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Letter to the Editor

Langrangian Stochastic Particle Tracking

A. A. Aliabadi and S. N. Rogak
Department of Mechanical Engineering, University of British Columbia, Vancouver,
British Columbia, Canada

In response to “Comparison of Three Approaches to Model Particle Penetration Coefficient through a Single Straight Crack in a
Building Envelope” by B. Zhao et al. in Aerosol Science and Technology 44:405–416, 2010

Dear Editors,

The above article provides useful insights in various analyt-
ical and numerical methods in calculating Brownian deposition
of fine particles on building wall cracks. However, the authors
make a serious error by stating that for fundamental reasons
the Lagrangian stochastic force model cannot be used to model
Brownian motion correctly. Specifically on page 412, they state
that:

According to Fick’s law, Brown diffusion depends on particle
concentration gradient. However, the information of particle con-
centration gradient cannot be obtained when calculating the Brown
force by Lagrangian approach. It should be pointed out that the
calculation of particle trajectory does NOT depend on the particle
concentration gradient, which may make the simulation of Brownian
diffusion inaccurate . . .

This statement is contrary to the accepted literature in the
field. When modeling Brownian diffusion, the link between
Lagrangian and Eulerian approaches can be understood com-
paring statistical (microscopic) and continuum (macroscopic)
mechanics. Consider a total of N0 particles originally positioned
at y-z plane which are allowed to diffuse in the positive and neg-
ative x directions (2 dimensional diffusion). Fick’s second law
predicts how diffusion causes the concentration field to change
with time.

∂N (x, t)

∂t
= D

∂2N (x, t)

∂x2
[1]

where N is the number concentration and D is the diffusion
coefficient. Certainly, Fick’s second law is the more general
case and Fick’s first law can be derived from it. This equation
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is written for diffusion in continuum mechanics (macroscopic).
By combining statistical and continuum mechanics, it is possi-
ble to show that individual particle positions for an ensemble
of particles, themselves, contain the information regarding the
concentration field. Furthermore, it is possible to express D in
terms of parameters other than particle concentration.

In the microscopic world, the motion of a particle is described
by the Langevin equation (also known as Lagrange equation or
Newton’s second law).

d
−→
V

dt
= − 1

τ

−→
V + −→a [2]

where
−→
V is particle velocity, τ is particle relaxation time, and−→a is stochastic acceleration function due to particle collisions.

For isotropic Brownian diffusion, Seinfeld and Pandis (2006)
derive that

〈x2〉 = 2kT CC

3πµDP

t [3]

stating that the mean-squared-position 〈x2〉 is related to the
Boltzmann constant k, absolute temperature T , Cunningham
correction factor CC , continuum phase viscosity µ, and parti-
cle diameter DP . This is also known as the Stokes-Einstein-
Sutherland relation.

This is substantial, but we still need to find an expression
for coefficient of diffusion as a function of parameters other
than particle concentration. We can further multiply the left and
right hand side of Equation (1) by x2 and integrate over the
complete x-axis. Seinfeld and Pandis (2006) did this calculation
and provide

LHS =
∫ +∞

−∞
x2 ∂N (x, t)

∂t
dx = N0

∂〈x2〉
∂t

[4]
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RHS =
∫ +∞

−∞
x2D

∂2N (x, t)

∂x2
dx = 2DN0 [5]

Combining Equations (3), (4), and (5), one can express the
diffusion coefficient as a function of parameters other than
particle concentration.

D = kT CC

3πµDP

[6]

Other authors arrive at similar expressions for diffusion co-
efficient combining statistical and continuum mechanics. For
example, a simplified model by Sonntag and Van Wylen (1966)
relates diffusion coefficient to statistical mechanics parameters
for a mono-atomic gas.

D = 1

3
V � [7]

where V is mean molecular velocity and � is the mean free
path for the continuum phase. They argue that the comparison
between experimental and theoretical data for diffusion coeffi-
cient is fair. They show that with more sophisticated statistical
mechanics models, excellent agreement between theoretical and
experimental diffusion coefficients has been achieved.

Li and Ahmadi (1992) provide a version of Lagrangian
stochastic force model with a Gaussian white nose forcing func-
tion that they apply to the Brownian diffusion of a point source
of 500 massless particle trajectories in a stagnant fluid back-
ground. Their simulation shows excellent agreement between
the stochastic simulation and the solution to the diffusion equa-
tion (their Figure 3).

Reynolds (1999) also studies variations of the Lagrangian
stochastic forcing model in predicting deposition of Brownian
particles at various Reynolds numbers. They also find the model
and experimental results in good agreement (their Figure 4).
They suggest that, however, various difficulties exist in obtain-
ing correct results using this technique. First, the Reynolds num-
ber effects must be taken into consideration correctly. Second,
one must account for differences between tracer particles and
Brownian particles correctly.

Therefore, contrary to the authors’ statements, the definition
of Lagrangain stochastic model is physically plausible and rep-
resentative of non-continuum fluid mechanics without the need
to consider particle concentration information. Also, the cred-
ible literature confirms that this model, if computed correctly,
agrees well with theoretical and experimental results. It is not
clear why Zhao et al.’s FLUENT simulation grossly underesti-
mates deposition by Brownian motion.
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