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Abstract: In the present study, the laminar flow and heat transfer of water jet impingement enhanced
with nano-encapsulated phase change material (NEPCM) slurry on a hot plate is analytically in-
vestigated for the first time. A similarity solution approach is applied to momentum and energy
equations in order to determine the flow velocity and heat transfer fields. The effect of different
physical parameters such as jet velocity, Reynolds number, jet inlet temperature, and the NEPCM
concentration on the cooling performance of the impinging jet are investigated. The volume fraction
of NEPCM particles plays an essential role in the flow and heat transfer fields. The results show that
NEPCM slurry can significantly enhance the cooling performance of the system as it improves the
latent heat storage capacity of the liquid jet. However, the maximum cooling performance of the
system is achieved under an optimum NEPCM concentration (15%). A further increase in NEPCM
volume fraction has an unfavorable effect due to increasing the viscosity and reducing the conduc-
tivity simultaneously. The effect of adding nano-metal particles on the heat transfer performance
is also investigated and compared with NEPCM slurry. NEPCM slurry shows a better result in its
maximum performance. Compared with the water jet, adding nano and NEPCM particles would
overall enhance the system’s thermal performance by 16% and 7%, respectively.

Keywords: jet impingement cooling; nano-encapsulated phase change material; similarity solution;
heat transfer; optimization

1. Introduction

Jet impingement cooling (JIC) is a highly efficient technique in heat treatment, ther-
mal management, and cooling of hot surfaces [1]. With relatively simple equipment but
the ability to extract high heat flux, this technology is widely used in many industrial
applications such as cooling of electronic chips and microelectronic circuits, nuclear power
plants, and hot rolling steel strip [2,3]. The impinging jets are categorized in five different
configurations, i.e., free surface jet, plunging jet, submerged jet, confined jet, and wall jet [4].
Free surface jet configuration is considered to be a major classification of JIC [5–7]. In this
configuration, a fluid jet (usually water) exits from a nozzle into an ambient gas (mostly
air) and impinges on the target surface. Depending on the phase of coolants or the state of
jet flow, free surface jets can be distinguished in single- and two-phase JIC. Single-phase
impinging jets have been studied extensively, experimentally and numerically, by various
researchers, e.g., [8–15]. A comprehensive review of the single-phase JIC technique and
its heat transfer methods has recently been conducted by Ekkad et al. [2]. They reviewed
a variety of modifications and applications of the JIC technique focusing on impacting
novel design, implementation, and improved manufacturing techniques for heat transfer
enhancement. In another recent review study, experimental works on the impingement of
multiple liquid jets (arrays of impinging jets) on flat surfaces are reviewed by [16].

Two-phase JIC can refer to jet impingement boiling (JIB [3]) in which the impinging
liquid is allowed to boil on a hot surface ([4,17–26]) or jet flow is itself in the two-phase
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form such as dusty flow jets, e.g., [27]. A comprehensive review of the jet impingement
boiling has been published by Wolf et al. [4]. Recently, Mohaghegh et al. [1,3,6] presented
a mechanistic model with a similarity solution approach to simulate the jet impingement
boiling. Two-phase flow jets such as nanofluids and dusty fluids have been investigated
by several researchers. They can be treated as one or two separated phases. Mohaghegh
et al. [27] simulated a three-dimensional stagnation-point flow and heat transfer of a dusty
fluid toward a stretching sheet. They investigated the effect of non-axisymmetric velocity
components on the surface (velocity ratio), fluid and thermal particle interaction parameters,
and stretching sheet velocity parameters on the fluid and heat transfer fields. Considering
the interaction of phases in the form of source terms in the governing equations, they
employed the conservation equations for each phase separately.

Under a creation condition and concentration of the second phase dispersed in the
base liquid, the two-phase flow can be treated as a single phase, but the effect of the
second phase can be considered as effective thermophysical properties of the mixture
(e.g., a homogeneous flow including carried fluid (based fluid) and dispersed particles).
Nanofluid simulations in the literature are good examples of this kind of flow. A recent
review study on nanofluid jet impingement cooling is provided by Tyagi et al. [28]. They
provided an overview of studies conducted on nanofluid spray/jet impingement cooling
with a focus on the jet nozzle and surface configuration such as the nozzle to plate distance,
plate inclination, and the surface roughness, and the flow parameters such as jet Reynolds
and Prandtl numbers.

Improving the thermophysical properties of the base coolant by adding nanoparticles
is an effective method to enhance the thermal efficiency of JIC. The majority of this improve-
ment is associated with thermal conductivity and specific heat capacity of the advanced
coolant [29]. Metallic nanoparticles used in nanofluid JIC referred earlier enhance the ther-
mal conductivity of the coolant, while nano-encapsulated phase change material (NEPCM)
particles dispersed in the base liquid coolant known as NEPCM slurry are proposed to
improve the heat capacity of the base coolant [29]. Wu et al. [30] experimentally investi-
gated the effect of adding NEPCM particles in water to enhance the performance of jet
impingement and spray cooling. They concluded that the NEPCM slurry can enhance the
heat transfer coefficient significantly compared to pure water jet impingement and spray
cooling, respectively. Rehman et al. [31] numerically investigated the thermal performance
of free-surface jet impinging cooling using NEPCM slurry. They employed a commercial
computational fluid dynamics (CFD) code FLUENT to simulate the problem in a fully
turbulent regime.

A thorough review of the literature reveals that most studies on JIC have been carried
out with the single-phase, mostly air and water, while very few studies are reported on JIC
with NECPM slurry as coolant. The existing experimental works are limited by providing
a small range of data, under a certain or a small range of physical parameter variations,
which leads to reporting some empirical constants or fitting parameters which may not be
valid for other conditions. On the other hand, the existing two-phase numerical models
based on CFD or DNS simulations are very costly in solving details of phase change with
not much progress in giving accurate results. The numerical simulation of jet impingement
flow also involves several complexities, such as free-surface tracking.

In this work, JIC enhanced with NEPCM is studied. The similarity solution approach
is proposed to simulate the flow and heat transfer field. Appropriate similarity variables
for governing equations are derived for the current problem. To avoid the complexities that
correspond with the interactions between two phases (particle-fluid interaction), the effec-
tive thermophysical property approach is proposed and used in the governing equation.
To the best of our knowledge, no attempts have been made to analyze jet impingement
cooling enhanced with NEPCM analytically. By this reasonably simple approach presented
in this study, significant reductions in the complexity and cost of the computations of jet
impingement flow simulations are obtained. Furthermore, the effect of adding NEPCM
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and nano-metal particles on the thermal performance of JIC can be easily investigated
and interpreted.

2. Physical Model
2.1. Problem Description

The axisymmetric flow profile of a free-surface circular jet impinging with the velocity
of vj and the temperature of Tj is illustrated in Figure 1. As the circular jet impinges on
the surface, flow is symmetrically diverted around the stagnation point and extends to the
surface in a parallel manner. The primary mode of enhanced heat transfer is due to the flow
stagnation in the stagnation region (r ≺ dj/2) [2,3]. Most JIC studies have investigated
this region as the heat transfer enhancement is significant in this zone and continuously
decreases with the distance away from the stagnation zone [1,3,4,18–20,32–34]. The present
study also focuses on heat transfer in this region. Due to the balance between the stream
acceleration (thinning boundary layer) and viscous diffusion (thickening boundary layer
thickness), the boundary layer thickness is constant [35]. Boundary layer velocity (u) and
freestream velocity (u∞) profiles in r- direction are indicated in Figure 1.
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Figure 1. Axisymmetric stagnation flow profile of an impinging circular jet.

2.2. Mathematical Modeling

Considering a steady, axisymmetric, incompressible, laminar boundary layer flow
and heat transfer of a viscous fluid in the neighborhood of a stagnation point on a flat
plate located in z = 0, the conservation equations in cylindrical coordinates (r, z) with the
corresponding velocity components (u, v) are presented as Equations (1)–(4):

Continuity equation:
∂u
∂r

+
u
r
+

∂v
∂z

= 0 (1)

r-momentum equation (radial direction):

u
∂u
∂r

+ v
∂u
∂z

= −1
ρ

∂P
∂r

+ ν

(
∂2u
∂r2 +

1
r

∂u
∂r
− u

r2 +
∂2u
∂z2

)
(2)

z-momentum equation (axial direction):

u
∂v
∂r

+ v
∂v
∂z

= −∂P
∂z

+ ν

(
∂2v
∂r2 +

1
r

∂v
∂r

+
∂2v
∂z2

)
(3)
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energy equation:

u
∂T
∂r

+ v
∂T
∂z

= α

[
1
r

∂

∂r

(
r

∂T
∂r

)
+

∂2T
∂z2

]
(4)

In these equations, P and T represent the pressure and temperature fields, respectively.
Parameters ρ, ν, and α are density, static viscosity, and thermal diffusivity of flow, respec-
tively. Employing the Bernoulli’s equation in the potential region, the following relations
between free stream velocity u∞(r) and the pressure gradients in r direction are specified:

− 1
ρ

∂P
∂r

= u∞
du∞

dr
(5)

The velocity components of the potential (inviscid) flow near the stagnation point are
described as [27,35]:

u = −Cr (6)

v = −2Cz (7)

The C parameter represents the velocity gradient that is expressed in terms of the jet
velocity and the jet diameter as C = C

vj
dj

, where the value of C = 0.77 for circular jet [36].

2.3. Similarity Solution

To convert partial differential Equations (1)–(4) into a set of ordinary differential
equations, the following dimensionless similarity variables are introduced [3,27]:

η =

√
C
ν

z, u = Cr f ′(η), v = −2
√

Cν f (η), θ(η) =
T − Tj

γ
, where γ =

q′′

k

√
ν

C
(8)

Substituting these transformations into momentum and energy equations yields the
following non-linear ordinary differential equations:

f ′′′ + 2 f f ′′ + 1− f ′2 = 0 (9)

θ′′ + 2Pr f θ′ = 0 (10)

where f and θ represent the dimensionless velocity and temperature in the boundary later,
respectively.

The boundary conditions correspondent to the above equations are as (form no slip
and constant heat flux conditions on the wall):

η = 0 :

{
u = 0, v = 0,−k ∂T

∂z

∣∣∣
z=0

= q′′

f ′ = f = 0, θ′ = −1
(11)

η → ∞ :
{

u = u∞, T = Tj
f ′ = 1, θ= 0

(12)

The wall shear stress is defined as follows:

τw = µ

(
∂u
∂z

+
∂v
∂r

)∣∣∣∣
z=0

= µ

(
Cr

√
C
ν

f ′′ (0)

)
(13)

Integrating Equation (13) over the stagnation zone, the averaged wall shear stress can
be calculated by the following relation:

τwave =
1
A

∫ dj/2

0
τwave 2πr.dr (14)
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where A = π
dj

2

4 is stagnation zone surface area. Subsuming Equation (13) into (14) and
proper calculation, the averaged wall shear stress is calculated as follows:

τwave =
1
3

µCdj

√
C
ν

f ′′ (0) (15)

The heat transfer coefficient h is defined as follows:

h =
q′′

Tw − Tj
(16)

where Tw is the surface (wall) temperature. Using the dimensionless temperature variable
form Equation (8) and substituting properly in Equation (16), the heat transfer coefficient
can be calculated by the following relation:

h = k

√
C
ν

1
θ(0)

(17)

Note that the flow properties in boundary layer are estimated in film temperature;
Tf =

(
Tw + Tj

)
/2.

2.4. Thermophysical Properties Nano Particles and the Two-Phase Flow

Water is used as the base liquid coolant in the present study. The added nanoparticles
to the base coolant are considered as nano capsules made up of polystyrene as shell and
filled by n-octadecane paraffin wax as core (with the average size of 100 nm and 1:1 mixing
ratio of wax to polymer), and metallic oxide aluminum (Al2O3) (with 30 nm average size)
nanoparticles. The thermophysical properties of these components are listed in Table 1. The
thermophysical properties of water listed in Table 1 are reported at the room temperature
of 298.15 K; however, in the current simulations, the temperature-dependent properties
are calculated and considered. The correlations to calculate the temperatures based on
thermophysical properties of water are extracted from VDI-Heat Atlas [37].

As earlier mentioned, the single-phase flow approach which considers the effective
properties of the mixture is employed to model the NEPCM slurry as well as nanofluid. The
empirical correlations correspondent with the effective thermophysical properties NEPCM
slurry and nanofluid, are summarized in Tables 2 and 3, respectively.

The melting process PCM happens in a temperature range. The full melting range
(∆Tm) of NEPCM particles is from 21.0 ◦C to 29.5 ◦C (T1 and T2 Table 2, respectively) [30].
Therefore, NEPCM particles are in a solid form in the temperatures less than T1 and in
liquid form for the temperature larger than T2. Within this range ∆Tm = T2 − T1, phase
change process happens and NEPCM particles absorb the heat in the form of latent heat.
A sine profile in a proper resemblance to DSC curve suggested by Alisetti and Roy [38] is
used in the present study.

Table 1. Thermophysical properties of coolant components [30,39].

Property (Unit) Density;
ρ (kg/m3)

Specific Heat
Capacity; cp (J/kg K)

Thermal Conductivity;
k (W/m K)

Latent Heat of
Fusion; hsf (J/kg)

Viscosity;
µ (Pa.s)

Octadecane (solid) 850 1800 0.34 220.3 -
Octadecane (liquid) 780 2200 0.15 - 0.00385

NEPCM particles 1055 1965 0.22 107.1 -
Nano particles (Al2O3) 3880 773 36

Water (at 298.15 K) 997 4180 0.61 - 1.01
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Table 2. The correlations to calculate the thermophysical properties of NEPCM slurry [40,41].

Effective Property Correlations

Density
(

ρe f f

)
ερp + (1− ε)ρw

Specific heat capacity
(

cp e f f

)
εCp ,p + (1− ε)Cp ,w; Cp ,p = Cp ,PCM +

[
π
2

(
hs f

∆Tm
− Cp ,PCM

)
× sin

(
π T−T1

∆Tm

)]

Thermal conductivity
(

ke f f

) kb
(
1 + BεPep

m); kb = kw
2+

kp
kw

+2ε
(

kp
kw
−1
)

2+
kp
kw
−ε
(

kp
kw
−1
) ; Pep =

eDp
αw

;

e = 1
2

∣∣∣ξij

∣∣∣;


Pep < 0.67→ B = 3, m = 1.5
0.67 < Pep < 250→ B = 1.8, m = 0.18
Pep > 250→ B = 3, m = 1/11

Viscosity
(

µe f f

)
µw
(
1− ε− 1.16ε2)−2.5

Table 3. The correlations to calculate the thermophysical properties of nanofluid [39,42,43].

Effective Property Correlations

Density
(

ρe f f

)
ερp + (1− ε)ρw

Specific heat capacity
(

cp e f f

)
ερpcpp+(1−ε)ρwcpw

ρe f f

Thermal conductivity
(

ke f f

)
0.25

[
(3ε− 1)kp + (2− 3ε)kw +

√
∆
]

∆ =
[
(3ε− 1)kp + (2− 3ε)kw

]2
+ 8kpkw

Viscosity
(

µe f f

)
µw
(
123ε2 + 7.3ε + 1

)
3. Numerical Solution

Equations (9) and (10) with the boundary conditions (11) and (12) are a set of highly
nonlinear ordinary differential equations with boundary values. One of the most convenient
and efficient methods to solve boundary value problems of a set of nonlinear ODEs is
the fourth-order Runge–Kutta numerical method [6]. These boundary value problems
have unknown parameters in the upper boundary condition (η∞). So, the upper boundary
conditions f ′(∞), and θ(∞) may be substituted by the initial boundary conditions f ′′ (0),
and θ(0), to convert the boundary value problem to an initial value problem. For this
purpose, the shooting technique is applied along with the fourth-order Runge–Kutta
method with initial guesses for values f ′′ (0) and θ(0), and an iterative solution procedure
till satisfying the upper boundary conditions f ′(∞) = 1 and θ(∞) = 0. The solution
algorithm to obtain the dimensionless velocity and temperature field and finally the wall
shear stress and the heat transfer coefficient is shown in a flowchart in Figure 2.
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Figure 2. The flowchart for the numerical procedure.

4. Results and Discussion

The results obtained from the numerical integration of Equations (9) and (10) for the
JIC problem under an arbitrary constant surface heat flux are plotted in Figure 3. Based on
the boundary layer theory, the numerical solutions show that the dimensionless boundary
layer thickness η∞ is around 2 which coincides with results reported by [35].
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Figure 3. Dimensionless velocity ( f , f ′) and temperature (θ ) profiles in the stagnation region.

In the following, the main results from the analytical-numerical simulations to evaluate
the heat transfer field and cooling performance of an impinging jet with the NEPCM slurry
as coolant are presented. The nozzle and plate characteristics as well as NEPCM properties
are conducted with the same physical, geometrical, and operating parameters reported by
Wu et al. [30] as nozzle diameter (dj), nozzle-to-surface distance (H), and constant heat flux
(q′′ ) and are set to 0.75 mm, 8 mm, and 30 W/cm2, respectively. Furthermore, the results
are assessed over a wide range of jet inlet velocity (4 m/s ≤ Vj ≤ 16), jet inlet temperature
(16 ◦C ≤ Tj ≤ 32 ◦C), NEPCM particle volume concentration (0 ≤ ε ≤ 0.3), and alumina
nanoparticle concentration (0 ≤ φ ≤ 0.06). In order to validate the results presented in this
paper, the heat transfer coefficient results obtained from the current model are compared
with the results obtained from an experiment-based correlation for water jet reported by
Liu et al. [36] (Figure 4). For the case of NEPCM slurry jet, Nu number results are compared
with the experimental results conducted by [30] for a special case of 28% particle volume
fraction (Figure 5). As can be seen, a very good agreement for both cases is reported.
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Zhang and Faghri [40] observed that NEPCM slurry behaves as Newtonian fluid
for particle volume fraction below 0.3. Therefore, in the present study, NEPCM slurries
with particle volume fractions below 0.3 are considered to be treated as a Newtonian fluid.
Nanoparticles dispersed in water will influence the hydrodynamic of the fluid flow, such
as viscosity of the flow and shear stresses as a result of the relative motion between the
nanoparticles and the liquid flow. Figure 6 shows the effect of NEPCM concentration on
the variation of the average wall shear stress of stagnation flow with respect to Re number.
Shear stress increases with the increase of Re as expected. At the same Re number, NEPCM
slurry reports higher wall shear stresses compared with water and also with the increasing
concentration of NEPCM, shear stresses grow significantly due to higher effective viscosity.
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Figure 6. The effect of NEPCM concentration on the average wall shear stress of stagnation flow as
function of Re number.

As JIC is aimed to heat transfer applications, the rest of the results focus on the
heat transfer parameters and their effect on the thermal performance of the JIC. Figure 7
shows the effect of particle volume fraction of NEPCM slurry on the distribution of the
dimensionless temperature (θ profiles) in the boundary layer thickness. As expected
from the similarity solution, the trend of all profiles is the same (general profile), but
the effect of NEPCM concentration is significant on the values at the surface (at η = 0)
and the thickness of the thermal boundary layer (η∞ = δT). As heat flux is transferred
through the wall, we are interested in the thermal field values on the surface. According to
Equations (9) and (10), the dimensionless temperature in the boundary layer only depends
on Pr number. Therefore, the effect of the NEPCM concentration is exerted on the temper-
ature field/equation through Pr number. The value of dimensionless temperature at the
surface; θ(0) and its variation with respect to Pr number and NEPCM concentration in the
slurry jet is depicted in Figure 8. As seen, θ(0) decreases with the increasing NEPCM con-
centration (and therefore Pr number). According to Equation (16), decreasing θ(0) should
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lead to an increase in heat transfer coefficient. However, in addition to dimensionless
temperature at the surface; θ(0), the heat transfer coefficient depends also on some other
characteristics of fluid flow (C) and thermal (k & ν) fields.
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The comparison of jet impingement heat transfer coefficients for the NEPCM slurry
with different particle volume fraction at inlet jet temperatures of 25 ◦C as a function of jet
velocity which varies from 4 to 16 m/s (flow rate from 1.8 to 7.3 g/s) is illustrated in Figure 9.
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Figure 9. The variation of heat transfer coefficients with respect to jet velocity for NEPCM slurry with
different particle volume fraction when the inlet jet temperature is set at 25 ◦C.

As seen for all test cases, a higher flow rate (or inlet jet velocity) increases a higher
heat transfer coefficient and therefore cooling rate and vice versa. The figure also indicates
that for this specific inlet temperature, apart from the NEPCM concentration value, the
slurry jet has a higher heat transfer performance compared with the pure water jet due to
absorbing heat flux as the latent heat and therefore the wall temperature rising slows down.
However, the results show that slurry with a 15%, particle volume fraction has the highest
heat transfer coefficients among others. Adding more NEPCM particles to the slurry would
decrease the cooling performance.

It is interesting to find under what conditions the cooling performance is the maximum.
For this purpose, the heat flux and jet velocity (mass flow rate) are set to 30 W/cm2 and
8 m/s (3.6 g/s), respectively, while the jet inlet temperature and NEPCM concentration are
varied between 16 and 32 ◦C, and 0 to 0.4, respectively. First, the comparison of transfer
coefficient profiles as a function of inlet jet temperature for water and NEPCM slurry with
different particle volume fractions is provided in Figure 10. Except for the case of the
water jet which has a slight increasing slope, the profiles regarding slurry jets have a peak
within the melting temperature range of PCM. Within this range, PCM starts to melt and
therefore the heat transfer coefficients increase. For a heated surface at a temperature out of
the melting range, water has a higher heat transfer coefficient. This is because, as shown
earlier, with increasing particle volume fraction in slurry, viscosity sharply increases. This
increase will thicken the boundary layer and hence will reduce the heat transfer as a result.
Therefore, the overall heat transfer coefficient decreases. Furthermore, for the lower inlet
temperatures (Tj < 19 ◦C), there would be no phase change, and the heat transfer coefficient
for slurry is lower than for the water case, because the slurry has a lower conductivity than
water as a result of the lower conductivity of NEPC particles.
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Figure 10. Heat transfer coefficient profiles as function of inlet jet temperature for water and NEPCM
slurry with different particle volume fraction (Vj= 8 m/s).

The results also indicate that the maximum enhancement in the heat transfer coefficient
for slurry cases occurred at an inlet jet temperature of 25.2, which is quite close to the peak
temperature (26.2) measured by DSC melting curve [30]. Furthermore, this peak has the
maximum value at the particle volume fraction of 15%. To find the optimum particle
volume fraction corresponding with the maximum value over a wider and continuous
range, the variation of heat transfer coefficients versus particle volume fraction is depicted
in Figure 11. As can be seen, the curves have a peak in ε = 0.15 and this concentration is
not varied with the jet velocity/flow rate.

To investigate the effect of nanoparticles on the cooling performance of the JIC and
compare the results with ones for the water and slurry jets, the heat transfer coefficients
for the nanofluid jet impingement are also calculated. The variation of heat transfer
coefficients with respect to jet velocity for three different particle volume fractions at inlet
jet temperatures of 25 ◦C is depicted and compared with water in Figure 12. As seen,
increasing nanoparticle concentration will slightly increase the heat transfer coefficient,
but the effect seems less significant compared to the results found for adding the NEPCM
particles in Figure 9. Tang et al. [44] conducted an experimental work on Al2O3 nanofluids
to characterize the viscosity and shear stresses. They found that alumina nanoparticles
dispersed below 6% volume concentration exhibit Newtonian behavior for an operating
temperature range from 6 to 75 ◦C. Therefore, nanofluids below 6% are assumed to be
Newtonian fluid. Figure 13 compares the heat transfer coefficients for water, nanofluid,
and NEPCM slurry jets for particle concentrations, leading to the maximum value for the
heat transfer. As seen, at the same jet velocity, the maximum heat transfer coefficients for
NEPCM slurry are significantly higher than those for nanofluid. Compared with the water
jet, adding NEPCM and nanoparticles would overall enhance the thermal performance of
the JIC by 16% and 7%, respectively.
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different particle volume fraction (Tj = 25 ◦C).
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5. Conclusions

In this paper, the flow and the heat transfer of free-surface jet impingement cooling
using water, NEPCM slurry, and nanofluid were studied. An analytical solution using a
similarity approach was presented to determine the main characteristics of flow and heat
transfer fields, such as the wall shear stress and the heat transfer coefficient. The effect
of NEPCM particle concentration on these characteristics was investigated. It was found
that wall shear stress significantly increases with the increase of NEPCM concentration.
Furthermore, adding NEPCM particles to the water jet can be effective if the inlet tempera-
ture is in the range of the melting temperature of the utilized PCM. Moreover, there was
an optimum value for the particle concentration that led to maximizing the heat transfer
coefficient of JIC. It was also found that in the maximum performance, NEPCM slurry
shows a better result compared to the nanofluid as it enhanced the thermal performance of
the system by 16%, while the nanofluid enhances the performance by 7%, compared with
water. However, the maximum performance of the NEPCM slurry strongly depends on
the inlet jet temperature and volume concentration. At the inlet temperature of 25.2 ◦C
and concentration of 15%, the maximum performance is achieved. It is suggested that the
future work focus should be on the NEPCM particles with higher latent heat and especially
higher thermal conductivity to overcome the weakness of NEPCM slurries.
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Nomenclature

C velocity gradient [S−1]
cp specific heat [J/kg K]
dj Nozzle diameter [m or mm]
f Dimensionless velocity
h convective heat transfer coefficient [W/m2 K]
hs f latent heat of fusion [J/kg]
k thermal conductivity [W/m K]
P Pressure [Pa]
Pr Prandtl number
q′′ Wall heat flux [W/m2]
r Cartesian coordinate, [m or mm]
Re Reynolds number
T temperature [◦C or K]
∆T temperature difference [◦C or K]
u velocity component in r direction [m/s]
v velocity component in z direction [m/s]
vj Inlet jet velocity
z Cartesian coordinate, [m or mm]
Greek symbols
α Thermal diffusivity [m2/s]
θ Dimensionless temperature
ν Kinematic viscosity [m2/s]
ε Volume fraction of NEPCM particle
ϕ Volume fraction of nanoparticles
τw Wall shear stress
µ Dynamic viscosity [Pa.s]
ρ density [kg/m3]
η Dimensionless coordinate/length
Subscripts
b Bulk
eff Effective Property
j Jet related
l liquid PCM
m melt
p Particle
s solid PCM
w Wall/Water related
∞ Potential (inviscid) flow related
Abbreviation
JIC Jet impingement cooling
MF Melt fraction
Nu Nusselt number
PCM Phase change material
NEPCM Nano-encapsulated phase change material
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