix|[horiz pixel][vert pixel][6] lon2 bottom

image matrix|[horiz pixel]|[vert pixel]|[7] = horiz_ pixel

image matrix|[horiz pixel][vert pixel][8] vert pixel
image matrix|[horiz pixel][vert pixel|[9] = LST kelvin
image matrix|[horiz pixel]|[vert pixel][10] = LST degree

Save latitude , longitude, x, and y pixel values to arrays
for i in range(0, numFiles):
if int(bCenter lat array[i]) = 0:

bCenter lat array|[i] = lat2_ bottom

bCenter lon_ array|[i]| = lon2 bottom
bCenter x pixel array[i] = horiz_pixel
bCenter y pixel array[i] = vert_pixel
break

For the bottom right pixel

299

Initialize variables identifying the bottom right pixel in terms of horizontal/
vertical pixel row/column location
horiz pixel = x_pixel range-—1

vert pixel y_pixel range-—1
Extract the RAW total value for the bottom right pixel through the Linux terminal with
ExifTool and ImageMagcick
RAW _total = subprocess.Popen(["exiftool_—b_—RawThermallmage_" + directory + "/" +
filename +
"_2>/dev/zero_|_magick_—_—crop_1X1+" + str(horiz pixel) +
"+" + str(vert pixel) +
"_—colorspace_gray_—format_’'%|mean|’_info:_ "], shell=True,

stdout=subprocess .PIPE) . communicate () [0]

Need to decode RAW as its a bytes object to a string
RAW_total = RAW _total.decode ("utf—8")

Convert RAW from string to float
RAW total = float (RAW _total)

Initialize arrays used in haversine calculation
haversine d[:] = numpy.nan

haversine a = 0

haversine ¢ = 0

haversine dlat = 0

haversine dlon = 0

if ’lat2 bottom’ in locals():
Call Haversine bottom right pixel function
haversine _d = HaversinePixelCalc_bottom right(emis_lat Jul, lat2 bottom right,
emis_lon_ Jul,
lon2 _bottom _right, Radius_Earth,

haversine d)

Find minimum distance index

min_idx = numpy.argmin (haversine d)

For the temperature calculation assume that transmissivity is close to 1
Source: Usamentiaga et al.: https://doi.org/10.3390/s140712305

Check to see if July or August BBE should be used
if mnth =— str (7):
RAWobj = (RAW _total — (1 — BBEmissivity Jul[min_ idx]) %= RAWrefl) /
BBEmissivity Jul[min_idx]
elif mnth = str(8):
RAWobj = (RAW _total — (1 — BBEmissivity Aug[min_idx]) x RAWrefl) /
BBEmissivity Aug|[min_idx]
else:

print (’Double_check_the_value_and_data_type_of_the_mnth_variable)

Calculate temperature of each pixel in kelvin and degC respectively
LST kelvin = (B / numpy.log(R1 / (R2 * (RAWobj + planck O)) + F))

300

LST _degree =

Save data to matrix for specific

image

filename image|horiz pixel|[vert pixel|[O0]

image matrix|[horiz pixel][vert pixel]|[0]
image matrix|[horiz pixel|[vert pixel]|[1]
image matrix|[horiz pixel|[vert pixel]|[2]
image matrix[horiz pixel|[vert pixel][3]
image matrix[horiz pixel|[vert pixel]|[4]
image matrix[horiz pixel|[vert pixel]|[5]
image matrix|[horiz pixel][vert pixel]|[6]
image matrix|[horiz pixel][vert pixel][7]
image matrix|[horiz pixel][vert pixel][8]

image matrix|[horiz pixel][vert pixel][9]

(B / numpy.log(Rl1 / (R2 * (RAWobj + planck O)) + F) — 273.15)

= filename

yr
mnth

day

hr

minute

lat2 _bottom right
lon2 _bottom _right
horiz pixel

vert pixel

LST _kelvin

image matrix|[horiz pixel][vert pixel][10] = LST _ degree

Save latitude , longitude, x,
for i in range(0, numFiles):
if int (bRight lat array|[i])

bRight lat array[i] =

— 0:

and y pixel

values to arrays

lat2 bottom right

bRight lon array[i]| = lon2 bottom right

bRight x pixel array[i] = horiz pixel
bRight y pixel array[i] = vert pixel
break

"

Delete the following variables for the next
if ’lat2 top’ in locals():
del lat2 top left
del lon2 top left
del lat2 top
del lon2 top
del lat2 top_ right
del lon2 top_ right
if ’lat2 center’ in locals():
del lat2 center left
del lon2 center left
del lat2 center
del lon2 center
del lat2 center right
del lon2 center right
if ’lat2 bottom’ in locals():
del lat2 bottom left
del lon2 bottom left
del lat2 bottom
del lon2 bottom
del lat2 bottom right
del lon2 bottom right
Save image matrix data to master matrix

all pixel data multi_ image =

301

loop

iteration

SaveMasterMatrix (x_pixel range, v_pixel top, y pixel range,

image matrix,
all pixel data multi image, filename image

, filenames total)

The number of elements is equivalent to the total length of the all pixel data multi image
array

(the total length is the maximum possible data points extracted from each image

num_elements = int ((numFiles*x max stepxy max step)—1)

Variable corresponding to the row where the Nan values start

row_nan = 0

Find the index where the Nan rows start (do this so Nan values are not written to the file
)

This variable will be used when saving the data to omit any Nan data values from the
Processed data text file

for i in range(0, num elements):

if numpy.isnan(all pixel data multi image[i]|[5]) = True:
row_nan = i
break

Today’s date is
today date = datetime.date.today().strftime ("%B %d %Y")

Write Geographic, temperature, and Image Pixel Data to File. The name of the file XXXMEDIA

corresponds to the file name of images being processed

outputFileName = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018 /Processed Data/
August /102MEDIA Temps. txt ’

outputFile = open(outputFileName,

W)
outputFile.write ("#_Date,_Time, _Lat,_Long_and_Temp_for_each_image_\n")
"#By:_Ryan_Byerlay_\n")

"#Created _on_"+today date+"_\n")

"#Recorded _Time_is_Local_Time_(EDT)_\n")

"NOTE: _The_column_represnting _minutes_may_have_a_single_digit_such_as_0X_

outputFile. write
outputFile. write
outputFile. write
outputFile. write

where _X"

—~ o~~~

"_is_the_number_in_the_column_so_at_the_top_of_the_hr_only_0O_would_be_
present_\n")
outputFile. write ("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day_\t_#4:Hour_\t_#5:
Minute_\t"
"_#6:_Latitude_\t_#T7:_Longitude_\t_#8:_.X_Pixel_Coordinate_\t_#9:.Y_Pixel_
Coordinate_\t_"
"#12:_Temperature_ (K)_(Emis_!=_1)_\t_#13:_Temperature_(C)_(Emis_!=_1)_\n")

Save data to file
for i in range(0, row nan):
outputFile. write ("%s_\t %1\t %1\t %1 o\t %1 o\t %1 L\t f L\t L%F L\t %1 o\t %1 L\t LS U\t LT
"_\n" % (filenames total[i][0], int(all pixel data multi image[i][0]),
int (all pixel data multi image[i][1]), int(
all pixel data multi image[i][2]),
int (all pixel data multi image[i][3]), int(
all pixel data multi image[i][4]),

302

all_pixel data_multi_image[i]|[5], all_pixel data_multi_image]|

i]fel,

int (all pixel data multi image[i]|[7]), int(

all pixel data multi image[i][8]),
all pixel data multi image[i][9], all pixel data multi image]|
i][tof]))

outputFile. close ()

+

Function to populate known latitude/longitude coordinates for each image
def determineFileName (filenames total, file names array):
for w in range(0, numPFiles):
if filenames total[k][0] == file names array|[w]:
NOTE x latitudes[0] and y longitudes|[0]| correspond to the TANAB2 location
For every new filename populate the known latitude , longitude, x pixel, and y
pixel arrays
x_Latitudes = [lat_ TANAB array|w]|, tLeft lat array[w], tCenter lat array|[w],
tRight lat array|w],
cLeft lat array|w], center lat array|w], cRight lat array|[w],
bLeft lat array|[w],
bCenter lat array|w]|, bRight lat array|[w]]
y_Longitudes = [lon TANAB array[w], tLeft lon array|[w], tCenter lon array][w],
tRight lon array[w],
cLeft lon array|w]|, center lon array|w]|, cRight lon array|w],
bLeft lon array|w],
bCenter lon array|w|, bRight lon array|w]]|
x _pixels = [tLeft x_pixel array[w], tCenter x_pixel array[w],
tRight x_pixel array[w],
cLeft x pixel array[w], center x pixel array][w],
cRight _x _pixel array[w],
bLeft _x_pixel array[w], bCenter_x_pixel array[w],
bRight x_pixel array[w]]
y _pixels = [tLeft y pixel array|[w]|, tCenter y pixel array|w],
tRight y pixel array[w],
cLeft y pixel array[w], center y pixel array][w],
cRight y pixel array[w],
bLeft y pixel array|w], bCenter y pixel array[w],
bRight y pixel array][w]]
break
return x Latitudes, y Longitudes, x_ pixels, y pixels

Save kml (Google Earth) file
Save edge coordinates as red markers and inner image coordinates as yellow markers

kml = simplekml.Kml(open=1)

pt_label = [’Balloon’, ’'Top_Left’, ’Top_Center’, ’'Top_Right’, ’Center_Left’, ’Center’, ’
Center_Right’,
"Bottom_Left’, ’'Bottom_Center’, ’Bottom_Right’]

303

Loop through all rows of final save matrix
for k in range(0, row nan):
Find indices where the index and index+1 has mismatched file names
If file names are not equal, then save kml file for the specific image file
if filenames total[k][0] != filenames total[k+1][0]:
Initialize variables
Consider edge coordinates and TANAB2 location for latitudes and longitudes
x_Latitudes = numpy.zeros (10)
y_Longitudes = numpy. zeros (10)
Only consider pixel coordinates for the specific image
x _pixels = numpy.zeros (9)
y _pixels = numpy.zeros (9)

Concatenate latitudes , longitudes, and pixel arrays accordingly and return

x_Latitudes, y Longitudes, x_ pixels, y pixels = determineFileName (filenames total,

file names array)

Save edge coordinate points to kml file
Set original counter value

i=0

while i <= 9:

known pnts = kml.newpoint (name=str (pt_ label[i]|), coords=[(float (y_ Longitudes[i])

, float (x_Latitudes[i]))])
known pnts.style.iconstyle.color = simplekml. Color.red
Increase counter by 1
i4=1

Save existing kml file , change July/August and XXXMEDIA directories based on the

Rawlmages being processed
kml.save("/export/home/users /username/Documents/DG_Temp/Guelph 2018/
Google Earth Projections/August/102MEDIA/"
"Lat Lon_visualize "+str(filenames total[k][0])+".kml")

Delete old kml file variables including kml, known pnts, x coordinates,
y _coordinates to get ready for

next image file

kml

known pnts

x_Latitudes

y _Longitudes

o Ik
e

o
o

o
o

o
o

Create new kml file
if ’kml’ not in locals():
kml = simplekml.Kml(open=1)
Save specific coordinate to existing kml file
else:

pnt = kml.newpoint (name="P(’+str (all pixel data multi image|k]|[7])+, +str(

all pixel data_multi image[k][8])+
’)’ ,coords = [(all pixel data multi image[k]|[6],
all pixel data multi_ image[k][5])])

Print process time in seconds

304

end = time.time ()

Get ending run time

print (’The_total_run_time_of_this_script_is:_’+str(end—start)+’_s’)

A.3.5 Data Separation for Diurnal Temperature Mapping

import numpy
from numba import jit

Current as of October 19, 2019
considering

data from each TANAB2 launch

import the combined data file

Load in processed data and split up the data into five

four —hour time intervals

filename = ’/export/home/users/username/Documents/DG _Temp/Guelph 2018 /Processed Data/

Guelph 2018 Processed Data.txt’

Load data and separate columns

data = numpy.genfromtxt (filename , skip header=6)

filename = data[:,0]
year = data[:,1]
month = data[:,2]
day = data|:,3]

hour = data[:,4]
min = data[:,5]

lat = data[:,6]

lon = data[:,7]

xpix = data[:,8]

ypix = data[:,9]
tempk emis = data[:,10]

tempc emis = data|:,11]

len year = int(len(year))

Create new arrays for data

zero four array = numpy.zeros((14, len year))

four eight array = numpy.zeros((14, len year))
eight twelve array = numpy.zeros((14, len year))
twelve sixteen array = numpy.zeros((14, len year))
sixteen twenty array = numpy.zeros ((14, len year))

twenty twentyfour array = numpy.zeros ((14, len year))

@jit (nopython=True, parallel=True)

def FindHour(year, month, day, hour, min, lat, lon, xpix,

zero four array,

ypix, tempk emis, tempc_ emis,

four eight array, eight twelve array, twelve sixteen array,

sixteen twenty array, twenty twentyfour array):

for i in range(0, len(year)):

305

print (i)
if (int(hour[i]) < 0):
print (’This_hour_is_less_than_Zero._There_is_a_problem_with_the_hour_in_the_

index ”)

r int (hour[i]) = 24:

(
or j in range(0, len(year)):
i

if zero four array[1l][j] = O0:

zero_four array[1l][j] = year|[i]

zero four array [2][j] = month[i]
zero_four array[3]|[j] = day|[i]

zero four array[4]|[j] = hour[i]

zero four array[5]|[j] = min]i|
zero_four array[6][j] = lat[i]
zero_four array[7]|[j] = lon|i]

zero four array[8|[j] = xpix|[i]

zero four array[9]|[j] = ypix|[i]

zero four array[10][j] = tempk emis|[1i]
zero four array[11][j] = tempc emis|1i]

break

04:00 to 08:00 check
elif (int(hour[i]) >= 4 and int(hour[i]) <= 7):
for j in range(0, len(year)):
if four eight array[1][j] = O:
four eight array[1][j] = year|[i]
four eight array [2][j] = month[i]

four eight array[3]|[j] = day|[i]
four eight array[4]|[j] = hour[i]
four eight array[5][j] = min]i]
four eight array[6][j] = lat[i]
four eight array[7][j] = lon|[i]
four eight array [8]|[j] = xpix|[i]

four eight array[9][j] = ypix|[i]

tempk emis|[i]

four eight array[10][j]

four eight array[11][j] tempc _emis|[1i|]

break

08:00 to 12:00 check
elif (int(hour[i]) >= 8 and int (hour[i]) <= 11)
for j in range(0, len(year)):

if eight twelve array|[1]|[j] = O:

eight twelve array[1]|[j] = year|[i]
eight twelve array[2]|[j] = month[i]
eight twelve array[3]|[j] = day|[i]
eight twelve array[4]|[j] = hour[i]
eight twelve array[5][j] = min[i]
eight twelve array[6][j] = lat[i]
eight twelve array[7][j] = lon|[i]
eight twelve array [8][j] = xpix|[i]

eight twelve array[9][j] = ypix|[i]

306

eight twelve array[10][j]

tempk emis|[i|]

eight twelve array[11][j] = tempc emis|[i]

break

12:00 to 16:00 check
elif

(int (hour[i]) >= 12 and int (hour[i]) <= 15)
for j in range(0, len(year)):
if twelve sixteen array |[1][j] = O:
twelve sixteen array|[l]|[j] = year[i]
twelve sixteen array [2][j] = month[i]
twelve sixteen array [3]|[j] = day[i]
twelve sixteen array|[4]|[j] = hour[i]
twelve sixteen array [5][j] = min[i]
twelve sixteen array [6][j] = lat[i]
twelve sixteen array |[7][j] = lon[i]
twelve sixteen array [8][j] = xpix[i]
twelve sixteen array|[9][j] = ypix|[i]
twelve sixteen array[10][j] = tempk emis|[i]
twelve sixteen array[11][j] = tempc emis|[i]
break
16:00 to 20:00 check
elif (int(hour[i]) >= 16 and int (hour[i]) <= 19):
for j in ramge(0, len(year)):
if sixteen twenty array[1][j] = O:
sixteen twenty array|[l]|[j] = year][i]
sixteen twenty array [2][j] = month[i]
sixteen twenty array [3]|[j] = day][i]
sixteen twenty array|[4][j] = hour[i]
sixteen twenty array |[5][j] = min[i]
sixteen twenty array |[6][j] = lat[i]
sixteen twenty array |[7][j] = lon[i]
sixteen twenty array [8][j] = xpix[i]
sixteen twenty array|[9]|[j] = ypix[i]
sixteen twenty array[10][j] = tempk emis|[i]
sixteen twenty array[11][j] = tempc emis|[i]
break
20:00 to 24:00 check
elif (int(hour[i]) >= 20 and int (hour[i]) <= 23):
for j in range(0, len(year)):
if twenty twentyfour array|[1l][j] = O:
twenty twentyfour array|[1l][j] = year][i]
twenty twentyfour array[2][j] = month[i]
twenty twentyfour array[3][j] = day|[i]
twenty twentyfour array[4][j] = hour[i]
twenty twentyfour array [5][j] = min[i]
twenty twentyfour array [6][j] = lat[i]
twenty twentyfour array [7][j] = lon|[i]
twenty twentyfour array[8][j] = xpix|[i]
twenty twentyfour array[9][]j] = ypix|[i]
twenty twentyfour array[10][j] = tempk emis]|i]

307

twenty twentyfour array[11][j] = tempc emis|i]
break

return zero four array, eight twelve array, twelve sixteen array, sixteen twenty array,
twenty twentyfour array
Call functions
FindHour (year , month, day, hour, min, lat, lon, xpix, ypix, tempk emis, tempc emis,
zero four array,
four eight array, eight twelve array, twelve sixteen array,
twenty twentyfour array)

sixteen twenty array,

Save arrays
filename zero four =’/export/home/users/username/Documents/DG Temp/Guelph 2018/

Processed Data/Separated Hours/’ \

"Manufacturer Calibrated /Zero_Four_Data_Processed. txt’

filename four eight = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/

Processed Data/Separated Hours/’ \

’>Manufacturer Calibrated /Four Eight Data_ Processed. txt’

filename eight twelve = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/

Processed Data/Separated Hours/’ \

"Manufacturer Calibrated /Eight Twelve Data Processed.txt’

filename twelve sixteen = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/

Processed Data/Separated Hours/’ \

"Manufacturer Calibrated/Twelve Sixteen Data Processed.txt’

filename sixteen twenty = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/

Processed Data/Separated Hours/’ \

"Manufacturer Calibrated/Sixteen Twenty Data Processed.txt’

filename twenty twentyfour = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/

Processed Data/’ \

>Separated _Hours/Manufacturer Calibrated/
Twenty Twentyfour Data Processed.txt’

zero_ four data
outputFile zero four = open(filename zero four, ’'w’)

outputFile zero four.write("#_Date,_Time,_Latitude,_Longitude_and_Temperature_for_each_image
_from_00:00_t0_03:59_\n")

outputFile zero four.write("#By:_Ryan_Byerlay_\n")
outputFile zero four.write("#Recorded_Time_is_Local_Time_(EDT)_\n")
outputFile zero four.write ("#ANOTE: _The_column_representing_minutes_may_have_a_single_digit._
such_as_0X_where _X"
"_is_the_number_in_the_column_so_at_the_top_of_the_hr_only_0_would_be_
present_\n")
outputFile zero four.write("#0:_Picture_File_Name_\t_#1:Year_ \t__#2:Month_\t__#3:Day_\t_#4:
Hour_\t_#5:Minute_\t"
"_#6:_Latitude_\t_#7:_Longitude_\t_#38:_.X_Pixel_Coordinate_\t_#9:_
Y_Pixel_Coordinate_\t_"
"#10:_Temperature_ (K)_(Emis_!=_1)_\t_#11:_Temperature_(C)_(Emis_
1=_1)_\n")

308

Save data to file

for i in range(0, len year):

if zero four array|[l][i] != O:
outputFile zero four.write ("%s_\t_%i_\t_ %1i.\t %1 \t_ %i_\t_ %i_\t %f_\t_%f_\t_%i_\t_%i
AN 075 SN T SO

"\n" % (zero_ four array[0][i], int(zero four array[1][i])

)

int (zero four array[2][i]), int(zero four array

[31151)
int (zero four array[4][i]), int(zero four array
[(51111),

zero_ four array[6]|[1], zero four array[7]|[i],
int (zero_four array|[8][1i]),
int (zero four array[9][i]), zero four array[10][i

|, zero four array|[11][i]))
outputFile zero four.close ()

four eight data
outputFile four eight = open(filename four eight, ’'w’)
outputFile four eight.write("#_Date,_Time,_Latitude,_Longitude_and_Temperature_for_each_
image_from_04:00_to_07:59_\n")
outputFile four eight.write("#By:_Ryan_Byerlay_\n")
outputFile four eight.write("#Recorded_Time_is_Local_Time_(EDT)_\n")
outputFile four eight.write ("#NOTE:_The_column_representing_minutes_may_have_a_single_digit._
such_as_0X_where_X"
"_is_the_number_in_the_column_so_at_the_top_of_the_hr_only_0_would_be_
present_\n")
outputFile four eight.write("#0:_Picture_File_Name \t_#1:Year_\t__#2:Month_\t__#3:Day_\t_#4:
Hour_\t_#5:Minute"
"_\t_#6:_Latitude_\t_#?7:_Longitude_\t_#8:_X_Pixel_Coordinate_\t_
#9: Y_Pixel_Coordinate"
"_\t_o#10:_Temperature_ (K)_(Emis_!=_1)_\t_#11:_Temperature_(C)_(
Emis_!=_1)_\n")

Save data to file

for i in range(0, len year):

if four eight array[1][i] != O:
outputFile four eight.write ("%s.\t %io\t %1\t %i o\t %1\t %i o\t %f L\t %\t %1\t %
P\t f L\t Tf"

"_\n" % (four eight array[0][i], int(four eight array
[11i])
int (four eight array [2][i]), int(
four eight array[3][i]),
int (four eight array [4][i]), int(
four eight array [5][i]),
four eight array [6][i], four eight array[7][1i]
int (four eight array [8][i]), int(
four eight array[9][i]),

)

309

four eight array [10][i], four eight array[11][i
1)

outputFile four eight.close ()

H

eight twelve data
outputFile eight twelve = open(filename eight twelve, ’'w’)
outputFile eight twelve.write ("#_Date,_Time,_Latitude,_Longitude_and_Temperature_for_each_
image_from_08:00_to_11:59_\n")
outputFile eight twelve.write ("#By:_Ryan_Byerlay_\n")
outputFile eight twelve.write ("#Recorded_Time_is_Local_Time_(EDT)_\n")
outputFile eight twelve.write ("/NOTE: The_column_representing_minutes_may_have_a_single_
digit_such_as_0X_where X"
"_is_the_number_in_the_column_so_at_the_top_of_the_hr_only_0_would_be_
present\n")
outputFile eight twelve.write ("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day_\t_
#4:Hour_\t_#5:Minute"
"_\to#6:_Latitude_\t_#7:_Longitude_\t_#8:_X_Pixel_Coordinate_\
t_#9: . Y_Pixel_Coordinate"
"_\too#10:_Temperature_ (K)_(Emis_!=_1) _\t_#11:_Temperature_ (C)
(Emis!=_1)_\n")

Save data to file

for i in range(0, len year):

if eight twelve array[1]|[i] != O:
outputFile eight twelve.write ("%s_\t_ %1\t %1.\t %1\t %1\t %1\t f \t f o\t %i \t
Toi U\t L%f U\t L%f L

"\n" % (eight twelve array|[0][i], int(
eight twelve array[1][i]),
int (eight twelve array|[2][i]),

-
=}
o+

—~

eight twelve array [3][i]),
int (eight twelve array[4][i]), in

‘ o+
—

eight twelve array [5][i]),

eight twelve array|[6][i], eight twelve array
7100,

int (eight twelve array [8]|[i]), int(
eight twelve array|[9][i]),

eight twelve array[10][i], eight twelve array

[(11][i]))

outputFile eight twelve.close ()

twelve sixteen data

outputFile twelve sixteen = open(filename twelve sixteen, ’'w’)

outputFile twelve sixteen.write ("#_Date,_Time, _Latitude,_Longitude_and_Temperature_for_each_
image_from_12:00_to_15:59"

"_,\1’1”)

outputFile twelve sixteen.write ("#By:_Ryan_Byerlay_\n")

310

outputFile twelve sixteen.write ("#Recorded_Time_is_Local_Time_(EDT)_\n")
outputFile twelve sixteen.write ("#NOTE: _The_column_represnting_minutes_may_have_a_single_
digit_such_as_0X_where_X"
"_is_the_number_in_the_column_so_at_the_top_of_the_hr_only_0O_would_be_
present_\n")
outputFile twelve sixteen.write ("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day_\t
#4:Hour\t _#5:Minute_\t"
"_#6:_Latitude_\t_#7:_Longitude_\t_#8:_.X_Pixel_Coordinate_\t
_#9: . Y_Pixel_Coordinate"
"_\t_#10:_Temperature_(K)_(Emis_!=_1)_\t_#11:_Temperature_(C
)o(Emis_!=_1)_\n")

Save data to file
r

for i in range(0, len year):
if twelve sixteen array|[1][i] != O0:
outputFile twelve sixteen.write ("%s_\t_ %i_\t %1.\t %1 \t %1 \t %1 .\t Jf \t %f_\t_%i_
A\t %1 L\t L%f L\t LS
"_\n" % (twelve sixteen array |[0][i], int(
twelve sixteen array|[1][i]),

int (twelve sixteen array [2][i]), int(
twelve sixteen array |[3][i]),

int (twelve sixteen array|[4]|[i]), int(
twelve sixteen array [5][i]),

twelve sixteen array [6][i],
twelve sixteen array [7][i],

int (twelve sixteen array [8][i]), int(

twelve sixteen array|[9][i]),
twelve sixteen array[10][i],
twelve sixteen array[11][i]))

outputFile twelve sixteen.close ()

sixteen twenty data
K

w’)

outputFile sixteen twenty = open(filename sixteen twenty,
outputFile sixteen twenty.write ("#_Date,_Time, _Latitude,_Longitude_and_Temperature_for_each_
image_from_16:00_to_19:59"
"nt)
outputFile sixteen twenty.write ("#By:_Ryan_Byerlay_\n")
outputFile sixteen twenty.write ("#Recorded_Time_is_Local_Time_(EDT)_\n")
outputFile sixteen twenty.write ("#ANOTE: The_column_representing_minutes_may_have_a_single_
digit _such_as_0X_where_X"
"_is_the_number_in_the_column_so_at_the_top_of_the_hr_only_0_would_be_
present_\n")
outputFile sixteen twenty.write ("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day_\t
_#4:Hour _\t _#5:Minute_\t"
"_#6:_Latitude_\t_#7:_Longitude_\t_#8:_X_Pixel_Coordinate_\t
_#9:.Y_Pixel_Coordinate_\t"
"_#10: _Temperature_(K)_(Emis_!=_1)_\t_#11:_Temperature_(C)_(
Emis_!=_1)_\n")

311

Save data to file
for i in range(0, len year):
if sixteen twenty array|[1][i] != O0:
outputFile sixteen twenty.write ("%s_\t_%i_\t %i_\t %1 \t_ %1 \t %i.\t Jf_ \t_%f_\t_%i_
A\t %l L\t f U\t %t "
"\n" % (sixteen twenty array|0]|[i], int(

sixteen twenty array[1][i]),

int (sixteen twenty array|[2]|[i]), int(
sixteen twenty array|[3][i]),

int (sixteen twenty array[4]|[i]), int(
sixteen twenty array|[5][i]),

sixteen twenty array |[6][i],
sixteen twenty array[7][i],

int (sixteen twenty array [8][i]), int(

sixteen twenty array|[9][i]),
sixteen twenty array|[10][i],
sixteen twenty array[11][i]))
outputFile sixteen twenty.close()

H*

twenty twenty—four data
outputFile twenty twentyfour = open(filename twenty twentyfour, ’w’)
outputFile twenty twentyfour.write ("#_Date,_Time,_Latitude ,_Longitude_and_Temperature_for_
each_image_from_20:00_to"
".23:59_\n")
outputFile twenty twentyfour.write("#By:_Ryan_Byerlay_\n")
outputFile twenty twentyfour.write("#Recorded_Time_is_Local_Time_(EDT)_\n")
outputFile twenty twentyfour.write ("#NOTE: _The_column_representing_minutes_may_have_a_single
_digit _such_as_0X_where_X"
"_is_the_number_in_the_column_so_at_the_top_of_the_hr_only_0_would_be_
present_\n")
outputFile twenty twentyfour.write("#0:_Picture_File_Name_\t_#1:Year_\t__#2:Month_\t__#3:Day
N\to#4:Hour \t_#5:Minute_\t"
"_#6:_Latitude_\t_#7:_Longitude_\t_#8:_X_Pixel_Coordinate
A\to#9:.Y_Pixel_Coordinate"
"_\t_o#10:_Temperature_(K)_(Emis_!=_1)_\t_#11:_Temperature
(C)(Emis!=_1)_\n")

Save data to file
for i in range(0, len year):
if twenty twentyfour array[1][i] != O0:
outputFile twenty twentyfour.write ("%s_\t %1.\t %1\t %1\t %1\t %1\t f o\t %l \to
%1 L\t %01 L\t %f L\t %f "
"\n" % (twenty twentyfour array[0][i], int(
twenty twentyfour array[1][i]),
int (twenty twentyfour array[2][i]),

)

)
int (twenty twentyfour array|[3][i])
int (twenty twentyfour array|[4][i])
int (twenty twentyfour array|[5][i])

)

twenty twentyfour array|[6][i],

312

outputFile twenty twentyfour.close ()

A.3.6 Surface Temperature Maps

Current as of October 19, 2019

Plot Guelph diurnal surface temperatures

import numpy

import sys

import os

import numpy

import matplotlib.pyplot as plt

twenty twentyfour array [7][i], int(
twenty twentyfour array|[8][i]),
int (twenty twentyfour array|[9][i]),

twenty twentyfour array[10][i],
twenty twentyfour array[11][i]))

Declare calibration constants and original constants

State original FLIR factory Planck constants
R1 flir = 17096.453

R2 flir = 0.046642166

R _flir = R1_flir/R2 flir

B flir — 1428

O flir =—342

F_flir =1

Calibrated camera constants
Grass constants

R grass = 314531

B_grass = 1391

O_grass = —513

F_grass = 1.5

Developed land (concrete) Constants
R _concrete = 247614

B _concrete 1322

O concrete —513

F_concrete = 1.5

Note: Images were not recorded during the 00:00—-04:00 time interval

#

Load in data for 04:00 to 08:00

four eight filename = ’/export/home/users/username/Documents/DG_ Temp/Guelph 2018/

Processed Data/Separated Hours/’ \

>Manufacturer _Calibrated /Four_Eight Data_Processed. txt’

four eight data = numpy.genfromtxt (four eight filename)

four eight lon = four eight data[:,7]

313

four _eight_lat = four_eight_data[:,6]
four eight tempK = four eight data[:,10]

Apply Temperature Correction Constants

Calculate Upixel using the Horny, 2003 (https://doi.org/10.1016/S1350—-4495(02)00183—4)
formula

Initialize Upixel

Upixel four eight = numpy.zeros ((len(four eight lat)))

Initialize new corrected temperature array

corrected temp four eight = numpy.zeros ((len(four eight lon)))

Calculate Pixel coordinate A/D Counts for each latitude/longitude pair
for i in range(0, len(four eight lat)):
Upixel four eight[i] = (R _flir /(numpy.exp (B _flir /four eight tempK|[i])—F flir))—0O flir
print (Upixel four_eight)
Apply land use camera parameters filter and calculate corrected temperature
for i in range(0, len (four eight tempK)):
For Johnston Green
if ((four eight lon[i] >= —80.2323044000 and four eight lon[i] <= —80.2276727000)
and (four eight lat[i]| >= 43.5302811700 and four eight lat[i] <= 43.5337142400))

Grass

R = R_grass
B = B _grass
O = O _grass
F = F_grass

South East Grass Area, corner of Gordon and Stone
elif ((four eight lon[i] >= —80.2262640000 and four eight lon[i] <= —80.2241124000)
and (four eight lat[i] >= 43.5268688200 and four eight lat[i] <= 43.5283545100)):

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

South Residence Area
elif ((four eight lon[i] >= —80.2240591000 and four eight lon[i]| <= —80.2190782000)
and (four eight lat[i] >= 43.5284211000 and four eight lat[i] <= 43.5320258200)):

Grass

R = R_grass
B = B _grass
O = O_grass
F = F_grass

Gryphons Football Field
elif ((four eight lon[i]| >= —80.2274877882 and four eight lon[i] <= —80.2257549752)
and (four eight lat[i] >= 43.5344304570 and four eight lat[i] <= 43.5357193383)):
Grass

R = R_grass

314

B
O
F

B _grass

O grass

= F_grass

Main baseball diamond
elif ((four_eight_lon[i] >= —80.2258437615 and four_eight_lon[i]| <= —80.2241568215)

g O W Tk

and (four eight lat[i] >= 43.5354322626 and four eight lat[i] <= 43.5367196642)):
Grass

= R _grass

= B _grass

= O _grass

= F_grass

Stone Rd Baseball Diamonds
elif ((four eight lon[i] >= —80.2186283934 and four eight lon[i] <= —80.2161897292)

g O W Tk

and (four eight lat[i] >= 43.5321175734 and four eight lat[i] <= 43.5338193111)):
Grass

= R_grass

= B_grass

= O _grass

= F_grass

Stone Rd Soccer Field 1
elif ((four eight lon[i] >= —80.2193490000 and four eight lon[i]| <= —80.2172004000)

g O W Tk

and (four eight lat[i] >= 43.5329714000 and four eight lat[i] <= 43.5345399600)):
Grass

= R_grass

= B _grass

= O _grass

= F_grass

Stone Rd Soccer Field 2
elif ((four eight lon[i]| >= —80.2210063870 and four eight lon[i] <= —80.2182125775)

o O W ™

and (four eight lat[i] >= 43.5333383853 and four eight lat[i] <= 43.5352265743)):
Grass

= R_grass

= B_grass

= O _grass

= F_grass

Stone Road Soccer Field 3

elif

b O W Tk

((four eight lon[i] >= —80.2211869000 and four eight lon[i] <= —80.2197589000)
and (four eight lat[i] >= 43.5322655500 and four eight lat[i] <= 43.5333013900)):
Grass

= R_grass

= B _grass

= O _grass

= F_grass

Stone Road Soccer Field 4

elif

((four eight lon[i] >= —80.2211469653 and four eight lon[i] <= —80.2198270087)
and (four eight lat[i] >= 43.5344970467 and four eight lat[i] <= 43.5355092107)):

315

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Main Soccer Field
elif ((four eight lon[i] >= —80.2256395530 and four eight lon[i]| <= —80.2233103919)

and (four eight lat[i] >= 43.5360685645 and four eight lat[i] <= 43.5378975627)):

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

East Residence Forest Area
elif ((four eight lon[i]| >= —80.2231505765 and four eight lon[i] <= —80.2200726509)
and (four eight lat[i] >= 43.5352206552 and four eight lat[i] <= 43.5375823712)):

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

All other areas are considered to be developed land (concrete)

else:
Developed land (concrete)
R = R _concrete
B = B_concrete
O = O_concrete
F = F_concrete

Calculate corrected temperature
corrected temp four eight[i|] = B / (numpy.log(R / (Upixel four eight[i] + O) + F))

Save To file
outputFileName four eight = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/
Processed Data/’ \
’Separated Hours/Campus Calibrated /Four eight data filtered.txt’

outputFile four eight = open(outputFileName four eight, ’'w’)

outputFile four eight.write ("#0:_Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_Corrected_Temp
- [K].\n")

Save data to file
for i in range(0, len(four eight lat)):
outputFile four eight.write("%f_\t %f_\t %f_\n" % (four eight lon[i], four eight lat[i],
corrected temp four eight[i]))
outputFile four eight.close ()

316

Load in data for 08:00 to 12:00
eight twelve filename = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/

Processed Data/Separated Hours/’ \
>Manufacturer Calibrated /Eight Twelve Data_ Processed.txt’

eight twelve data = numpy.genfromtxt(eight twelve filename)
eight twelve lon = eight twelve data[:,7]

eight twelve lat = eight twelve data[:,6]

eight twelve tempK = eight twelve data[:,10]

Apply Temperature Correction Constants

Calculate Upixel/Uobject using the Horny, 2003 (https://doi.org/10.1016/S1350—-4495(02)
00183—4) formula

Initialize Upixel

Upixel eight twelve = numpy.zeros ((len(eight twelve lat)))

Initialize new corrected temperature array

71

corrected temp eight twelve = numpy.zeros ((len(eight twelve lon)))

Calculate Pixel coordinate A/D Counts for each latitude/longitude pair
for i in range(0, len(eight twelve lat)):
Upixel eight twelve[i] = (R _flir /(numpy.exp (B flir /eight twelve tempK|[i|)—-F flir))—
O _flir
print (Upixel eight twelve)
Apply land use camera parameters filter and calculate corrected temperature
for i in range(0, len (eight twelve tempK)):

For Johnston Green

if ((eight twelve lon[i] >= —80.2323044000 and eight twelve lon[i]| <= —80.2276727000)

and (eight twelve lat[i] >= 43.5302811700 and eight twelve lat[i] <=
43.5337142400)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

South East Grass Area, corner of Gordon and Stone

elif ((eight twelve lon[i]| >= —80.2262640000 and eight twelve lon|[i| <= —80.2241124000)

and (eight twelve lat[i] >= 43.5268688200 and eight twelve lat[i] <=
43.5283545100)) :

Grass

R = R _grass
B = B_grass
O = O_grass
F = F_grass

South Residence Area

71

elif ((eight twelve lon[i]| >= —80.2240591000 and eight twelve lon[i]| <= —80.2190782000)

and (eight twelve lat[i] >= 43.5284211000 and eight twelve lat[i] <=
43.5320258200)) :

Grass

317

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Gryphons Football Field
elif ((eight twelve lon[i] >= —80.2274877882 and eight twelve lon[i] <= —80.2257549752)
and (eight twelve lat[i] >= 43.5344304570 and eight twelve lat[i] <=
43.5357193383)) :

Grass

R = R _grass
B = B_grass
O = O_grass
F = F_grass

Main baseball diamond
elif ((eight twelve lon[i]| >= —80.2258437615 and eight twelve lon[i] <= —80.2241568215)
and (eight twelve lat[i]| >= 43.5354322626 and eight twelve lat[i] <=
43.5367196642)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Stone Rd Baseball Diamonds
elif ((eight twelve lon[i]| >= —80.2186283934 and eight twelve lon[i] <= —80.2161897292)
and (eight twelve lat[i] >= 43.5321175734 and eight twelve lat[i] <=
43.5338193111)):

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Stone Rd Soccer Field 1
elif ((eight twelve lon[i]| >= —80.2193490000 and eight twelve lon|[i]| <= —80.2172004000)
and (eight twelve lat[i]| >= 43.5329714000 and eight twelve lat[i] <=
43.5345399600)) :

Grass

R = R_grass
B = B_grass
O = O _grass
F = F_ grass

Stone Rd Soccer Field 2
elif ((eight twelve lon[i]| >= —80.2210063870 and eight twelve lon|[i]| <= —80.2182125775)
and (eight twelve lat[i] >= 43.5333383853 and eight twelve lat[i] <=
43.5352265743)) :
Grass
R = R_grass
B = B_grass

318

O = O_grass
F

F_grass

Stone Road Soccer Field 3
elif ((eight twelve lon[i]| >= —80.2211869000 and eight twelve lon|[i| <= —80.2197589000)
and (eight twelve lat[i]| >= 43.5322655500 and eight twelve lat[i] <=
43.5333013900)) :

Grass

R = R_grass
B = B _grass
O = O _grass
F = F_grass

Stone Road Soccer Field 4
elif ((eight twelve lon[i]| >= —80.2211469653 and eight twelve lon[i] <= —80.2198270087)
and (eight twelve lat[i]| >= 43.5344970467 and eight twelve lat[i] <=
43.5355092107)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Main Soccer Field
elif ((eight twelve lon|[i] >= —80.2256395530 and eight twelve lon|[i] <= —80.2233103919)
and (eight twelve lat[i] >= 43.5360685645 and eight twelve lat[i] <=
43.5378975627))

Grass

R = R_grass
B = B _grass
O = O_grass
F = F_grass

East Residence Forest Area
elif ((eight twelve lon[i] >= —80.2231505765 and eight twelve lon[i] <= —80.2200726509)
and (eight twelve lat[i] >= 43.5352206552 and eight twelve lat[i] <= 43.5375823712))

Grass

R = R_grass
B = B_grass
O = O_grass
F = F _ grass

All other areas are considered to be developed land (concrete)

else:
Developed land (concrete)
R = R_concrete
B = B_concrete
O = O_concrete
F = F_concrete

Calculate corrected temperature

319

corrected temp eight twelve[i|] = B / (numpy.log(R / (Upixel eight twelve[i] + O) + F))

Save To file
outputFileName eight twelve = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/
Processed Data/’ \
’Separated Hours/Manufacturer Calibrated/
Eight twelve data filtered.txt’
outputFile eight twelve = open(outputFileName eight twelve, ’w’)
outputFile eight twelve.write ("#0:_Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_Corrected_
Temp.. [K] \n")

Save data to file
for i in range(0, len(eight twelve lat)):
outputFile eight twelve.write ("%f_\t %f_\t %f_\n" % (eight twelve lon|i],
eight twelve lat[i],
corrected temp eight twelve[i]))
outputFile eight twelve.close ()

#

Load in data for 12:00—16:00
twelve sixteen filename = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/
Processed Data/’ \
’Separated Hours/Manufacturer Calibrated/
Twelve Sixteen Data Processed.txt’

twelve sixteen data = numpy.genfromtxt(twelve sixteen filename)
twelve sixteen lon = twelve sixteen data[:,7]

twelve sixteen lat = twelve_sixteen_data[:,6]

twelve sixteen tempK = twelve sixteen data[:,10]

Apply Temperature Correction Constants

Calculate Upixel/Uobject using the Horny, 2003 (https://doi.org/10.1016/S1350—4495(02)
00183—4) formula

Initialize Upixel

Upixel twelve sixteen = numpy.zeros ((le

(twelve sixteen lat)))
Initialize new corrected temperature array

corrected temp twelve sixteen = numpy.zeros ((len(twelve sixteen lon)))

Calculate Pixel coordinate A/D Counts for each latitude/longitude pair
for i in range(0, len(twelve sixteen lat)):
Upixel twelve sixteen[i] = (R _flir /(numpy.exp(B flir/twelve sixteen tempK|[i]|)—F flir))—
O _ flir
print (Upixel twelve sixteen)
Apply land use camera parameters filter and calculate corrected temperature
for i in range(0, len(twelve sixteen tempK)):
For Johnston Green
if ((twelve sixteen lon[i]| >= —80.2323044000 and twelve sixteen lon[i] <=

320

—80.2276727000)
and (twelve sixteen lat[i] >= 43.5302811700 and twelve sixteen lat[i] <=

43.5337142400)) :

Grass
R = R_grass
B = B_grass
O = O_grass
F = F_grass
South East Grass Area, corner of Gordon and Stone

elif ((twelve sixteen lon[i] >= —80.2262640000 and twelve sixteen lon[i] <=

—80.2241124000)
and (twelve sixteen lat[i]| >= 43.5268688200 and twelve sixteen lat[i]| <=

43.5283545100)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

South Residence Area
elif ((twelve sixteen lon|[i]| >= —80.2240591000 and twelve sixteen lon|[i]| <=

—80.2190782000)

and (twelve sixteen lat[i] >= 43.5284211000 and twelve sixteen lat[i] <=
43.5320258200)) :

Grass

= R_grass

= B _grass

= O _grass

g O W Tk

= F_grass

Gryphons Football Field
elif ((twelve sixteen lon[i]| >= —80.2274877882 and twelve sixteen lon[i] <=

—80.2257549752)
and (twelve sixteen lat[i] >= 43.5344304570 and twelve sixteen lat[i] <=

43.5357193383)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Main baseball diamond
elif ((twelve sixteen lon[i]| >= —80.2258437615 and twelve sixteen lon[i] <=

~80.2241568215)
and (twelve sixteen lat[i]| >= 43.5354322626 and twelve sixteen lat[i]| <=

43.5367196642)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

321

Stone Rd Baseball Diamonds
elif ((twelve sixteen lon|[i]| >= —80.2186283934 and twelve sixteen lon|[i] <=
—80.2161897292)
and (twelve sixteen lat[i]| >= 43.5321175734 and twelve sixteen lat[i]| <=
43.5338193111)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Stone Rd Soccer Field 1
elif ((twelve sixteen lon[i]| >= —80.2193490000 and twelve sixteen lon[i] <=
—80.2172004000)
and (twelve sixteen lat[i]| >= 43.5329714000 and twelve sixteen lat[i]| <=
43.5345399600)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Stone Rd Soccer Field 2
elif ((twelve sixteen lon[i] >= —80.2210063870 and twelve sixteen lon|[i] <=
—80.2182125775)
and (twelve sixteen lat[i] >= 43.5333383853 and twelve sixteen lat[i] <=
43.5352265743)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Stone Road Soccer Field 3
elif ((twelve sixteen lon[i]| >= —80.2211869000 and twelve sixteen lon|[i] <=
—80.2197589000)
and (twelve sixteen lat[i]| >= 43.5322655500 and twelve sixteen lat[i]| <=
43.5333013900)) :

Grass

R = R_grass
B = B_grass
O = O _grass
F = F_grass

Stone Road Soccer Field 4
elif ((twelve sixteen lon[i]| >= —80.2211469653 and twelve sixteen lon[i] <=

—80.2198270087)
and (twelve sixteen lat[i] >= 43.5344970467 and twelve sixteen lat[i] <=

43.5355092107)) :
Grass

R = R_grass

322

B = B_grass
O
F = F_grass

O grass

Main Soccer Field
elif ((twelve_sixteen_lon[i] >= —80.2256395530 and twelve_sixteen_lon|[i]| <=
—80.2233103919)
and (twelve sixteen lat[i] >= 43.5360685645 and twelve sixteen lat[i] <=
43.5378975627)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

East Residence Forest Area
elif ((twelve sixteen lon[i]| >= —80.2231505765 and twelve sixteen lon[i] <=
—80.2200726509)
and (twelve sixteen lat[i]| >= 43.5352206552 and twelve sixteen lat[i]| <=
43.5375823712))

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

All other areas are considered to be developed land (concrete)

else:
Developed land (concrete)
R = R_concrete
B = B_concrete
O = O_concrete
F = F_concrete

Calculate corrected temperature
corrected temp twelve sixteen|[i] = B / (numpy.log(R / (Upixel twelve sixteen|[i] + O) + F

))

Save To file
outputFileName twelve sixteen = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/
Processed Data/’ \
’Separated Hours/Manufacturer Calibrated/
Twelve sixteen data filtered.txt’
outputFile twelve sixteen = open(outputFileName twelve sixteen, ’'w’)
outputFile twelve sixteen.write ("#0:_Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_Corrected_

Temp_ [K] _\n")

Save data to file
for i in range(0, len(twelve sixteen lat)):
outputFile twelve sixteen.write ("%f_\t_ %f_\t_%f_\n" % (twelve sixteen lon|[i],

twelve sixteen lat[i],
corrected temp twelve sixteen[i])

323

outputFile twelve sixteen.close ()

H

Load in data for 16:00 to 20:00
sixteen twenty filename = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/
Processed Data/Separated Hours/’ \
>Manufacturer Calibrated/Sixteen Twenty Data Processed.txt’

sixteen twenty data = numpy.genfromtxt(sixteen twenty filename)

sixteen twenty lon = sixteen twenty data[:,7]
sixteen twenty lat = sixteen twenty data[:,6]
sixteen twenty tempK = sixteen twenty data[:,10]

Apply Temperature Correction Constants

Calculate Upixel/Uobject using the Horny, 2003 (https://doi.org/10.1016/S1350—-4495(02)
00183—4) formula

Initialize Upixel

Upixel sixteen twenty = numpy.zeros ((len(sixteen twenty lat)))

Initialize new corrected temperature array

corrected temp sixteen twenty = numpy.zeros ((len(sixteen twenty lon)))

Calculate Pixel coordinate A/D Counts for each latitude/longitude pair
for i in range(0, len(sixteen twenty lat)):
Upixel sixteen twenty[i] = (R _flir /(numpy.exp (B _flir /sixteen twenty tempK|[i])—F flir))—
O _ flir
print (Upixel _sixteen_twenty)

Apply land use camera parameters filter and calculate corrected temperature

for i in range(0, len(sixteen twenty tempK)):

For Johnston Green
if ((sixteen twenty lon[i] >= —80.2323044000 and sixteen twenty lon[i] <=
—80.2276727000)
and (sixteen twenty lat[i] >= 43.5302811700 and sixteen twenty lat[i] <=
43.5337142400)) :

Il
o
o
=
®
w
w

= F_grass

South East Grass Area, corner of Gordon and Stone
elif ((sixteen twenty lon[i] >= —80.2262640000 and sixteen twenty lon[i] <=
—80.2241124000)
and (sixteen twenty lat[i] >= 43.5268688200 and sixteen twenty lat[i] <=
43.5283545100)) :
Grass

R = R_grass

324

B = B_grass
O = O_grass
F = F_grass

South Residence Area
elif ((sixteen twenty lon|[i] >= —80.2240591000 and sixteen twenty lon|[i] <=

—80.2190782000)
and (sixteen twenty lat[i] >= 43.5284211000 and sixteen twenty lat[i] <=

43.5320258200)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Gryphons Football Field
elif ((sixteen twenty lon[i] >= —80.2274877882 and sixteen twenty lon[i] <=

—80.2257549752)
and (sixteen twenty lat[i] >= 43.5344304570 and sixteen twenty lat[i] <=

43.5357193383)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Main baseball diamond
elif ((sixteen_ twenty lon[i] >= —80.2258437615 and sixteen twenty lon[i]| <=

~80.2241568215)
and (sixteen twenty lat[i] >= 43.5354322626 and sixteen twenty lat[i] <=

43.5367196642)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Stone Rd Baseball Diamonds
elif ((sixteen twenty lon|[i] >= —80.2186283934 and sixteen twenty lon|[i] <=

—80.2161897292)

and (sixteen twenty lat[i] >= 43.5321175734 and sixteen twenty lat[i] <=
43.5338193111)):

Grass

= R _grass

= B _grass

= O _grass

= F_grass

b O W Tk

Stone Rd Soccer Field 1
elif ((sixteen twenty lon[i] >= —80.2193490000 and sixteen twenty lon[i] <=

—80.2172004000)
and (sixteen twenty lat[i] >= 43.5329714000 and sixteen twenty lat[i] <=

325

43.5345399600)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Stone Rd Soccer Field 2
elif ((sixteen twenty lon[i] >= —80.2210063870 and sixteen twenty lon[i]| <=

—80.2182125775)
and (sixteen twenty lat[i]| >= 43.5333383853 and sixteen twenty lat[i]| <=

43.5352265743)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Stone Road Soccer Field 3
elif ((sixteen twenty lon|[i] >= —80.2211869000 and sixteen twenty lon|[i] <=

—80.2197589000)
and (sixteen twenty lat[i] >= 43.5322655500 and sixteen twenty lat[i] <=

43.5333013900)) :

Grass

R = R_grass
B = B _grass
O = O _grass
F = F_grass

Stone Road Soccer Field 4
elif ((sixteen twenty lon[i] >= —80.2211469653 and sixteen twenty lon[i] <=

—80.2198270087)
and (sixteen twenty lat[i] >= 43.5344970467 and sixteen twenty lat[i] <=

43.5355092107)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Main Soccer Field
elif ((sixteen twenty lon[i] >= —80.2256395530 and sixteen twenty lon[i]| <=

—80.2233103919)
and (sixteen twenty lat[i]| >= 43.5360685645 and sixteen twenty lat[i]| <=

43.5378975627)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

East Residence Forest Area

326

elif ((sixteen twenty lon|[i] >= —80.2231505765 and sixteen twenty lon|[i] <=
—80.2200726509)
and (sixteen twenty lat[i]| >= 43.5352206552 and sixteen twenty lat[i]| <=
43.5375823712)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F grass

All other areas are considered to be developed land (concrete)

else:
Developed land (concrete)
R = R_concrete
B = B_concrete
O = O_concrete
F = F_concrete

Calculate corrected temperature
corrected temp sixteen twenty|[i] = B / (numpy.log(R / (Upixel sixteen twenty|[i] + O) + F

))

Save To file
outputFileName sixteen twenty = ’/export/home/users/username/Documents/DG Temp/Guelph 2018/
Processed Data/’ \
’Separated Hours/Manufacturer Calibrated/
Sixteen twenty data filtered.txt’
outputFile sixteen twenty = open(outputFileName sixteen twenty, ’w’)
outputFile sixteen twenty.write ("#0:_Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_Corrected._

Temp_ [K]_\n")

Save data to file
r

'
fo

i in range(0, len(sixteen twenty lat)):
outputFile sixteen twenty.write ("%f_\t %f_\t_%f_\n" % (sixteen twenty lon[i],
sixteen twenty lat[i],
corrected temp sixteen twenty|[i])

)

outputFile sixteen twenty.close()

F=

Load in data for 20:00 to 24:00
twenty twentyfour filename = ’/export/home/users/username/Documents/DG_Temp/Guelph 2018/
Processed Data/’ \
>Separated Hours/Manufacturer Calibrated/
Twenty Twentyfour Data Processed. txt’

twenty twentyfour data = numpy.genfromtxt(twenty twentyfour filename)

twenty twentyfour lon = twenty twentyfour data[:,7]
twenty twentyfour lat = twenty twentyfour data[:,6]

327

twenty twentyfour tempK = twenty twentyfour_ data[:,10]

Apply Temperature Correction Constants

Calculate Upixel/Uobject using the Horny,
00183—4) formula

Initialize Upixel

Upixel twenty twentyfour = numpy.zeros ((len(twenty twentyfour lat)))

71
71

2003 (https://doi.org/10.1016/S1350—-4495(02)

Initialize new corrected temperature array

corrected temp twenty twentyfour = numpy.zeros ((len(twenty twentyfour lon)))

Calculate Pixel coordinate A/D Counts for each latitude/longitude pair
for i in range(0, len(twenty twentyfour lat)):
Upixel twenty twentyfour[i| = (R _flir /(numpy.exp (B _flir /twenty twentyfour tempK|[i])—
F_flir))—0O _flir
print (Upixel twenty twentyfour)
Apply land use camera parameters filter and calculate corrected temperature
for i in range(0, len(twenty twentyfour tempK)):
For Johnston Green
if ((twenty twentyfour lon|[i] >= —80.2323044000 and twenty twentyfour lon[i] <=
—80.2276727000)
and (twenty twentyfour lat[i] >= 43.5302811700 and twenty twentyfour lat[i]| <=

43.5337142400)) :

Grass

R = R_grass
B = B _grass
O = O _grass
F = F_grass

South East Grass Area, corner of Gordon and Stone

71

elif ((twenty twentyfour lon[i] >= —80.2262640000 and twenty twentyfour lon[i] <=

—80.2241124000)
and (twenty twentyfour lat[i] >= 43.5268688200 and twenty twentyfour lat[i]| <=

43.5283545100)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

South Residence Area
elif ((twenty twentyfour lon[i] >= —80.2240591000 and twenty twentyfour lon[i] <=

—80.2190782000)
and (twenty twentyfour lat[i] >= 43.5284211000 and twenty twentyfour lat[i] <=

43.5320258200)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

328

Gryphons Football Field
elif ((twenty twentyfour lon[i] >= —80.2274877882 and twenty twentyfour lon[i] <=

—80.2257549752)
and (twenty twentyfour lat[i] >= 43.5344304570 and twenty twentyfour lat[i]| <=

43.5357193383)) :

Grass

R = R_grass
B = B_grass
O = O _grass
F = F_grass

Main baseball diamond
elif ((twenty twentyfour lon[i] >= —80.2258437615 and twenty twentyfour lon[i] <=

~80.2241568215)
and (twenty twentyfour lat[i] >= 43.5354322626 and twenty twentyfour lat[i]| <=

43.5367196642)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Stone Rd Baseball Diamonds
elif ((twenty twentyfour lon[i] >= —80.2186283934 and twenty twentyfour lon[i] <=

—80.2161897292)
and (twenty twentyfour lat[i] >= 43.5321175734 and twenty twentyfour lat[i] <=
43.5338193111)) :
Grass
= R_grass
B grass
= O _grass

g O W Tk
Il

= F_grass

Stone Rd Soccer Field 1
elif ((twenty twentyfour lon[i] >= —80.2193490000 and twenty twentyfour lon[i] <=

—80.2172004000)
and (twenty twentyfour lat[i] >= 43.5329714000 and twenty twentyfour lat[i]| <=

43.5345399600)) :

Grass

R = R_grass
B = B_grass
O = O _grass
F = F_grass

Stone Rd Soccer Field 2
elif ((twenty twentyfour lon[i] >= —80.2210063870 and twenty twentyfour lon[i] <=

—80.2182125775)
and (twenty twentyfour lat[i] >= 43.5333383853 and twenty twentyfour lat[i]| <=

43.5352265743)) :

Grass
R = R_grass
B = B_grass

329

(0]
F

O _grass

F_grass

Stone Road Soccer Field 3
elif ((twenty twentyfour lon[i] >= —80.2211869000 and twenty twentyfour lon[i] <=

—80.2197589000)
and (twenty twentyfour lat[i] >= 43.5322655500 and twenty twentyfour lat[i] <=

43.5333013900)) :

Grass

R = R _grass
B = B _grass
O = O_grass
F = F_grass

Stone Road Soccer Field 4
elif ((twenty twentyfour lon[i] >= —80.2211469653 and twenty twentyfour lon[i] <=

—80.2198270087)
and (twenty twentyfour lat[i] >= 43.5344970467 and twenty twentyfour lat[i]| <=

43.5355092107)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

Main Soccer Field
elif ((twenty twentyfour lon[i] >= —80.2256395530 and twenty twentyfour lon[i] <=

—80.2233103919)
and (twenty twentyfour lat[i] >= 43.5360685645 and twenty twentyfour lat[i] <=

43.5378975627)) :

Grass

R = R_grass
B = B_grass
O = O_grass
F = F_grass

East Residence Forest Area
elif ((twenty twentyfour lon[i] >= —80.2231505765 and twenty twentyfour lon[i] <=

—80.2200726509)
and (twenty twentyfour lat[i] >= 43.5352206552 and twenty twentyfour lat[i]| <=

43.5375823712)) :

Grass

R = R _grass
B = B grass
O = O_grass
F = F_grass

All other areas are considered to be developed land (concrete)

else:

m

Developed land (concrete)
R = R_concrete

B = B_concrete

330

O
I

= O_concrete

5!
|

= F_concrete

Calculate corrected temperature
corrected temp twenty twentyfour|[i] = B / (numpy.log(R / (Upixel twenty twentyfour[i] +
O) + F))

Save To file
outputFileName twenty twentyfour = ’/export/home/users/username/Documents/DG_Temp/
Guelph 2018 /Processed Data/’ \
>Separated Hours/Manufacturer Calibrated/
Twenty twentyfour data filtered.txt’

)

outputFile twenty twentyfour = open(outputFileName twenty twentyfour, ’'w’)
outputFile twenty twentyfour.write("#0:_Longitude_\t_#1:Latitude_\t_#2:FLIR_Land_Use_

Corrected _Temp._ [K]|_\n")

Save data to file
for i in range(0, len(twenty twentyfour lat)):
outputFile twenty twentyfour.write("%f_\t_%f_\t_%f_\n" % (twenty twentyfour lon|[i],
twenty twentyfour lat[i],
corrected temp twenty twentyfour
(i)

outputFile twenty twentyfour.close ()

Temperature distribution boundaries

Guelph Summer 2018 Site Boundaries as of Sept 23/2019
Latmin = 43.5257257364

Latmax = 43.5385583188

Lonmax = —80.2324729223

Lonmin = —80.2150621430

For 20 m resolution , maximum/minimum latitude and longitude = 1 km area
nLat = 50

nLon = 50

For 50 m resolution , maximum/minimum latitude and longitude = 1 km area

nLat = 20
nLon = 20
#

Crete temperature array for each interval
04:00 to 08:00
TMatrix four eight = numpy.zeros (((nLat+1), (nLon+1), (len(four eight lat))))

TMatrix four eight[:] = numpy.nan

08:00 to 12:00

331

TMatrix eight twelve = numpy.zeros (((nLat+1), (nLon+1), (len(eight twelve lat))))
TMatrix eight twelve [:] = numpy.nan

12:00 to 16:00
TMatrix twelve sixteen = numpy.zeros (((nLat+1), (nLon+1), (len(twelve sixteen lat))))
TMatrix twelve sixteen [:]

numpy . nan

16:00 to 20:00
TMatrix sixteen twenty = numpy.zeros (((nLat+1), (nLon+1), (len(sixteen twenty lat))))
TMatrix _sixteen twenty [:] = numpy.nan

20:00 to 24:00
TMatrix twenty twentyfour

numpy . zeros (((nLat+1), (nLon+1), (len(twenty twentyfour lat))))
TMatrix twenty twentyfour[:] = numpy.nan

T

Create median temperature array for each interval
For 04:00 to 08:00

TMatrix four eight median

numpy . zeros (((nLat+1), (nLon+1)))
TMatrix four eight median[:] = numpy.nan

For 08:00 to 12:00
TMatrix _eight twelve median = numpy.zeros (((nLat+1), (nLon+1)))
TMatrix _eight twelve median [:] = numpy.nan

For 12:00 to 16:00
TMatrix twelve sixteen median = numpy.zeros (((nLat+1), (nLon+1)))
TMatrix twelve sixteen median [:] = numpy.nan

For 16:00 to 20:00
TMatrix sixteen twenty median = numpy.zeros (((nLat+1), (nLon+1)))
TMatrix sixteen twenty median [:] = numpy.nan

For 20:00 to 24:00

TMatrix twenty twentyfour median = numpy.zeros (((nLat+1), (nLon+1)))
TMatrix twenty twentyfour median [:] = numpy.nan

"
#

From 04:00 to 08:00
for i in range(0, len(four eight lat)):

if numpy.isnan(four eight lat[i]) = False or numpy.isnan(four eight lon[i]) = False:
LatIndex four eight = int ((four eight lat[i] — Latmin) * nLat / (Latmax — Latmin))
LonIndex four eight = int ((four eight lon[i] — Lonmin) * nLon / (Lonmax — Lonmin))

Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the
latitude/longitude minimum

if four eight lat[i] > Latmax or four eight lat[i] < Latmin or four eight lon[i] <

332

Lonmax\
or four eight lon[i]| > Lonmin:
continue
else:
TMatrix four eight|[LatIndex four eight][LonIndex four eight][i] =

corrected temp four eight|i]

Calculate the median temperature for each bin
for i in range(0, nLat+1):
for j in range(0, nLon+1):
Check for Nan
for k in range(0, len(four eight lat)):

If a real number is encountered, a median can be calculated

71

if TMatrix four eight[i][j]|[k] !'= numpy.nan:
break
1f at the last index and it is a Nan, assign TMatrix to be to Nan
if (k = len(four eight lat)) & (TMatrix_ four eight[i]|[j][k] = numpy.nan):
TMatrix four eight median|[i][j] = numpy.nan
else:
TMatrix four eight median|i][j] = numpy.nanpercentile (TMatrix four eight[i][]
I[:1,50)

From 08:00 to 12:00
for i in range(0, len(eight twelve lat)):
if numpy.isnan (eight twelve lat[i]) = False or numpy.isnan(eight twelve lon[i]) =
False:
LatIndex eight twelve = int ((eight twelve lat[i] — Latmin) % nLat / (Latmax — Latmin

))

LonIndex eight twelve = int ((eight twelve lon[i]| — Lonmin) * nLon / (Lonmax — Lonmin

))

Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the
latitude/longitude minimum
if eight_twelve_lat[i]| > Latmax or eight_ twelve lat[i] < Latmin or eight_ twelve_ lon]|
i] < Lonmax\
or eight_ twelve_ lon[i] > Lonmin:

continue

else:
TMatrix _eight twelve[LatIndex eight twelve][LonIndex eight twelve][i] =

corrected temp eight twelve[i]

Calculate the median temperature for each bin

for i in range(0, nLat+1):

for j in range(0, nLon+1):
Check if Nan
for k in range(0, len(eight twelve lat)):
If a real number is encountered, a median can be calculated

333

if TMatrix eight twelve[i]|[j]|[k] !'= numpy.nan:

break
If at the last index and it is a Nan, assign TMatrix to be = to Nan
if (k = len(eight twelve lat)) & (TMatrix_ eight twelve[i]|[j][k] == numpy.nan):
TMatrix _eight twelve median[i][j] = numpy.nan

else:

TMatrix _eight twelve median[i][j] = numpy.nanpercentile (TMatrix eight twelve[i]]
ill:1,50)

==

From 12:00 to 16:00

for i in range(0, len(twelve sixteen lat)):

if numpy.isnan(twelve sixteen lat[i]) == False or numpy.isnan (twelve sixteen lon[i]) =
False:
LatIndex twelve sixteen = int((twelve sixteen lat|[i] — Latmin) % nLat / (Latmax —
Latmin))

LonIndex twelve sixteen = int ((twelve sixteen lon[i] — Lonmin) % nLon / (Lonmax —

Lonmin))
Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the
latitude/longitude minimum
if twelve sixteen lat[i] > Latmax or twelve sixteen lat[i] < Latmin or
twelve sixteen lon[i] < Lonmax\
or twelve sixteen lon[i]| > Lonmin:

continue

else:

TMatrix twelve sixteen|[LatIndex twelve sixteen|[LonIndex twelve sixteen]|[i] \

= corrected temp twelve sixteen|i]

Calculate the median temperature for each bin

for i i

in range(0, nLat+1):

for j in range(0, nLon-+1):

T

From

Check if Nan
for k in range(0, len(twelve sixteen lat)):

If a real number is encountered, a median can be calculated

if TMatrix twelve sixteen[i][j]|[k] !'= numpy.nan:
break
If at the last index and it is a Nan, assign TMatrix to be = to Nan
if (k = len(twelve sixteen lat)) & (TMatrix twelve sixteen[i][j][k] == numpy.nan):
TMatrix twelve sixteen median[i][j] = numpy.nan
else:
TMatrix _twelve sixteen median[i][j] = numpy.nanpercentile (TMatrix twelve sixteen

[i]11J1l:],50)

e

AT

16:00 to 20:00

334

HHHH

for i in range(0, len(sixteen twenty lat)):

if numpy.isnan (sixteen twenty lat[i]) = False or numpy.isnan (sixteen twenty lon[i]) =—
False:
LatIndex sixteen twenty = int ((sixteen twenty lat|[i] — Latmin) % nLat / (Latmax —
Latmin))
LonIndex _sixteen twenty = int ((sixteen twenty lon[i] — Lonmin) % nLon / (Lonmax —

Lonmin))

Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the
latitude/longitude minimum
if sixteen twenty lat[i] > Latmax or sixteen twenty lat[i] < Latmin or
sixteen twenty lon[i] < Lonmax\
or sixteen twenty lon[i] > Lonmin:

continue

else:
TMatrix sixteen twenty|[LatIndex sixteen twenty]|[LonIndex sixteen twenty|[i]\

= corrected temp sixteen twenty|[1i]

Calculate the median temperature for each bin
for i in range(0, nLat+1):
for j in range(0, nLon-+1):
Check for Nan
for k in range(0, len(sixteen twenty lat)):

If a real number is encountered, a median can be calculated

if TMatrix sixteen twenty[i][j]|[k] !'= numpy.nan:
break
If at the last index and it is a Nan, assign TMatrix to be = to Nan
if (k = len(sixteen twenty lat)) & (TMatrix sixteen twenty[i][j][k] == numpy.nan):
TMatrix sixteen twenty median[i][j] = numpy.nan
else:
TMatrix sixteen twenty median[i][j] = numpy.nanpercentile (TMatrix sixteen twenty

[i]1ill:],50)

From 20:00 to 24:00
for i in range(0, len(twenty twentyfour lat)):

if numpy.isnan(twenty twentyfour lat[i]) = False or numpy.isnan (twenty twentyfour lon[i
|) = False:
LatIndex twenty twentyfour = int ((twenty twentyfour lat[i] — Latmin) % nLat / (
Latmax — Latmin))
LonIndex twenty twentyfour = int ((twenty twentyfour lon[i]| — Lonmin) % nLon / (
Lonmax — Lonmin))

Ignore latitude/longitude values greater than the latitude/longitude maximum or
less than the

latitude/longitude minimum

if twenty twentyfour lat[i] > Latmax or twenty_ twentyfour_ lat[i] < Latmin or

twenty twentyfour lon[i| < Lonmax\

335

or twenty twentyfour lon[i] > Lonmin:
continue
else:
TMatrix twenty twentyfour|LatIndex twenty twentyfour][LonIndex twenty twentyfour
[IRRA

= corrected temp twenty twentyfour]|i]

Calculate the median temperature for each bin
for i in range(0, nLat+1):
for j in range(0, nLon+1):
Check if Nan
for k in range(0, len(twenty twentyfour lat)):

If a real number is encountered, a median can be calculated

71

if TMatrix twenty twentyfour[i]|[j][k]| != numpy.nan:
break
1f at the last index and it is a Nan, assign TMatrix to be to Nan
if (k = len(twenty twentyfour lat)) & (TMatrix twenty twentyfour[i][j][k] == numpy.
nan) :
TMatrix twenty twentyfour median[i][j] = numpy.nan
else:
TMatrix _twenty twentyfour median[i]|[j] = numpy.nanpercentile (
TMatrix _twenty twentyfour[i][j][:],50)

%

State minimum and maximum colour bar ranges for each respective time interval

4-8

color _bar_ min_four_eight = 280

color _bar_ max_four_eight = 295

8—12

color _bar_min_eight twelve = 285
color _bar_max_eight_ twelve = 315
#1216

color bar min_ twelve sixteen = 285
color bar max twelve sixteen = 315

16—-20

color bar min_sixteen twenty = 290
color bar max_sixteen twenty = 315

20-24

color bar min_ twenty twentyfour = 280
color _bar_ max_ twenty twentyfour = 300

May 24 surface temperature colour bar range
color_bar_min_ May 24 SA = 295
325

color_bar_max_May 24 SA

Figure size

336

figuresize = (10,6)

Font size
font size = 16
title font size = 16

tick size = 11

cbar tick size = 16

Figure parameters

For surface temperature maps
axes label fontsize = 36

axes ticks fontsize = 34

For boxplots
axes bxplt label fontsize = 42

axes_bxplt_ticks fontsize = 40

For colour bars
axes clrbar label fontsize = 32

axes clrbar ticks fontsize = 30

Position of x and y labels away from respective axes in points
x_ labelpad = =5

y_labelpad = =5

Geographic identifier marker size
geog ident size = 175

#

Filename resolution

20m and 50m resolution

if nLat — 50:
filename _res = ’20m’
elif nLat — 20:
filename res = ’50m’
else:

print (’You_have_problems_with_the_resolution_size_in_the_outputted_filename)

Declare TANAB2 launch location at Reek Walk
base lon = [—80.2253889000]
base lat = [43.5323355400]

Declare Known geographical locations:

arena_lon = [—80.2235723116]
arena_lat = [43.5323454583]

337

uc lon

[—80.2263779592]
[43.5305549342]

uc_lat

athletics lon = [—80.2244601747]
athletics lat [43.5336269408]

football field lon = [—-80.2266413586]
football field lat = [43.5350800769]

[—80.2299619669]
johnston green lat = [43.5320435848]

johnston green lon

fieldhouse lon = [—80.2251245923]
fieldhouse lat [43.5343054162]

colour bar label
color bar label = ’T_[K]’

TANAB2 dot size

launch size = 25

Use latex font for labels
plt.rc(’text’, usetex=True)

plt.rc(’font’, family="serif’)

Directory to save images
direct save =’/export/home/users/username/Documents/DG_Temp/Guelph 2018/’ \
"Processed Data/Figures/”’

At 04:00 to 08:00
Lataxis four eight = numpy.linspace (Latmin, Latmax,nLat+1)
Lonaxis four eight = numpy.linspace (Lonmin,Lonmax,nLon+1)

LonAxis four eight,LatAxis four eight = numpy.meshgrid(Lonaxis four eight,Lataxis four eight

)

fig four eight, ax = plt.subplots(figsize=figuresize)
Tpcolor four eight=plt.pcolor(LonAxis four eight,LatAxis four eight,
TMatrix _four eight median,
vmin=color bar min four eight, vmax=color bar max four eight)
cbar four eight = plt.colorbar(Tpcolor four eight)
cbar four eight.set label(color bar label,labelpad=—75,y=1.1,rotation=0,fontsize=
axes _clrbar_label fontsize)

cbar four eight.ax.tick params(labelsize=axes clrbar ticks fontsize)

plt.scatter (arena lon, arena lat, edgecolors='k’, facecolors=’none’, s=geog ident size)
plt.scatter (uc_lon, uc_ lat, edgecolors="m’, facecolors=’none’, s=geog ident size)
plt.scatter (athletics lon, athletics lat, edgecolors='b’, facecolors=’none’, s=

geog ident size)
plt.scatter (football field lon, football field lat, edgecolors=’y’, facecolors=’none’, s=

geog ident size)

338

plt.scatter (johnston green lon, johnston green lat, edgecolors=’c’, facecolors =’none’, s=
geog ident size)

plt.scatter (fieldhouse lon, fieldhouse lat, edgecolors=’'w’, facecolors=’none’, s=
geog ident size)

plt.scatter (base lon, base lat, c=’r’,s=launch_size)

Verified distances via https://www.nhc.noaa.gov/gccalc.shtml

plt.xlabel(’Decimal_Degrees_|[deg]’,fontsize=12)

plt.ylabel(’Decimal_Degrees_|[deg]|’,fontsize=12)

plt.gcf().subplots adjust(bottom=0.15)

plt.tight layout ()

fig four eight.show ()

plt.savefig(direct save+’0400 0800 map ’+filename res+’.png’)

plt .show ()

Save the median temperature corresponding to the middle of each bin to a file
LatAxis median_four eight = numpy.zeros ((nLat, 1))

LonAxis median_four eight = numpy.zeros ((nLon, 1))

LatAxisIndex four eight = numpy.empty ((nLat+1,1))

LatAxisIndex four eight[:] = numpy.nan

LonAxisIndex four eight = numpy.empty ((nLon+1,1))

LonAxisIndex four eight[:] = numpy.nan

Calculate average between each "bin" and save to new median array
for a in range(0, nLat):
LatAxis median_ four eight[a] = ((Lataxis four eight[a]|)+(Lataxis four eight[a+1]))/2

for j in range(0, nLon):
LonAxis median four eight[j| = (Lonaxis_ four eight|[j]+Lonaxis four eight[j+1])/2

Save latitude/longitude indices and median temperatures

output four eight filename = direct save+’Figure Data/Four Eight MedianTemp ’+filename res+’
Ctxt?

outputFile four eight = open(output_ four eight filename,

7W7)

outputFile four eight.write("#_Lat,_Lon_indices ,_median_temp_for _UofG_Campus_\n")
("#By:_Ryan_Byerlay_\n")

outputFile four eight.write("#Recorded_Time_is_Local_Time_(EDT)_\n")

outputFile four eight.write("#0:LatAxis four eight_\t_#1:LonAxis four eight"

"_\t_#2:MedianTemp four eight(K)_{lat ,lon}__\n")

outputFile four eight.write

Save data to file
for i in range(0, len(LatAxis four eight)—1):
for j in range(0, len(LonAxis four eight)—1):
print (TMatrix four eight median[i][]])
if numpy.isnan(TMatrix four eight median[i][j]) = False:
outputFile four eight.write("%f_\t_%f_\t %f_\n" % (LatAxis median_ four eight[i],
LonAxis median four eight[j],
TMatrix four eight median|[i]]
in)

outputFile four eight.close ()

339

At 08:00 to 12:00

Lataxis eight twelve = numpy.linspace (Latmin, Latmax,nLat+1)

Lonaxis eight twelve = numpy.linspace (Lonmin,Lonmax,nLon+1)

LonAxis eight twelve,LatAxis eight twelve = numpy.meshgrid (Lonaxis eight twelve,

Lataxis eight twelve)

fig eight twelve, ax = plt.subplots(figsize=figuresize)
Tpcolor eight twelve=plt.pcolor(LonAxis eight twelve,LatAxis eight twelve,
TMatrix _eight twelve median,
vmin=color bar_ min_ eight twelve, vmax=
color _bar_ max_eight twelve)
cbar eight twelve = plt.colorbar (Tpcolor eight twelve)
cbar eight twelve.set label(color_ bar label,labelpad=—75,y=1.1,rotation=0,fontsize=
axes_clrbar label fontsize)

cbar eight twelve.ax.tick params(labelsize=axes clrbar ticks fontsize)

plt.scatter (arena lon, arena lat, edgecolors=’k’, facecolors=’none’, s=geog ident size)

plt.scatter (uc_lon, uc_ lat, edgecolors="m’, facecolors=’none’, s=geog ident size)

plt.scatter (athletics lon, athletics lat, edgecolors=’'b’, facecolors=’none’, s=
geog ident size)

plt.scatter (football field lon, football field lat, edgecolors=’y’, facecolors=’none’, s=
geog ident size)

plt.scatter (johnston green lon, johnston green lat, edgecolors=’c’, facecolors =’none’, s=
geog ident size)

plt.scatter (fieldhouse lon, fieldhouse lat, edgecolors='w’, facecolors=’none’, s=

geog ident size)

)

plt.scatter (base lon, base lat, c¢=’r’,s=launch_size)

Verified distances via https://www.nhc.noaa.gov/gccalc.shtml
plt.xlabel (’Decimal_Degrees_[deg]’,fontsize=12)

plt.ylabel (’Decimal_Degrees_|[deg]’,fontsize=12)
plt.gcf().subplots adjust(bottom=0.15)

plt.tight layout ()

fig eight twelve.show ()

plt .savefig (direct save+’0800_1200_map_’'+filename _res+’.png’)
plt .show ()

Save the median temperature corresponding to the middle of each bin to a file
LatAxis median eight twelve = numpy.zeros ((nLat, 1))
LonAxis median eight twelve = numpy.zeros ((nLon, 1))

LatAxisIndex eight twelve = numpy.empty ((nLat+1,1))

LatAxisIndex eight twelve[:] = numpy.nan

LonAxisIndex eight twelve = numpy.empty ((nLon+1,1))

LonAxisIndex eight twelve[:] = numpy.nan

Calculate average between each "bin" and save to new median array
for a in range(0, nLat):
LatAxis median_eight twelve[a| = ((Lataxis eight twelve[a])+(Lataxis eight twelve[a+1]))

/2

for j in range(0, nLon):
LonAxis median eight twelve[j]| = (Lonaxis eight twelve[j|+Lonaxis eight twelve[j+1])/2

340

Save latitude/longitude indices and median temperatures
output eight twelve filename = direct save+’Figure Data/Eight Twelve MedianTemp '+
filename res+’.txt’
outputFile eight twelve = open(output eight twelve filename, ’w’)
outputFile eight twelve.write("#_Lat,_Lon_indices ,_median_temp_and_lat/lon_bounds_for _UofG_
Campus_\n")
outputFile eight twelve.write ("#By:_Ryan_Byerlay_\n")
outputFile eight twelve. write ("#Recorded_Time_is_Local_Time_(EDT)_\n")
outputFile eight twelve.write("#0:LatAxis eight twelve_\t_#1:LonAxis eight twelve"
"_\t_#2:MedianTemp eight twelve(K)_{lat ,lon}__\n")

Save data to file
for i in range(0, len(LatAxis eight twelve)—1):
for j in range(0, len(LonAxis eight twelve)—1):
print (TMatrix eight twelve median[i][]])
if numpy.isnan(TMatrix eight twelve median[i]|[j]) = False:
outputFile eight_twelve. write ("%f_\t_%f_\t _%f_\n" % (LatAxis_median_eight_twelve
i1,
LonAxis median_ eight twelve
[il,
TMatrix eight twelve median
106 1))

outputFile eight twelve.close ()

At 12:00 to 16:00

Lataxis twelve sixteen = numpy.linspace (Latmin,Latmax,nLat+1)
Lonaxis twelve sixteen = numpy.linspace (Lonmin,Lonmax,nLon+1)
LonAxis twelve sixteen ,LatAxis twelve sixteen = numpy.meshgrid(Lonaxis twelve sixteen,

Lataxis twelve sixteen)

fig twelve sixteen ,ax = plt.subplots(figsize=figuresize)
Tpcolor twelve sixteen=plt.pcolor (LonAxis twelve sixteen,LatAxis twelve sixteen,
TMatrix twelve sixteen median,
vmin—=color bar min_twelve sixteen, vmax—
color bar max twelve sixteen)
cbar twelve sixteen = plt.colorbar (Tpcolor twelve sixteen)
cbar twelve sixteen.set label(color bar label,labelpad=—-75,y=1.1,rotation=0,fontsize=
axes clrbar label fontsize)
cbar twelve sixteen.ax.tick params(labelsize=axes clrbar ticks fontsize)
(
(

plt.scatter (athletics lon, athletics lat, edgecolors='b’, facecolors='none’, s=

plt.scatter (arena lon, arena lat, edgecolors='k’, facecolors=’none’, s=geog ident size)

plt.scatter (uc_lon, uc_lat, edgecolors="m’, facecolors=’none’, s=geog ident size)
geog ident size)
plt.scatter (football field lon, football field lat, edgecolors=’y’, facecolors=’none’, s=
geog ident size)
plt.scatter (johnston green lon, johnston green lat, edgecolors=’c’, facecolors =’none’, s=
geog ident size)
)

plt.scatter (fieldhouse lon, fieldhouse lat, edgecolors='w’, facecolors=’none’, s=

geog ident size)

341

plt.scatter (base lon, base lat, c=’r’

,s=launch _size)

Verified distances via https://www.nhc.noaa.gov/gccalc.shtml
plt.xlabel (’Decimal_Degrees_[deg]’,fontsize=12)

plt.ylabel (’Decimal_Degrees_[deg]|’,fontsize=12)
plt.gcf().subplots adjust(bottom=0.15)

plt.tight layout ()

fig twelve sixteen.show ()

plt.savefig(direct save+’1200 1600 map ’+filename res+’.png’)
plt .show ()

Save the median temperature corresponding to the middle of each bin to a file
LatAxis median twelve sixteen = numpy.zeros ((nLat, 1))

LonAxis median twelve sixteen = numpy.zeros ((nLon, 1))
LatAxisIndex twelve sixteen = numpy.empty ((nLat+1,1))
LatAxisIndex twelve sixteen [:| = numpy.nan

LonAxisIndex twelve sixteen = numpy.empty ((nLon+1,1))

LonAxisIndex twelve sixteen [:| = numpy.nan

Calculate average between each "bin" and save to new median array
for a in range(0, nLat):
LatAxis median twelve sixteen|a] = ((Lataxis twelve sixteen[a])+(Lataxis twelve sixteen]|
at1])) /2

for j in range(0, nLon):

LonAxis median twelve sixteen[j] = (Lonaxis twelve sixteen[j]+Lonaxis twelve sixteen]|j
+1]) /2

Save latitude/longitude indices and median temperatures

output_twelve sixteen filename = direct save+’Figure_ Data/Twelve Sixteen MedianTemp '+
filename res+’.txt’

outputFile twelve sixteen = open(output twelve sixteen filename, ’'w’)

outputFile twelve sixteen.write ("#_Lat,_Lon_indices ,_median_temp_and_lat/lon_bounds_for _UofG
Campus\n")

outputFile twelve sixteen.write ("#By:_Ryan_Byerlay_\n")

outputFile twelve sixteen.write ("#Recorded_Time_is_Local_Time_(EDT)_\n")

outputFile twelve sixteen.write ("#0:LatAxis twelve sixteen_\t_#1:LonAxis twelve sixteen"

"_\t_#2:MedianTemp twelve sixteen(K)_{lat ,lon}__\n")

Save data to file
for i in range(0, len(LatAxis twelve sixteen)—1):
for j in range(0, len(LonAxis twelve sixteen)—1):
print (TMatrix twelve sixteen median[i][]j])
if numpy.isnan(TMatrix twelve sixteen median[i]|[j]) = False:
outputFile twelve sixteen.write ("%f_\t_%f_\t_%f_\n" % (
LatAxis_median_twelve sixteen[i],
LonAxis median_ twelve sixteen
[il,
TMatrix twelve sixteen median
[E103D)

outputFile twelve sixteen.close ()

F

342

At 16:00 to 20:00

Lataxis sixteen twenty = numpy.linspace (Latmin,Latmax,nLat+1)
Lonaxis sixteen twenty = numpy.linspace (Lonmin,Lonmax,nLon+1)
LonAxis sixteen twenty,LatAxis sixteen twenty = numpy.meshgrid(Lonaxis sixteen twenty,

Lataxis sixteen twenty)

fig sixteen twenty, ax = plt.subplots(figsize=figuresize)

Tpcolor sixteen twenty=plt.pcolor (LonAxis sixteen twenty,LatAxis sixteen twenty,

TMatrix sixteen twenty median,

vmin=color bar_ min_sixteen twenty , vmax—

color bar max _sixteen twenty)

cbar sixteen twenty = plt.colorbar (Tpcolor sixteen twenty)

cbar _sixteen twenty.set label(color bar_label ,labelpad=-75,y=1.1,rotation=0,fontsize=

axes_clrbar label fontsize)

cbar sixteen twenty.ax.tick params(labelsize=axes clrbar ticks fontsize)

plt.scatter (arena lon, arena lat, edgecolors=’k’, facecolors=’none’, s=geog ident size)
plt.scatter (uc_lon, uc lat, edgecolors="m’, facecolors=’none’, s=geog ident size)
plt.scatter (athletics lon , athletics lat, edgecolors=’'b’, facecolors=’none’, s=

geog ident size)

plt.scatter (football field lon, football field lat, edgecolors=’y’, facecolors=’none’, s=

geog ident size)

plt.scatter (johnston green lon, johnston green lat, edgecolors=’c’, facecolors =’none’, s=

geog ident size)

)

plt.scatter (fieldhouse lon, fieldhouse lat, edgecolors='w’, facecolors='none’, s=

geog ident size)
plt.scatter (base lon, base lat, c='r

’,s=launch _size)

Verified distances via https://www.nhc.noaa.gov/gccalc.shtml

plt.xlabel (’Decimal_Degrees_|[deg]’,fontsize=12)

plt.ylabel (’Decimal_Degrees_[deg]’,fontsize=12)
plt.gcf().subplots adjust(bottom=0.15)

plt.tight layout ()

fig sixteen twenty.show ()

plt.savefig(direct save+’1600_ 2000 map ’+filename res+’.png’)

plt .show ()

Save the median temperature corresponding to the middle of each bin to a file

LatAxis median sixteen twenty = numpy.zeros ((nLat, 1))

LonAxis median sixteen twenty = numpy.zeros ((nLon, 1))

LatAxisIndex sixteen twenty = numpy.empty ((nLat+1,1))

LatAxisIndex sixteen twenty [:| = numpy.nan

LonAxisIndex sixteen twenty = numpy.empty ((nLon+1,1))

LonAxisIndex sixteen twenty [:| = numpy.nan

Calculate average between each "bin"
for

a in range(0, nLat):

LatAxis median sixteen twenty|[a]
a+1]))/2

for j in range(0, nLon):

LonAxis median_sixteen twenty|[]]

and save to new median array

((Lataxis sixteen twenty[a])+(Lataxis sixteen twenty |

(Lonaxis sixteen twenty[j]+Lonaxis sixteen twenty|[]

343

+1])/2

Save latitude/longitude indices and median temperatures

output sixteen twenty filename = direct save+’Figure Data/Sixteen Twenty MedianTemp '+
filename res+’.txt’

outputFile sixteen twenty = open(output sixteen twenty filename, ’w’)

outputFile sixteen twenty.write ("#_Lat,_Lon_indices ,_median_temp_and_lat/lon_bounds_for _UofG
campus\n")

outputFile sixteen twenty.write ("#By:_Ryan_Byerlay_\n")

outputFile sixteen twenty.write ("#Recorded_Time_is_Local_Time_(EDT)_\n")

outputFile sixteen twenty.write ("#0:LatAxis sixteen twenty_\t_#1:LonAxis sixteen twenty"

"_\t_#2:MedianTemp _sixteen twenty (K)_{lat ,lon}__\n")

Save data to file
r

fo

i in range(0, len(LatAxis sixteen twenty)—1):
for j in range(0, len(LonAxis sixteen twenty)—1):
print (TMatrix sixteen twenty median[i]|[j])
if numpy.isnan(TMatrix sixteen twenty median[i][j]) = False:
outputFile sixteen twenty.write("%f_\t_%f_\t_%f_\n" % (
LatAxis median_sixteen twenty[i],
LonAxis median_ sixteen twenty
[il,
TMatrix sixteen twenty median
D)
outputFile sixteen twenty.close ()

+

At 20:00 to 24:00

Lataxis twenty twentyfour = numpy.linspace (Latmin,Latmax,nLat+1)
Lonaxis twenty twentyfour = numpy.linspace (Lonmin,Lonmax,nLon+1)
LonAxis twenty twentyfour,LatAxis twenty twentyfour = numpy.meshgrid (

Lonaxis twenty twentyfour,

Lataxis twenty twentyfour

)

fig twenty twentyfour,ax = plt.subplots(figsize=figuresize)

Tpcolor twenty twentyfour=plt.pcolor(LonAxis twenty twentyfour,LatAxis twenty twentyfour,
TMatrix twenty twentyfour median, vmin=

color bar min_ twenty twentyfour,

vmax—color bar max twenty twentyfour)

cbar twenty twentyfour = plt.colorbar(Tpcolor twenty twentyfour)

cbar twenty twentyfour.set label(color bar label,labelpad=-75,y=1.1,rotation=0,fontsize=

axes _clrbar_label fontsize)

cbar twenty twentyfour.ax.tick params(labelsize=axes clrbar ticks fontsize)

plt.scatter (arena lon, arena lat, edgecolors='k’, facecolors=’none’, s=geog ident size)

(:

plt.scatter (uc_lon, uc_ lat, edgecolors="m’, facecolors=’none’, s=geog ident size)
plt.scatter (athletics lon , athletics lat, edgecolors='b’, facecolors=’none’, s=

geog ident size)
plt.scatter (football field lon, football field lat, edgecolors=’y’, facecolors=’none’, s=

geog ident size)

344

plt.scatter (johnston green lon, johnston green lat, edgecolors=’c’, facecolors =’none’, s=
geog ident size)

plt.scatter (fieldhouse lon, fieldhouse lat, edgecolors=’'w’, facecolors=’none’, s=
geog ident size)

plt.scatter (base lon, base lat, c=’r’,s=launch_size)

Verified distances via https://www.nhc.noaa.gov/gccalc.shtml

plt.xlabel(’Decimal_Degrees_|[deg]’,fontsize=12)

plt.ylabel(’Decimal_Degrees_|[deg]|’,fontsize=12)

plt.gcf().subplots adjust(bottom=0.15)

plt.tight layout ()

fig twenty twentyfour.show ()

plt.savefig (direct save+’2000 2400 map_’'+filename res+’.png’)

plt .show ()

Save the median temperature corresponding to the middle of each bin to a file
LatAxis median_ twenty twentyfour = numpy.zeros ((nLat, 1))

LonAxis median_twenty twentyfour = numpy.zeros ((nLon, 1))
LatAxisIndex twenty twentyfour = numpy.empty ((nLat+1,1))
LatAxisIndex twenty twentyfour [:] = numpy.nan

LonAxisIndex twenty twentyfour = numpy.empty ((nLon+1,1))

LonAxisIndex twenty twentyfour [:] = numpy.nan

Calculate average between each "bin" and save to new median array
for a in range(0, nLat):
LatAxis median twenty twentyfour[a] = ((Lataxis twenty twentyfour|a])-(
Lataxis twenty twentyfour[a+1]))/2

for j in range(0, nLon):
LonAxis median twenty twentyfour|[j] = (Lonaxis twenty twentyfour[j]|+

Lonaxis _twenty twentyfour[j+1])/2

Save latitude/longitude indices and median temperatures

output twenty twentyfour filename = direct save+’Figure Data/Twenty Twentyfour MedianTemp '+
filename res+’.txt’

)

outputFile twenty twentyfour = open(output twenty twentyfour filename, ’w’)
write (

outputFile twenty twentyfour. "#_Lat, _Lon_indices ,_median_temp_and_lat /lon_bounds_for_
UofG_campus_\n")
outputFile twenty twentyfour.write("#By:_Ryan_Byerlay_\n")
outputFile twenty twentyfour.write("#Recorded_Time_is_Local_Time_(EDT)_\n")
outputFile twenty twentyfour.write("#0:LatAxis twenty twentyfour_\t_#1:
LonAxis twenty twentyfour_\t"
"_#2:MedianTemp twenty twentyfour(K)_{lat ,lon}__\n")

Save data to file
for i in range(0, len(LatAxis twenty twentyfour)—1):
for j in range(0, len(LonAxis twenty twentyfour)—1):
print (TMatrix twenty twentyfour median[i][j])
if numpy.isnan(TMatrix twenty twentyfour median[i][]j]) = False:
outputFile twenty twentyfour.write ("%f_\t %f_\t_%f_\n" % (
LatAxis median_ twenty twentyfour[i],

LonAxis median_ twenty twentyfour

[j]7

345

TMatrix twenty twentyfour median

[i10i1))

outputFile twenty twentyfour.close ()

346

Appendix B

Published Work

B.1 Peer-Reviewed Journal Papers

1. Byerlay, R. A. E., Nambiar, M. K., Nazem, A., Nahian, M. R., Biglarbegian, M., and
Aliabadi, A. A., An Imaging Technique to Identify Land Surface Temperatures Using
Oblique Angle Airborne Observations. International Journal of Remote Sensing, (in
press). Content from this paper is included in Chapters 1, 2, 3, and 4 within this

thesis.

2. Nambiar, M. K., Byerlay, R. A. E., Nazem, A., Nahian, M. R., Moradi, M., and
Aliabadi, A. A.,; A Tethered And Navigated Air Blimp (TANAB) for observing the
microclimate over a complex terrain. Geoscientific Instrumentation, Methods and Data
Systems, (under review). Content from this paper is included in Chapters 1, 2, and
3 within this thesis.

3. Nahian, M. R., Nazem, A., Nambiar, M. K., Byerlay, R., Mahmud, S., Seguin, M.,
Robe, F., Ravenhill, J., and Aliabadi, A. A., Complex Meteorology over a Complex
Mining Facility: Assessment of Topography, Land Use, Grid Resolution, and PBL
Scheme Modifications in WRF. Applied Meteorology and Climatology, (under review).

B.2 Refereed Conferences

1. Byerlay, R., Biglarbegian, M. and Aliabadi, A. A., An Airborne Thermal Imaging
Methodology for Mapping Land Surface Temperature (LST) with a High Spatiotem-

347

poral Resolution In Proceedings of The Joint Canadian Society for Mechanical Engi-
neering (CSME) and CFD Society of Canada (CFDSC) International Congress (2019),

London, Ontario, Canada.

B.3 Poster Presentations

1. Nazem, A., Nahian, M. R., Nambiar, M. K., Byerlay, R., and Aliabadi, A. A., Complex
Meteorology over a Complex Mining Facility. In Proceedings of The 27th IUGG General
Assembly (2019), Montréal, Québec, Canada.

348

